Skip to main content
Log in

Isotopic fingerprinting of dissolved iron sources in the deep western Pacific since the late Miocene

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Iron (Fe) is a productivity-limiting nutrient in the ocean. However, the sources of dissolved Fe (dFe) in the deep ocean and how they respond to tectonic and climate changes are still poorly understood. In the northern hemisphere, dust flux to the low-latitude western Pacific has increased dramatically since the late Miocene associated with intense aridification of the Asian inland. Meanwhile, the terrigenous material supply to the open ocean might have also changed as a result of the reorganization of the Pacific circulation due to the gradual closure of seaways in the low latitudes. Therefore, the western Pacific is a characteristic region for understanding the sources of dFe in the deep ocean and their responses to long term climate changes. Here, we present data on isotopic evolution of dFe and dissolved Pb since ∼8 Ma based on ferromanganese crust METG-03 (16.0°N, 152.0°E, 3850 m water depth) in the western Pacific deep water. Our results show that δ56Fe of the crust remains fairly stable since the late Miocene, i.e., about −0.32±0.08‰ (2SD). We infer that δ56Fe of dFe in the deep western Pacific is relatively invariant at ∼0.45 ±0.1‰ based on the Fe isotopic fractionation between hydrogenetic crust and the seawater dissolved component. The reconstructed isotope signature is similar to the measured δ56Fe value (0.37±0.15‰) of the intermediate to deep waters in the modern low-latitude western Pacific region close to the island arcs, but is significantly higher than that of the eastern Pacific deep waters near South America which is controlled by the reductive dissolution of continental shelf sediments and the hydrothermal inputs (δ56Fe<−0.1‰). The deep-water 206Pb/204Pb ratio recorded by METG-03 displays systematic increase at about 8–4 Ma, reflecting increased input from sediment dissolution of low-latitude island arcs associated with reorganization of the western Pacific deep circulation. Notably, Fe isotopes of terrigenous materials from different sources are similar, while their dissolved Fe isotopic signatures released to the ocean are mainly controlled by the mechanism of particle dissolution. The stability of δ56Fe and systematic changes in Pb isotopes over the last ∼8 Ma thus suggest that Asian dust dissolution and hydrothermal inputs are likely only minor sources of dFe in the low-latitude deep western Pacific, while the acquisition and transport of dFe from shelf sediments by organic ligand binding in the oxic environment is the major dFe source which keeps stable on tectonic time scales since the late Miocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abadie C, Lacan F, Radic A, Pradoux C, Poitrasson F. 2017. Iron isotopes reveal distinct dissolved iron sources and pathways in the intermediate versus deep Southern Ocean. Proc Natl Acad Sci USA, 114: 858–863

    Google Scholar 

  • Amakawa H, Sasaki K, Ebihara M. 2009. Nd isotopic composition in the central North Pacific. Geochim Cosmochim Acta, 73: 4705–4719

    Google Scholar 

  • Behrenfeld M J, Falkowski P G. 1997. A consumer’s guide to phytoplankton primary productivity models. Limnol Oceanogr, 42: 1479–1491

    Google Scholar 

  • Boyd P W, Ellwood M J. 2010. The biogeochemical cycle of iron in the ocean. Nat Geosci, 3: 675–682

    Google Scholar 

  • Buck K N, Sedwick P N, Sohst B, Carlson C A. 2018. Organic complexation of iron in the eastern tropical South Pacific: Results from US GEOTRACES Eastern Pacific zonal transect (GEOTRACES cruise GP16). Mar Chem, 201: 229–241

    Google Scholar 

  • Chai F, Jiang M S, Chao Y, Dugdale R C, Chavez F, Barber R T. 2007. Modeling responses of diatom productivity and biogenic silica export to iron enrichment in the equatorial Pacific Ocean. Glob Biogeochem Cycle, 21: GB3S90

    Google Scholar 

  • Chen T Y, Cai P, Li W Q, Yang T, Ling H F, Ji J F. 2019. The sources of dissolved iron in the global ocean and isotopic tracing (in Chinese with English Abstract). Mar Geol Quat Geol, 39: 46–57

    Google Scholar 

  • Chen T Y, Li W Q, Guo B, Liu R L, Li G J, Zhao L, Ji J F. 2020. Reactive iron isotope signatures of the East Asian dust particles: Implications for iron cycling in the deep North Pacific. Chem Geol, 531: 119342

