Abstract
Crustal-scale shear zones are believed to have played an important role in the tectonic and landscape evolution of orogens. However, the variation of long-term rock exhumation between the interior of shear zones and adjacent regions has not been documented in detail. In this study, we obtained new zircon U-Pb, biotite Ar/ Ar, zircon and apatite (U-Th)/He data, and conducted inverse thermal history modeling from two age-elevation profiles (the Pianma and Tu’er profiles) in the southeastern Tibetan Plateau. Our goal is to constrain the exhumation history of the Gaoligong and Chongshan shear zones and adjacent regions, so as to explore the effect of the shear zones on exhumation and their thermal effect on cooling that should not be ignored. Our results suggest that during the interval of 18-11 Ma the exhumation rates of rocks within the Gaoligong shear zone are anomalously high compared with those outside of. The rapid cooling during 18-11 Ma appears to be restricted to the shear zone, likely due to localized thermal effects of shearing and exhumation. After 11 Ma, both the areas within and outside of the shear zones experienced a similar two-stage exhumation history: slower cooling until the early Pliocene, and then a rapid increase in cooling rate since the early Pliocene. Our results indicate a synchronized exhumation but with spatially varied exhumation rates. Our study also highlights the important role of large-scale shear zones in exposing rocks, and thus the importance of the structural context when interpreting thermochronological data in the southeastern margin of the Tibetan Plateau.
This is a preview of subscription content, access via your institution.
References
Akciz S. 2004. Structure and geochronological constraints on the ductile deformation observed along the Gaoligong Shan and Chong Shan Shear Zones, Yunnan (China). Dissertation for Doctoral Degree. Cambridge: Massachusetts Institute of Technology
Akciz S O, Burchfiel C B, Crowley J L, Jiyun Y, Liangzhong C. 2003. Gaoligong and Chong Shan shear zones, Yunnan, and accommodation of the northward movement of India relative to Indochina during the Mid-Cenozoic. AGU Fall Meeting Abstracts
Akciz S, Burchfiel B C, Crowley J L, Yin J Y, Chen L Z. 2008. Geometry, kinematics, and regional significance of the Chong Shan shear zone, Eastern Himalayan Syntaxis, Yunnan, China. Geosphere, 4: 292–314
Arne D, Worley B, Wilson C, Chen S F, Foster D, Luo Z L, Liu S G, Dirks P. 1997. Differential exhumation in response to episodic thrusting along the eastern margin of the Tibetan Plateau. Tectonophysics, 280: 239–256
Bermüdez M A, van der Beek P, Bernet M. 2011. Asynchronous Miocene-Pliocene exhumation of the central Venezuelan Andes. Geology, 39: 139–142
Blackburn T, Ferrier K L, Perron J T. 2018. Coupled feedbacks between mountain erosion rate, elevation, crustal temperature, and density. Earth Planet Sci Lett, 498: 377–386
Braun J. 2002. Estimating exhumation rate and relief evolution by spectral analysis of age-elevation datasets. Terra Nova, 14: 210–214
Braun J, van der Beek P, Valla P, Robert X, Herman F, Glotzbach C, Pedersen V, Perry C, Simon-Labric T, Prigent C. 2012. Quantifying rates of landscape evolution and tectonic processes by thermo-chronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics, 524-525: 1–28
Brookfield M E. 1998. The evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision: Rivers draining southwards. Geomorphology, 22: 285–312
