Skip to main content

Spatio-temporal variation in rock exhumation linked to large-scale shear zones in the southeastern Tibetan Plateau

Abstract

Crustal-scale shear zones are believed to have played an important role in the tectonic and landscape evolution of orogens. However, the variation of long-term rock exhumation between the interior of shear zones and adjacent regions has not been documented in detail. In this study, we obtained new zircon U-Pb, biotite Ar/ Ar, zircon and apatite (U-Th)/He data, and conducted inverse thermal history modeling from two age-elevation profiles (the Pianma and Tu’er profiles) in the southeastern Tibetan Plateau. Our goal is to constrain the exhumation history of the Gaoligong and Chongshan shear zones and adjacent regions, so as to explore the effect of the shear zones on exhumation and their thermal effect on cooling that should not be ignored. Our results suggest that during the interval of 18-11 Ma the exhumation rates of rocks within the Gaoligong shear zone are anomalously high compared with those outside of. The rapid cooling during 18-11 Ma appears to be restricted to the shear zone, likely due to localized thermal effects of shearing and exhumation. After 11 Ma, both the areas within and outside of the shear zones experienced a similar two-stage exhumation history: slower cooling until the early Pliocene, and then a rapid increase in cooling rate since the early Pliocene. Our results indicate a synchronized exhumation but with spatially varied exhumation rates. Our study also highlights the important role of large-scale shear zones in exposing rocks, and thus the importance of the structural context when interpreting thermochronological data in the southeastern margin of the Tibetan Plateau.

This is a preview of subscription content, access via your institution.

References

  • Akciz S. 2004. Structure and geochronological constraints on the ductile deformation observed along the Gaoligong Shan and Chong Shan Shear Zones, Yunnan (China). Dissertation for Doctoral Degree. Cambridge: Massachusetts Institute of Technology

    Google Scholar 

  • Akciz S O, Burchfiel C B, Crowley J L, Jiyun Y, Liangzhong C. 2003. Gaoligong and Chong Shan shear zones, Yunnan, and accommodation of the northward movement of India relative to Indochina during the Mid-Cenozoic. AGU Fall Meeting Abstracts

    Google Scholar 

  • Akciz S, Burchfiel B C, Crowley J L, Yin J Y, Chen L Z. 2008. Geometry, kinematics, and regional significance of the Chong Shan shear zone, Eastern Himalayan Syntaxis, Yunnan, China. Geosphere, 4: 292–314

    Google Scholar 

  • Arne D, Worley B, Wilson C, Chen S F, Foster D, Luo Z L, Liu S G, Dirks P. 1997. Differential exhumation in response to episodic thrusting along the eastern margin of the Tibetan Plateau. Tectonophysics, 280: 239–256

    Google Scholar 

  • Bermüdez M A, van der Beek P, Bernet M. 2011. Asynchronous Miocene-Pliocene exhumation of the central Venezuelan Andes. Geology, 39: 139–142

    Google Scholar 

  • Blackburn T, Ferrier K L, Perron J T. 2018. Coupled feedbacks between mountain erosion rate, elevation, crustal temperature, and density. Earth Planet Sci Lett, 498: 377–386

    Google Scholar 

  • Braun J. 2002. Estimating exhumation rate and relief evolution by spectral analysis of age-elevation datasets. Terra Nova, 14: 210–214

    Google Scholar 

  • Braun J, van der Beek P, Valla P, Robert X, Herman F, Glotzbach C, Pedersen V, Perry C, Simon-Labric T, Prigent C. 2012. Quantifying rates of landscape evolution and tectonic processes by thermo-chronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics, 524-525: 1–28

    Google Scholar 

  • Brookfield M E. 1998. The evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision: Rivers draining southwards. Geomorphology, 22: 285–312

    Google Scholar 

  • Burchfiel B C, Chen Z. 2013. Tectonics of the Southeastern Tibetan Plateau and its Adjacent Foreland. Boulder: Geological Society of America. 78–96

    Google Scholar 

  • Bureau of Geology and Mineral Resources of Yunnan Province. 1990. Regional Geology of Yunnan Province. Beijing: Geological Publishing House. 115–168

    Google Scholar 

  • Clark M K, House M A, Royden L H, Whipple K X, Burchfiel B C, Zhang X, Tang W. 2005. Late Cenozoic uplift of southeastern Tibet. Geology, 33: 525–528