    Google Scholar 

  • Chen T Y, Ling H F, Hu R. 2011. Neodymium isotopes distribution and transport in the central North Pacific deep water. Chin Sci Bull, 56: 2243–2250

    Google Scholar 

  • Chen T Y, Ling H F, Hu R, Frank M, Jiang S Y. 2013. Lead isotope provinciality of central North Pacific deep water over the Cenozoic. Geochem Geophys Geosyst, 14: 1523–1537

    Google Scholar 

  • Chu N C, Johnson C M, Beard B L, German C R, Nesbitt R W, Frank M, Bohn M, Kubik P W, Usui A, Graham I. 2006. Evidence for hydrothermal venting in Fe isotope compositions of the deep Pacific Ocean through time. Earth Planet Sci Lett, 245: 202–217

    Google Scholar 

  • Conway T M, John S G. 2014. Quantification of dissolved iron sources to the North Atlantic Ocean. Nature, 511: 212–215

    Google Scholar 

  • Conway T M, John S G. 2015. The cycling of iron, zinc and cadmium in the North East Pacific Ocean—Insights from stable isotopes. Geochim Cosmochim Acta, 164: 262–283

    Google Scholar 

  • Dale A W, Nickelsen L, Scholz F, Hensen C, Oschlies A, Wallmann K. 2015. A revised global estimate of dissolved iron fluxes from marine sediments. Glob Biogeochem Cycle, 29: 691–707

    Google Scholar 

  • Fitzsimmons J N, Carrasco G G, Wu J, Roshan S, Hatta M, Measures C I, Conway T M, John S G, Boyle E A. 2015a. Partitioning of dissolved iron and iron isotopes into soluble and colloidal phases along the GA03 GEOTRACES North Atlantic Transect. Deep Sea Res Part II-Topic Stud Oceanogr, 116: 130–151

    Google Scholar 

  • Fitzsimmons J N, Hayes C T, Al-Subiai S N, Zhang R, Morton P L, Weisend R E, Ascani F, Boyle E A. 2015b. Daily to decadal variability of size-fractionated iron and iron-binding ligands at the Hawaii Ocean time-series station ALOHA. Geochim Cosmochim Acta, 171: 303–324

    Google Scholar 

  • Fitzsimmons J N, John S G, Marsay C M, Hoffman C L, Nicholas S L, Toner B M, German C R, Sherrell R M. 2017. Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange. Nat Geosci, 10: 195–201

    Google Scholar 

  • Frank M. 2002. Radiogenic isotopes: Tracers of past ocean circulation and erosional input. Rev Geophys, 40: 1001

    Google Scholar 

  • Frank M, Reynolds B C, Keith O’Nions R. 1999. Nd and Pb isotopes in Atlantic and Pacific water masses before and after closure of the Panama gateway. Geology, 27: 1147–1150

    Google Scholar 

  • German C R, Seyfried W E. 2014. 8.7-Hydrothermal processes. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry (Second Edition). Oxford: Elsevier. 191–233

    Google Scholar 

  • Gledhill M, Buck K N. 2012. The organic complexation of iron in the marine environment: A review. Front Microbiol, 3: 69

    Google Scholar 

  • Halbach P, Segl M, Puteanus D, Mangini A. 1983. Co-fluxes and growth rates in ferromanganese deposits from central Pacific seamount areas. Nature, 304: 716–719

    Google Scholar 

  • Haug G H, Tiedemann R, Zahn R, Ravelo A C. 2001. Role of Panama uplift on oceanic freshwater balance. Geology, 29: 207–210

    Google Scholar 

  • Hayes C T, Fitzsimmons J N, Boyle E A, McGee D, Anderson R F, Weisend R, Morton P L. 2015. Thorium isotopes tracing the iron cycle at the Hawaii Ocean Time-series Station ALOHA. Geochim Cosmochim Acta, 169: 1–16

    Google Scholar 

  • Henderson G M, Burton K W. 1999. Using (234U/238U) to assess diffusion rates of isotope tracers in ferromanganese crusts. Earth Planet Sci Lett, 170: 169–179