Burchfiel B C, Chen Z. 2013. Tectonics of the Southeastern Tibetan Plateau and its Adjacent Foreland. Boulder: Geological Society of America. 78–96
Bureau of Geology and Mineral Resources of Yunnan Province. 1990. Regional Geology of Yunnan Province. Beijing: Geological Publishing House. 115–168
Clark M K, House M A, Royden L H, Whipple K X, Burchfiel B C, Zhang X, Tang W. 2005. Late Cenozoic uplift of southeastern Tibet. Geology, 33: 525–528
Clark M K, Royden L H, Whipple K X, Burchfiel B C, Zhang X, Tang W. 2006. Use of a regional, relict landscape to measure vertical deformation of the eastern Tibetan Plateau. J Geophys Res, 111: 23
Dahlen F A, Suppe J. 1988. Mechanics, growth, and erosion of mountain belts. In: Clark S P, Jr Burchfiel B C, Suppe J, eds. Processes in Continental Lithospheric Deformation. Boulder: Geological Society of America. 161–178
Eroglu S, Siebel W, Danisik M, Pfänder J A, Chen F. 2013. Multi-system geochronological and isotopie constraints on age and evolution of the Gaoligongshan metamorphic belt and shear zone system in western Yunnan, China. J Asian Earth Sci, 73: 218–239
Farley K A, Wolf R A, Silver L T. 1996. The effects of long alpha-stopping distances on (U-Th)/He ages. Geochim Cosmochim Acta, 60: 4223–4229
Fielding E, Isacks B, Barazangi M, Duncan C. 1994. How flat is Tibet? Geology, 22: 163–167
Fitzgerald P G, Munoz J A, Coney P J, Baldwin S L. 1999. Asymmetric exhumation across the Pyrenean orogen: Implications for the tectonic evolution of a collisional orogen. Earth Planet Sci Lett, 173: 157–170
Flowers R M, Ketcham R A, Shuster D L, Farley K A. 2009. Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochim Cosmochim Acta, 73: 2347–2365
Gallagher K. 2012. Transdimensionai inverse thermal history modeling for quantitative thermochronology. J Geophys Res, 117: 16
Gallagher K, Stephenson J, Brown R, Holmes C, Fitzgerald P. 2005. Low temperature thermochronology and modeling strategies for multiple samples 1: Vertical profiles. Earth Planet Sci Lett, 237: 193–208
Guenthner W R, Reiners P W, Ketcham R A, Nasdala L, Giester G. 2013. Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology. Am J Sci, 313: 145–198
Hallet B, Molnar P. 2001. Distorted drainage basins as markers of crustal strain east of the Himalaya. J Geophys Res, 106: 13697–13709
Herman F, Seward D, Valla P G, Carter A, Kohn B, Willett S D, Ehlers T A. 2013. Worldwide acceleration of mountain erosion under a cooling climate. Nature, 504: 423–426
Hou K, Li Y, Tian Y. 2009. In situ U-Pb zircon dating using laser ablation-multion counting-ICP-MS (in Chinese). Miner Depos, 28: 481–492
Huang X M, Xu Z Q, Li H Q, Cai Z H. 2015. Tectonic amalgamation of the Gaoligong shear zone and Lancangjiang shear zone, southeast of Eastern Himalayan Syntaxis. J Asian Earth Sci, 106: 64–78
Ji J, Zhong D L, Zhang L S. 2000. Kinematics and dating of Cenozoic strike-slip faults in the Tengchong area, west Yunnan: Implications for the block movement in the southeastern Tibet Plateau (in Chinese). Sci Geol Sin, 35: 336–349
Jolivet L, Beyssac O, Goffé B, Avigad D, Lepvrier C, Maluski H, Thang T T. 2001. Oligo-Miocene midcrustal subhorizontal shear zone in Indochina. Tectonics, 20: 46–57
Lacassin R, Schärer U, Leloup P H, Arnaud N, Tapponnier P, Liu X, Zhang L. 1996. Tertiary deformation and metamorphism SE of Tibet: The folded Tiger-leap décollement of NW Yunnan, China. Tectonics, 15: 605–622