    Google Scholar 

  • Clark M K, Royden L H, Whipple K X, Burchfiel B C, Zhang X, Tang W. 2006. Use of a regional, relict landscape to measure vertical deformation of the eastern Tibetan Plateau. J Geophys Res, 111: 23

    Google Scholar 

  • Dahlen F A, Suppe J. 1988. Mechanics, growth, and erosion of mountain belts. In: Clark S P, Jr Burchfiel B C, Suppe J, eds. Processes in Continental Lithospheric Deformation. Boulder: Geological Society of America. 161–178

    Google Scholar 

  • Eroglu S, Siebel W, Danisik M, Pfänder J A, Chen F. 2013. Multi-system geochronological and isotopie constraints on age and evolution of the Gaoligongshan metamorphic belt and shear zone system in western Yunnan, China. J Asian Earth Sci, 73: 218–239

    Google Scholar 

  • Farley K A, Wolf R A, Silver L T. 1996. The effects of long alpha-stopping distances on (U-Th)/He ages. Geochim Cosmochim Acta, 60: 4223–4229

    Google Scholar 

  • Fielding E, Isacks B, Barazangi M, Duncan C. 1994. How flat is Tibet? Geology, 22: 163–167

    Google Scholar 

  • Fitzgerald P G, Munoz J A, Coney P J, Baldwin S L. 1999. Asymmetric exhumation across the Pyrenean orogen: Implications for the tectonic evolution of a collisional orogen. Earth Planet Sci Lett, 173: 157–170

    Google Scholar 

  • Flowers R M, Ketcham R A, Shuster D L, Farley K A. 2009. Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochim Cosmochim Acta, 73: 2347–2365

    Google Scholar 

  • Gallagher K. 2012. Transdimensionai inverse thermal history modeling for quantitative thermochronology. J Geophys Res, 117: 16

    Google Scholar 

  • Gallagher K, Stephenson J, Brown R, Holmes C, Fitzgerald P. 2005. Low temperature thermochronology and modeling strategies for multiple samples 1: Vertical profiles. Earth Planet Sci Lett, 237: 193–208

    Google Scholar 

  • Guenthner W R, Reiners P W, Ketcham R A, Nasdala L, Giester G. 2013. Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology. Am J Sci, 313: 145–198

    Google Scholar 

  • Hallet B, Molnar P. 2001. Distorted drainage basins as markers of crustal strain east of the Himalaya. J Geophys Res, 106: 13697–13709

    Google Scholar 

  • Herman F, Seward D, Valla P G, Carter A, Kohn B, Willett S D, Ehlers T A. 2013. Worldwide acceleration of mountain erosion under a cooling climate. Nature, 504: 423–426

    Google Scholar 

  • Hou K, Li Y, Tian Y. 2009. In situ U-Pb zircon dating using laser ablation-multion counting-ICP-MS (in Chinese). Miner Depos, 28: 481–492

    Google Scholar 

  • Huang X M, Xu Z Q, Li H Q, Cai Z H. 2015. Tectonic amalgamation of the Gaoligong shear zone and Lancangjiang shear zone, southeast of Eastern Himalayan Syntaxis. J Asian Earth Sci, 106: 64–78

    Google Scholar 

  • Ji J, Zhong D L, Zhang L S. 2000. Kinematics and dating of Cenozoic strike-slip faults in the Tengchong area, west Yunnan: Implications for the block movement in the southeastern Tibet Plateau (in Chinese). Sci Geol Sin, 35: 336–349

    Google Scholar 

  • Jolivet L, Beyssac O, Goffé B, Avigad D, Lepvrier C, Maluski H, Thang T T. 2001. Oligo-Miocene midcrustal subhorizontal shear zone in Indochina. Tectonics, 20: 46–57

    Google Scholar 

  • Lacassin R, Schärer U, Leloup P H, Arnaud N, Tapponnier P, Liu X, Zhang L. 1996. Tertiary deformation and metamorphism SE of Tibet: The folded Tiger-leap décollement of NW Yunnan, China. Tectonics, 15: 605–622

    Google Scholar 

  • Leloup P H, Arnaud N, Lacassin R, Kienast J R, Harrison T M, Trong T T P, Replumaz A, Tapponnier P. 2001. New constraints on the structure, thermochronology, and timing of the Ailao Shan-Red River shear zone, SE Asia. J Geophys Res, 106: 6683–6732