    Google Scholar 

  • Henderson G M, Maier-Reimer E. 2002. Advection and removal of 210Pb and stable Pb isotopes in the oceans: A general circulation model study. Geochim Cosmochim Acta, 66: 257–272

    Google Scholar 

  • Horner T J, Williams H M, Hein J R, Saito M A, Burton K W, Halliday A N, Nielsen S G. 2015. Persistence of deeply sourced iron in the Pacific Ocean. Proc Natl Acad Sci USA, 112: 1292–1297

    Google Scholar 

  • Jeong K S, Jung H S, Kang J K, Morgan C L, Hein J R. 2000. Formation of ferromanganese crusts on northwest intertropical Pacific seamounts: Electron photomicrography and microprobe chemistry. Mar Geol, 162: 541–559

    Google Scholar 

  • John S G, Helgoe J, Townsend E, Weber T, DeVries T, Tagliabue A, Moore K, Lam P, Marsay C M, Till C. 2018. Biogeochemical cycling of Fe and Fe stable isotopes in the Eastern Tropical South Pacific. Mar Chem, 201: 66–76

    Google Scholar 

  • John S G, Mendez J, Moffett J, Adkins J. 2012. The flux of iron and iron isotopes from San Pedro Basin sediments. Geochim Cosmochim Acta, 93: 14–29

    Google Scholar 

  • Johnson C M, Beard B L, Roden E E. 2008. The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient Earth. Annu Rev Earth Planet Sci, 36: 457–493

    Google Scholar 

  • Jones C E, Halliday A N, Rea D K, Owen R M. 2000. Eolian inputs of lead to the North Pacific. Geochim Cosmochim Acta, 64: 1405–1416

    Google Scholar 

  • Kawabe M, Fujio S. 2010. Pacific Ocean circulation based on observation. J Oceanogr, 66: 389–403

    Google Scholar 

  • Kawabe M, Yanagimoto D, Kitagawa S, Kuroda Y. 2005. Variations of the deep western boundary current in Wake Island Passage. Deep Sea Res Part I-Oceanogr Res Pap, 52: 1121–1137

    Google Scholar 

  • Koschinsky A, Stascheit A, Bau M, Halbach P. 1997. Effects of phosphatization on the geochemical and mineralogical composition of marine ferromanganese crusts. Geochim Cosmochim Acta, 61: 4079–4094

    Google Scholar 

  • Lacan F, Jeandel C. 2005. Neodymium isotopes as a new tool for quantifying exchange fluxes at the continent-ocean interface. Earth Planet Sci Lett, 232: 245–257

    Google Scholar 

  • Lear C H, Elderfield H, Wilson P A. 2000. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science, 287: 269–272

    Google Scholar 

  • Levasseur S, Frank M, Hein J R, Halliday A N. 2004. The global variation in the iron isotope composition of marine hydrogenetic ferromanganese deposits: Implications for seawater chemistry? Earth Planet Sci Lett, 224: 91–105

    Google Scholar 

  • Ling H F, Burton K W, O’Nions R K, Kamber B S, von Blanckenburg F, Gibb A J, Hein J R. 1997. Evolution of Nd and Pb isotopes in Central Pacific seawater from ferromanganese crusts. Earth Planet Sci Lett, 146: 1–12

    Google Scholar 

  • Ling H F, Jiang S Y, Frank M, Zhou H Y, Zhou F, Lu Z L, Chen X M, Jiang Y H, Ge C D. 2005. Differing controls over the Cenozoic Pb and Nd isotope evolution of deepwater in the central North Pacific Ocean. Earth Planet Sci Lett, 232: 345–361

    Google Scholar 

  • Liu R, Wang M, Li W, Shi X, Chen T. 2020. Dissolved thorium isotope evidence for export productivity in the subtropical North Pacific during the late Quaternary. Geophys Res Lett, 47: e85995

    Google Scholar 

  • Lyle M, Barron J, Bralower T J, Huber M, Olivarez Lyle A, Ravelo A C, Rea D K, Wilson P A. 2008. Pacific ocean and Cenozoic evolution of climate. Rev Geophys, 46: RG2002

    Google Scholar 

  • Lyle M, Drury A J, Tian J, Wilkens R, Westerhold T. 2019. Late Miocene to Holocene high-resolution eastern equatorial Pacific carbonate records: Stratigraphy linked by dissolution and paleoproductivity. Clim Past, 15: 1715–1739