Leloup P H, Arnaud N, Lacassin R, Kienast J R, Harrison T M, Trong T T P, Replumaz A, Tapponnier P. 2001. New constraints on the structure, thermochronology, and timing of the Ailao Shan-Red River shear zone, SE Asia. J Geophys Res, 106: 6683–6732
Leloup P H, Harrison T M, Ryerson F J, Chen W, Li Q, Tapponnier P, Lacassin R. 1993. Structural, petrological and thermal evolution of a Tertiary ductile strike-slip shear zone, Diancang Shan, Yunnan. J Geophys Res, 98: 6715–6743
Leloup P H, Lacassin R Tapponnier P, Schärer U, Zhong D, Liu X, Zhang L, Ji S, Trinh P T. 1995. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics, 251: 3–84
Lin T H, Lo C H, Chung S L, Hsu F J, Yeh M W, Lee T Y, Ji J Q, Wang Y Z, Liu D. 2009. Ar/ Ar dating of the Jiali and Gaoligong shear zones: Implications for crustal deformation around the Eastern Himalayan Syntaxis. J Asian Earth Sci, 34: 674–685
Liu-Zeng J, Zhang J Y, McPhillips D, Reiners P, Wei W, Pik R, Zeng L S, Hoke G, Xie K J, Ping X, Zheng D W, Ge Y K. 2018. Multiple episodes of fast exhumation since Cretaceous in southeast Tibet, revealed by low-temperature thermochronology. Earth Planet Sci Lett, 490: 62–76
Liu-Zeng J, Tapponnier P, Gaudemer Y, Ding L. 2008. Quantifying landscape differences across the Tibetan plateau: Implications for topographic relief evolution. J Geophys Res, 113: 26
Ludwig K R. 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. California: Berkeley Geochronology Center
Molnar P, England P, Martinod J. 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Rev Geophys, 31: 357–396
Moore M A, England P C. 2001. On the inference of denudation rates from cooling ages of minerals. Earth Planet Sci Lett, 185: 265–284
Morley C K. 2007. Variations in Late Cenozoic-Recent strike-slip and oblique-extensional geometries, within Indochina: The influence of preexisting fabrics. J Struct Geol, 29: 36–58
Nie J, Ruetenik G, Gallagher K, Hoke G, Garzione C N, Wang W, Stockli D, Hu X, Wang Z, Wang Y, Stevens T, Danisik M, Liu S. 2018. Rapid incision of the Mekong River in the middle Miocene linked to mon-soonal precipitation. Nat Geosci, 11: 944–948
Oriolo S, Wemmer K, Oyhantçabal P, Fossen H, Schulz B, Siegesmund S. 2018. Geochronology of shear zones-A review. Earth-Sci Rev, 185: 665–683
Ouimet W, Whipple K, Royden L, Reiners P, Hodges K, Pringle M. 2010. Regional incision of the eastern margin of the Tibetan Plateau. Lithosphère, 2: 50–63
Reiners P W, Brandon M T. 2006. Using thermochronology to understand orogenic erosion. Annu Rev Earth Planet Sci, 34: 419 166
Ring U, Brandon M T, Willett S D, Lister G S. 1999. Exhumation processes. Geol Soc Lond Spec Pubi, 154: 1–27
Royden L H, Burchfiel B C, van der Hilst R D. 2008. The geological evolution of the Tibetan Plateau. Science, 321: 1054–1058
Safran E B, Blythe A, Dunne T. 2006. Spatially variable exhumation rates in orogenic belts: An Andean example. J Geol, 114: 665–681
Sang H Q, Wang S S, Qiu J. 1996. The Ar/ Ar ages of pyroxene, hornblende and plagioclase in Taipingzhai granulites in Qianxi County, Hebei Province and their geological implications (in Chinese with English abstract). Acta Petr Sin, 12: 390 100
Schärer U, Tapponnier P, Lacassin R, Leloup P H, Zhong D, Ji S. 1990. Intraplate tectonics in Asia: A precise age for large-scale Miocene movement along the Ailao Shan-Red River shear zone, China. Earth Planet Sci Lett, 97: 65–77