    Google Scholar 

  • Leloup P H, Harrison T M, Ryerson F J, Chen W, Li Q, Tapponnier P, Lacassin R. 1993. Structural, petrological and thermal evolution of a Tertiary ductile strike-slip shear zone, Diancang Shan, Yunnan. J Geophys Res, 98: 6715–6743

    Google Scholar 

  • Leloup P H, Lacassin R Tapponnier P, Schärer U, Zhong D, Liu X, Zhang L, Ji S, Trinh P T. 1995. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics, 251: 3–84

    Google Scholar 

  • Lin T H, Lo C H, Chung S L, Hsu F J, Yeh M W, Lee T Y, Ji J Q, Wang Y Z, Liu D. 2009. Ar/ Ar dating of the Jiali and Gaoligong shear zones: Implications for crustal deformation around the Eastern Himalayan Syntaxis. J Asian Earth Sci, 34: 674–685

    Google Scholar 

  • Liu-Zeng J, Zhang J Y, McPhillips D, Reiners P, Wei W, Pik R, Zeng L S, Hoke G, Xie K J, Ping X, Zheng D W, Ge Y K. 2018. Multiple episodes of fast exhumation since Cretaceous in southeast Tibet, revealed by low-temperature thermochronology. Earth Planet Sci Lett, 490: 62–76

    Google Scholar 

  • Liu-Zeng J, Tapponnier P, Gaudemer Y, Ding L. 2008. Quantifying landscape differences across the Tibetan plateau: Implications for topographic relief evolution. J Geophys Res, 113: 26

    Google Scholar 

  • Ludwig K R. 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. California: Berkeley Geochronology Center

    Google Scholar 

  • Molnar P, England P, Martinod J. 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Rev Geophys, 31: 357–396

    Google Scholar 

  • Moore M A, England P C. 2001. On the inference of denudation rates from cooling ages of minerals. Earth Planet Sci Lett, 185: 265–284

    Google Scholar 

  • Morley C K. 2007. Variations in Late Cenozoic-Recent strike-slip and oblique-extensional geometries, within Indochina: The influence of preexisting fabrics. J Struct Geol, 29: 36–58

    Google Scholar 

  • Nie J, Ruetenik G, Gallagher K, Hoke G, Garzione C N, Wang W, Stockli D, Hu X, Wang Z, Wang Y, Stevens T, Danisik M, Liu S. 2018. Rapid incision of the Mekong River in the middle Miocene linked to mon-soonal precipitation. Nat Geosci, 11: 944–948

    Google Scholar 

  • Oriolo S, Wemmer K, Oyhantçabal P, Fossen H, Schulz B, Siegesmund S. 2018. Geochronology of shear zones-A review. Earth-Sci Rev, 185: 665–683

    Google Scholar 

  • Ouimet W, Whipple K, Royden L, Reiners P, Hodges K, Pringle M. 2010. Regional incision of the eastern margin of the Tibetan Plateau. Lithosphère, 2: 50–63

    Google Scholar 

  • Reiners P W, Brandon M T. 2006. Using thermochronology to understand orogenic erosion. Annu Rev Earth Planet Sci, 34: 419 166

    Google Scholar 

  • Ring U, Brandon M T, Willett S D, Lister G S. 1999. Exhumation processes. Geol Soc Lond Spec Pubi, 154: 1–27

    Google Scholar 

  • Royden L H, Burchfiel B C, van der Hilst R D. 2008. The geological evolution of the Tibetan Plateau. Science, 321: 1054–1058

    Google Scholar 

  • Safran E B, Blythe A, Dunne T. 2006. Spatially variable exhumation rates in orogenic belts: An Andean example. J Geol, 114: 665–681

    Google Scholar 

  • Sang H Q, Wang S S, Qiu J. 1996. The Ar/ Ar ages of pyroxene, hornblende and plagioclase in Taipingzhai granulites in Qianxi County, Hebei Province and their geological implications (in Chinese with English abstract). Acta Petr Sin, 12: 390 100

    Google Scholar 

  • Schärer U, Tapponnier P, Lacassin R, Leloup P H, Zhong D, Ji S. 1990. Intraplate tectonics in Asia: A precise age for large-scale Miocene movement along the Ailao Shan-Red River shear zone, China. Earth Planet Sci Lett, 97: 65–77

    Google Scholar 

  • Schildgen T F, van der Beek P A, Sinclair H D, Thiede R C. 2018. Spatial correlation bias in late-Cenozoic erosion histories derived from thermochronology. Nature, 559: 89–93