    Google Scholar 

  • Marcus M A, Edwards K J, Gueguen B, Fakra S C, Horn G, Jelinski N A, Rouxel O, Sorensen J, Toner B M. 2015. Iron mineral structure, reactivity, and isotopic composition in a South Pacific Gyre ferromanganese nodule over 4 Ma. Geochim Cosmochim Acta, 171: 61–79

    Google Scholar 

  • Martin J H. 1990. Glacial-interglacial CO2 change: The Iron Hypothesis. Paleoceanography, 5: 1–13

    Google Scholar 

  • Martin J H, Fitzwater S E. 1988. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature, 331: 341–343

    Google Scholar 

  • Martin J H, Fitzwater S E, Gordon R M. 1990. Iron deficiency limits phytoplankton growth in Antarctic waters. Glob Biogeochem Cycle, 4: 5–12

    Google Scholar 

  • Moore J K, Braucher O. 2008. Sedimentary and mineral dust sources of dissolved iron to the world ocean. Biogeosciences, 5: 631–656

    Google Scholar 

  • Nishimura S, Suparka S. 1997. Tectonic approach to the Neogene evolution of Pacific-Indian Ocean seaways. Tectonophysics, 281: 1–16

    Google Scholar 

  • Okubo A, Obata H, Gamo T, Yamada M. 2012. 230Th and 232Th distributions in mid-latitudes of the North Pacific Ocean: Effect of bottom scavenging. Earth Planet Sci Lett, 339–340: 139–150

    Google Scholar 

  • Radic A, Lacan F, Murray J W. 2011. Iron isotopes in the seawater of the equatorial Pacific Ocean: New constraints for the oceanic iron cycle. Earth Planet Sci Lett, 306: 1–10

    Google Scholar 

  • Rea D K, Hovan S A, Janecek T R. 1994. Late Quaternary flux of eolian dust to the pelagic ocean. In: Hay W W, ed. Material Fluxes on the Surface of the Earth. Washington DC: National Academy Press. 116–124

    Google Scholar 

  • Rea D K, Snoeckx H, Joseph L H. 1998. Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere. Paleoceanography, 13: 215–224

    Google Scholar 

  • Resing J A, Sedwick P N, German C R, Jenkins W J, Moffett J W, Sohst B M, Tagliabue A. 2015. Basin-scale transport ofhydrothermal dissolved metals across the South Pacific Ocean. Nature, 523: 200–203