Schildgen T F, van der Beek P A, Sinclair H D, Thiede R C. 2018. Spatial correlation bias in late-Cenozoic erosion histories derived from thermochronology. Nature, 559: 89–93
Shen X, Tian Y, Li D, Qin S, Vermeesch P, Schwanethal J. 2016. Oligo-cene-Early Miocene river incision near the first bend of the Yangze River: Insights from apatite (U-Th-Sm)/He thermochronology. Tectonophysics, 687: 223–231
Socquet A, Pubellier M. 2005. Cenozoic deformation in western Yunnan (China-Myanmar border). J Asian Earth Sci, 24: 495–515
Song S, Niu Y, Wei C, Ji J, Su L. 2010. Metamorphism, anatexis, zircon ages and tectonic evolution of the Gongshan block in the northern Indochina continent-An eastern extension of the Lhasa Block. Lithos, 120: 327–346
Tapponnier P, Lacassin R, Leloup P H, Schä rer U, Zhong D, Wu H, Liu X, Ji S, Zhang L, Zhong J. 1990. The Ailao Shan/Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China. Nature, 343: 431–437
Tian Y T, Li R, Tang Y, Xu X, Wang Y J, Zhang P Z. 2018. Thermo-chronological constraints on the late Cenozoic morphotectonic evolution of the Min Shan, the eastern margin of the Tibetan Plateau. Tectonics, 37: 1733–1749
Tian Y T, Kohn B P, Gleadow A J W, Hu S B. 2014. A thermo-chronological perspective on the morphotectonic evolution of the southeastern Tibetan Plateau. J Geophys Res-Solid Earth, 119: 676–698
Wagner G A, Reimer G M. 1972. Fission track tectonics: The tectonic interpretation of fission track apatite ages. Earth Planet Sci Lett, 14: 263–268
Wang E, Burchfiel B C. 1997. Interpretation of Cenozoic tectonics in the right-lateral accommodation zone between the Ailao Shan shear zone and the eastern Himalayan syntaxis. Int Geol Rev, 39: 191–219
Wang E, Kirby E, Furlong K P, van Soest M, Xu G, Shi X, Kamp P J J, Hodges K V. 2012. Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nat Geosci, 5: 640–645
Wang G, Wan J L, Wang E C, Zheng D W, Li F. 2008. Late Cenozoic to recent transtensional deformation across the southern part of the Gaoligong shear zone between the Indian plate and SE margin of the Tibetan plateau and its tectonic origin. Tectonophysics, 460: 1–20
Wang H, Tian Y, Liang M. 2017. Late Cenozoic exhumation history of the Luoji Shan in the southeastern Tibetan Plateau: Insights from apatite fission-track thermochronology. J Geol Soc, 174: 883–891
Wang Y, Fan W, Zhang Y, Peng T, Chen X, Xu Y. 2006. Kinematics and Ar/ Ar geochronology of the Gaoligong and Chongshan shear systems, western Yunnan, China: Implications for early Oligocene tectonic extrusion of SE Asia. Tectonophysics, 418: 235–254
Wang Y, Zhang B, Schoenbohm L M, Zhang J J, Zhou R, Hou J, Ai S. 2016. Late Cenozoic tectonic evolution of the Ailao Shan-Red River fault (SE Tibet): Implications for kinematic change during plateau growth. Tectonics, 35: 1969–1988
Wang Y, Zhang X, Jiang C, Wei H, Wan J. 2007. Tectonic controls on the late Miocene-Holocene volcanic eruptions of the Tengchong volcanic field along the southeastern margin of the Tibetan plateau. J Asian Earth Sci, 30: 375–389
Wang Y, Zhang P Z, Schoenbohm L M, Zheng W J, Zhang B, Zhang J J, Zheng D W, Zhou R J, Tian Y T. 2018. Two-phase exhumation along major shear zones in the SE Tibetan Plateau in the late Cenozoic. Tectonics, 37: 2675–2694
Willett S D, Brandon M T. 2013. Some analytical methods for converting thermochronometric age to erosion rate. Geochem Geophys Geosyst, 14: 209–222