    Google Scholar 

  • Shen X, Tian Y, Li D, Qin S, Vermeesch P, Schwanethal J. 2016. Oligo-cene-Early Miocene river incision near the first bend of the Yangze River: Insights from apatite (U-Th-Sm)/He thermochronology. Tectonophysics, 687: 223–231

    Google Scholar 

  • Socquet A, Pubellier M. 2005. Cenozoic deformation in western Yunnan (China-Myanmar border). J Asian Earth Sci, 24: 495–515

    Google Scholar 

  • Song S, Niu Y, Wei C, Ji J, Su L. 2010. Metamorphism, anatexis, zircon ages and tectonic evolution of the Gongshan block in the northern Indochina continent-An eastern extension of the Lhasa Block. Lithos, 120: 327–346

    Google Scholar 

  • Tapponnier P, Lacassin R, Leloup P H, Schä rer U, Zhong D, Wu H, Liu X, Ji S, Zhang L, Zhong J. 1990. The Ailao Shan/Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China. Nature, 343: 431–437

    Google Scholar 

  • Tian Y T, Li R, Tang Y, Xu X, Wang Y J, Zhang P Z. 2018. Thermo-chronological constraints on the late Cenozoic morphotectonic evolution of the Min Shan, the eastern margin of the Tibetan Plateau. Tectonics, 37: 1733–1749

    Google Scholar 

  • Tian Y T, Kohn B P, Gleadow A J W, Hu S B. 2014. A thermo-chronological perspective on the morphotectonic evolution of the southeastern Tibetan Plateau. J Geophys Res-Solid Earth, 119: 676–698

    Google Scholar 

  • Wagner G A, Reimer G M. 1972. Fission track tectonics: The tectonic interpretation of fission track apatite ages. Earth Planet Sci Lett, 14: 263–268

    Google Scholar 

  • Wang E, Burchfiel B C. 1997. Interpretation of Cenozoic tectonics in the right-lateral accommodation zone between the Ailao Shan shear zone and the eastern Himalayan syntaxis. Int Geol Rev, 39: 191–219

    Google Scholar 

  • Wang E, Kirby E, Furlong K P, van Soest M, Xu G, Shi X, Kamp P J J, Hodges K V. 2012. Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nat Geosci, 5: 640–645

    Google Scholar 

  • Wang G, Wan J L, Wang E C, Zheng D W, Li F. 2008. Late Cenozoic to recent transtensional deformation across the southern part of the Gaoligong shear zone between the Indian plate and SE margin of the Tibetan plateau and its tectonic origin. Tectonophysics, 460: 1–20

    Google Scholar 

  • Wang H, Tian Y, Liang M. 2017. Late Cenozoic exhumation history of the Luoji Shan in the southeastern Tibetan Plateau: Insights from apatite fission-track thermochronology. J Geol Soc, 174: 883–891

    Google Scholar 

  • Wang Y, Fan W, Zhang Y, Peng T, Chen X, Xu Y. 2006. Kinematics and Ar/ Ar geochronology of the Gaoligong and Chongshan shear systems, western Yunnan, China: Implications for early Oligocene tectonic extrusion of SE Asia. Tectonophysics, 418: 235–254

    Google Scholar 

  • Wang Y, Zhang B, Schoenbohm L M, Zhang J J, Zhou R, Hou J, Ai S. 2016. Late Cenozoic tectonic evolution of the Ailao Shan-Red River fault (SE Tibet): Implications for kinematic change during plateau growth. Tectonics, 35: 1969–1988

    Google Scholar 

  • Wang Y, Zhang X, Jiang C, Wei H, Wan J. 2007. Tectonic controls on the late Miocene-Holocene volcanic eruptions of the Tengchong volcanic field along the southeastern margin of the Tibetan plateau. J Asian Earth Sci, 30: 375–389

    Google Scholar 

  • Wang Y, Zhang P Z, Schoenbohm L M, Zheng W J, Zhang B, Zhang J J, Zheng D W, Zhou R J, Tian Y T. 2018. Two-phase exhumation along major shear zones in the SE Tibetan Plateau in the late Cenozoic. Tectonics, 37: 2675–2694

    Google Scholar 

  • Willett S D, Brandon M T. 2013. Some analytical methods for converting thermochronometric age to erosion rate. Geochem Geophys Geosyst, 14: 209–222