    Google Scholar 

  • Schlitzer R, Anderson R F, Dodas E M, Lohan M, Geibert W, Tagliabue A, Bowie A, Jeandel C, Maldonado M T, Landing W M, Cockwell D, Abadie C, Abouchami W, Achterberg E P, Agather A, Aguliar-Islas A, van Aken H M, Andersen M, Archer C, Auro M, de Baar H J, Baars O, Baker A R, Bakker K, Basak C, Baskaran M, Bates N R, Bauch D, van Beek P, Behrens M K, Black E, Bluhm K, Bopp L, Bouman H, Bowman K, Bown J, Boyd P, Boye M, Boyle E A, Branellec P, Bridgestock L, Brissebrat G, Browning T, Bruland K W, Brumsack H J, Brzezinski M, Buck C S, Buck K N, Buesseler K, Bull A, Butler E, Cai P, Mor P C, Cardinal D, Carlson C, Carrasco G, Casacuberta N, Casciotti K L, Castrillejo M, Chamizo E, Chance R, Charette M A, Chaves J E, Cheng H, Chever F, Christl M, Church T M, Closset I, Colman A, Conway T M, Cossa D, Croot P, Cullen J T, Cutter G A, Daniels C, Dehairs F, Deng F, Dieu H T, Duggan B, Dulaquais G, Dumousseaud C, Echegoyen-Sanz Y, Edwards R L, Ellwood M, Fahrbach E, Fitzsimmons J N, Russell Flegal A, Fleisher M Q, van de Flierdt T, Frank M, Friedrich J, Fripiat F, Fröllje H, Galer S J G, Gamo T, Ganeshram R S, Garcia-Orellana J, Garcia-Solsona E, Gault-Ringold M, George E, Gerringa L J A, Gilbert M, Godoy J M, Goldstein S L, Gonzalez S R, Grissom K, Hammerschmidt C, Hartman A, Hassler C S, Hathorne E C, Hatta M, Hawco N, Hayes C T, Heimbürger L E, Helgoe J, Heller M, Henderson G M, Henderson P B, van Heuven S, Ho P, Horner T J, Hsieh Y T, Huang K F, Humphreys M P, Isshiki K, Jacquot J E, Janssen D J, Jenkins W J, John S, Jones E M, Jones J L, Kadko D C, Kayser R, Kenna T C, Khondoker R, Kim T, Kipp L, Klar J K, Klunder M, Kretschmer S, Kumamoto Y, Laan P, Labatut M, Lacan F, Lam P J, Lambelet M, Lamborg C H, Le Moigne F A C, Le Roy E, Lechtenfeld O J, Lee J M, Lherminier P, Little S, López-Lora M, Lu Y, Masque P, Mawji E, Mcclain C R, Measures C, Mehic S, Barraqueta J L M, van der Merwe P, Middag R, Mieruch S, Milne A, Minami T, Moffett J W, Moncoiffe G, Moore W S, Morris P J, Morton P L, Nakaguchi Y, Nakayama N, Niedermiller J, Nishioka J, Nishiuchi A, Noble A, Obata H, Ober S, Ohnemus D C, van Ooijen J, O’Sullivan J, Owens S, Pahnke K, Paul M, Pavia F, Pena L D, Peters B, Planchon F, Planquette H, Pradoux C, Puigcorbé V, Quay P, Queroue F, Radic A, Rauschenberg S, Rehkämper M, Rember R, Remenyi T, Resing J A, Rickli J, Rigaud S, Rijkenberg M J A, Rintoul S, Robinson L F, Roca-Martí M, Rodellas V, Roeske T, Rolison J M, Rosenberg M, Roshan S, Rutgers van der Loeff M M, Ryabenko E, Saito M A, Salt L A, Sanial V, Sarthou G, Schallenberg C, Schauer U, Scher H, Schlosser C, Schnetger B, Scott P, Sedwick P N, Semiletov I, Shelley R, Sherrell R M, Shiller A M, Sigman D M, Singh S K, Slagter H A, Slater E, Smethie W M, Snaith H, Sohrin Y, Sohst B, Sonke J E, Speich S, Steinfeldt R, Stewart G, Stichel T, Stirling C H, Stutsman J, Swarr G J, Swift J H, Thomas A, Thorne K, Till C P, Till R, Townsend A T, Townsend E, Tuerena R, Twining B S, Vance D, Velazquez S, Venchiarutti C, Villa-Alfageme M, Vivancos S M, Voelker A H L, Wake B, Warner M J, Watson R, van Weerlee E, Alexandra Weigand M, Weinstein Y, Weiss D, Wisotzki A, Woodward E M S, Wu J, Wu Y, Wuttig K, Wyatt N, Xiang Y, Xie R C, Xue Z, Yoshikawa H, Zhang J, Zhang P, Zhao Y, Zheng L, Zheng X Y, Zieringer M, Zimmer L A, Ziveri P, Zunino P, Zurbrick C. 2018. The GEOTRACES intermediate data product 2017. Chem Geol, 493: 210–223

    Google Scholar 

  • Sedwick P N, Sohst B M, Ussher S J, Bowie A R. 2015. A zonal picture of the water column distribution of dissolved iron(II) during the U.S. GEOTRACES North Atlantic transect cruise (GEOTRACES GA03). Deep Sea Res Part II-Topic Stud Oceanogr, 116: 166–175

    Google Scholar 

  • Siddall M, Khatiwala S, van de Flierdt T, Jones K, Goldstein S L, Hemming S, Anderson R F. 2008. Towards explaining the Nd paradox using reversible scavenging in an ocean general circulation model. Earth Planet Sci Lett, 274: 448–461

    Google Scholar 

  • Siddall M, Stocker T F, Henderson G M, Joos F, Frank M, Edwards N R, Ritz S P, Müller S A. 2007. Modeling the relationship between 231Pa/230Th distribution in North Atlantic sediment and Atlantic meridional overturning circulation. Paleoceanography, 22: PA2214

    Google Scholar 

  • Sigman D M, Hain M P, Haug G H. 2010. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature, 466: 47–55

    Google Scholar 

  • Suga T, Kato A, Hanawa K. 2000. North Pacific Tropical Water: Its climatology and temporal changes associated with the climate regime shift in the 1970s. Prog Oceanogr, 47: 223–256

    Google Scholar 

  • Sun J M, Zhu X K. 2010. Temporal variations in Pb isotopes and trace element concentrations within Chinese eolian deposits during the past 8 Ma: Implications for provenance change. Earth Planet Sci Lett, 290: 438–447

    Google Scholar 

  • Tagliabue A, Aumont O, Bopp L. 2014. The impact of different external sources of iron on the global carbon cycle. Geophys Res Lett, 41: 920–926

    Google Scholar 

  • Tagliabue A, Aumont O, DeAth R, Dunne J P, Dutkiewicz S, Galbraith E, Misumi K, Moore J K, Ridgwell A, Sherman E, Stock C, Vichi M, Völker C, Yool A. 2016. How well do global ocean biogeochemistry models simulate dissolved iron distributions? Glob Biogeochem Cycle, 30: 149–174

    Google Scholar 

  • Tagliabue A, Bowie A R, Boyd P W, Buck K N, Johnson K S, Saito M A. 2017. The integral role of iron in ocean biogeochemistry. Nature, 543: 51–59

    Google Scholar 

  • Tsuchi R. 1997. Marine climatic responses to Neogene tectonics of the Pacific Ocean seaways. Tectonophysics, 281: 113–124

    Google Scholar 

  • van de Flierdt T, Frank M, Halliday A N, Hein J R, Hattendorf B, Günther D, Kubik P W. 2004a. Deep and bottom water export from the Southern Ocean to the Pacific over the past 38 million years. Paleoceanography, 19: PA1020

    Google Scholar 

  • van de Flierdt T, Frank M, Halliday A N, Hein J R, Hattendorf B, Günther D, Kubik P W. 2004b. Tracing the history of submarine hydrothermal inputs and the significance of hydrothermal hafnium for the seawater budget—A combined Pb-Hf-Nd isotope approach. Earth Planet Sci Lett, 222: 259–273

    Google Scholar 

  • Willenbring J K, von Blanckenburg F. 2010. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling. Nature, 465: 211–214

    Google Scholar 

  • Wu J, Boyle E, Sunda W, Wen L S. 2001. Soluble and colloidal iron in the oligotrophic North Atlantic and North Pacific. Science, 293: 847–849

    Google Scholar 

  • Wu J F, Wells M L, Rember R. 2011. Dissolved iron anomaly in the deep tropical-subtropical Pacific: Evidence for long-range transport of hydrothermal iron. Geochim Cosmochim Acta, 75: 460–468

    Google Scholar 

  • Yuan H L, Yuan W T, Cheng C, Liang P, Liu X, Dai M N, Bao Z A, Zong C L, Chen K Y, Lai S C. 2016. Evaluation of lead isotope compositions of NIST NBS 981 measured by thermal ionization mass spectrometer and multiple-collector inductively coupled plasma mass spectrometer. Solid Earth Sci, 1: 74–78

    Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292: 686–693

    Google Scholar 

  • Zhang R F, John S G, Zhang J, Ren J L, Wu Y, Zhu Z Y, Liu S M, Zhu X C, Marsay C M, Wenger F. 2015. Transport and reaction of iron and iron stable isotopes in glacial meltwaters on Svalbard near Kongsfjorden: From rivers to estuary to ocean. Earth Planet Sci Lett, 424: 201–211

    Google Scholar 

  • Zhu X K, O’Nions R K, Guo Y, Reynolds B C. 2000. Secular variation of iron isotopes in North Atlantic deep water. Science, 287: 2000–2002

    Google Scholar 

Download references

Acknowledgements

We thank the scientific editor and three anonymous reviewers for their constructive comments on our manuscript. China Ocean Sample Repository is acknowledged for providing the ferromanganese crust sample. This work was supported by the National Natural Science Foundation of China (Grant Nos. 91858105 & 41822603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianyu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Guo, B., Wang, M. et al. Isotopic fingerprinting of dissolved iron sources in the deep western Pacific since the late Miocene. Sci. China Earth Sci. 63, 1767–1779 (2020). https://doi.org/10.1007/s11430-020-9648-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-020-9648-6

Keywords

Navigation