    Google Scholar 

  • Wilson C J L, Fowler A P. 2011. Denudational response to surface uplift in east Tibet: Evidence from apatite fission-track thermochronology. Geol Soc Am Bull, 123: 1966–1987

    Google Scholar 

  • Wolf R A, Farley K A, Silver L T. 1996. Helium diffusion and low-temperature thermochronometry of apatite. Geochim Cosmochim Acta, 60: 1231–1240

    Google Scholar 

  • Wu F Y, Yang Y H, Xie L W, Yang J H, Xu P. 2006. Hf isotopie compositions of the standard zircons and baddeleyites used in U-Pb geo-chronology. Chem Geol, 234: 105–126

    Google Scholar 

  • Xu Z Q, Wang Q, Cai Z H, Dong H W, Li H Q, Chen X J, Duan X D, Cao H, Li J, Burg J P. 2015. Kinematics of the Tengchong Terrane in SE Tibet from the late Eocene to early Miocene: Insights from coeval mid-crustal detachments and strike-slip shear zones. Tectonophysics, 665: 127–148

    Google Scholar 

  • Yang R, Fellin M G, Herman F, Willett S D, Wang W, Maden C. 2016. Spatial and temporal pattern of erosion in the Three Rivers Region, southeastern Tibet. Earth Planet Sci Lett, 433: 10–20

    Google Scholar 

  • Zhang B, Zhang J J, Zhong D L, Guo L. 2009. Strain and kinematic vorticity analysis: An indicator for sinistral transpressional strain-partitioning along the Lancangjiang shear zone, western Yunnan, China. Sci China Ser D-Earth Sci, 52: 602–618

    Google Scholar 

  • Zhang B, Zhang J, Chang Z, Wang X, Cai F, Lai Q. 2012b. The Biluox-ueshan transpressive deformation zone monitored by synkinematic plutons, around the Eastern Himalayan Syntaxis. Tectonophysics, 574-575: 158–180

    Google Scholar 

  • Zhang B, Zhang J, Zhong D. 2010. Structure, kinematics and ages of transpression during strain-partitioning in the Chongshan shear zone, western Yunnan, China. J Struct Geol, 32: 445–463

    Google Scholar 

  • Zhang B, Zhang J J, Zhong D L, Wang X X, Qu J F, Guo L. 2011. Structural feature and its significance of the northernmost segment of the Tertiary Biluoxueshan-Chongshan shear zone, east of the Eastern Himalayan Syntaxis. Sci China Earth Sci, 54: 959–974

    Google Scholar 

  • Zhang B, Zhang J, Zhong D, Yang L, Yue Y, Yan S. 2012a. Polystage deformation of the Gaoligong metamorphic zone: Structures, Ar/ Ar mica ages, and tectonic implications. J Struct Geol, 37: 1–18

    Google Scholar 

  • Zhang H, Oskin M E, Liu-Zeng J, Zhang P, Reiners P W, Xiao P. 2016. Pulsed exhumation of interior eastern Tibet: Implications for relief generation mechanisms and the origin of high-elevation planation surfaces. Earth Planet Sci Lett, 449: 176–185

    Google Scholar 

  • Zhang J Y, Liu-Zeng J, Scherler D, Yin A, Wang W, Tang M Y, Li Z F. 2018. Spatiotemporal variation of late Quaternary river incision rates in southeast Tibet, constrained by dating fluvial terraces. Lithosphère, 10: 662–675

    Google Scholar 

  • Zhong D, Tapponnier P, Wu H W, Zhang L S, Ji S, Zhong J Y, Liu X H, Schärer U, Lacassin R, Leloup P H. 1990. Large-scale strike-slip-fault-the major structure of intracontinental deformation after collision. Chin Sci Bull, 35: 304–304

    Google Scholar 

Download references

Acknowledgements

The manuscript benefits from constructive reviews by Zhang Bo, and anonymous reviewers. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41761144065, 41902213 and 41702223), the State Key Laboratory of Earthquake Dynamics cf China (Grant No. LED2016A 02), the National Key Research and Development Project of China (Grant No. (016YFC 0600310), and the Natural Environment Research Council of UK (Grant No. NE/ N015479/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu-Zeng.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Y., Liu-Zeng, J., Zhang, J. et al. Spatio-temporal variation in rock exhumation linked to large-scale shear zones in the southeastern Tibetan Plateau. Sci. China Earth Sci. 63, 512–532 (2020). https://doi.org/10.1007/s11430-019-9567-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-019-9567-y

Keywords