Wilson C J L, Fowler A P. 2011. Denudational response to surface uplift in east Tibet: Evidence from apatite fission-track thermochronology. Geol Soc Am Bull, 123: 1966–1987
Wolf R A, Farley K A, Silver L T. 1996. Helium diffusion and low-temperature thermochronometry of apatite. Geochim Cosmochim Acta, 60: 1231–1240
Wu F Y, Yang Y H, Xie L W, Yang J H, Xu P. 2006. Hf isotopie compositions of the standard zircons and baddeleyites used in U-Pb geo-chronology. Chem Geol, 234: 105–126
Xu Z Q, Wang Q, Cai Z H, Dong H W, Li H Q, Chen X J, Duan X D, Cao H, Li J, Burg J P. 2015. Kinematics of the Tengchong Terrane in SE Tibet from the late Eocene to early Miocene: Insights from coeval mid-crustal detachments and strike-slip shear zones. Tectonophysics, 665: 127–148
Yang R, Fellin M G, Herman F, Willett S D, Wang W, Maden C. 2016. Spatial and temporal pattern of erosion in the Three Rivers Region, southeastern Tibet. Earth Planet Sci Lett, 433: 10–20
Zhang B, Zhang J J, Zhong D L, Guo L. 2009. Strain and kinematic vorticity analysis: An indicator for sinistral transpressional strain-partitioning along the Lancangjiang shear zone, western Yunnan, China. Sci China Ser D-Earth Sci, 52: 602–618
Zhang B, Zhang J, Chang Z, Wang X, Cai F, Lai Q. 2012b. The Biluox-ueshan transpressive deformation zone monitored by synkinematic plutons, around the Eastern Himalayan Syntaxis. Tectonophysics, 574-575: 158–180
Zhang B, Zhang J, Zhong D. 2010. Structure, kinematics and ages of transpression during strain-partitioning in the Chongshan shear zone, western Yunnan, China. J Struct Geol, 32: 445–463
Zhang B, Zhang J J, Zhong D L, Wang X X, Qu J F, Guo L. 2011. Structural feature and its significance of the northernmost segment of the Tertiary Biluoxueshan-Chongshan shear zone, east of the Eastern Himalayan Syntaxis. Sci China Earth Sci, 54: 959–974
Zhang B, Zhang J, Zhong D, Yang L, Yue Y, Yan S. 2012a. Polystage deformation of the Gaoligong metamorphic zone: Structures, Ar/ Ar mica ages, and tectonic implications. J Struct Geol, 37: 1–18
Zhang H, Oskin M E, Liu-Zeng J, Zhang P, Reiners P W, Xiao P. 2016. Pulsed exhumation of interior eastern Tibet: Implications for relief generation mechanisms and the origin of high-elevation planation surfaces. Earth Planet Sci Lett, 449: 176–185
Zhang J Y, Liu-Zeng J, Scherler D, Yin A, Wang W, Tang M Y, Li Z F. 2018. Spatiotemporal variation of late Quaternary river incision rates in southeast Tibet, constrained by dating fluvial terraces. Lithosphère, 10: 662–675
Zhong D, Tapponnier P, Wu H W, Zhang L S, Ji S, Zhong J Y, Liu X H, Schärer U, Lacassin R, Leloup P H. 1990. Large-scale strike-slip-fault-the major structure of intracontinental deformation after collision. Chin Sci Bull, 35: 304–304
Acknowledgements
The manuscript benefits from constructive reviews by Zhang Bo, and anonymous reviewers. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41761144065, 41902213 and 41702223), the State Key Laboratory of Earthquake Dynamics cf China (Grant No. LED2016A 02), the National Key Research and Development Project of China (Grant No. (016YFC 0600310), and the Natural Environment Research Council of UK (Grant No. NE/ N015479/1).
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Ge, Y., Liu-Zeng, J., Zhang, J. et al. Spatio-temporal variation in rock exhumation linked to large-scale shear zones in the southeastern Tibetan Plateau. Sci. China Earth Sci. 63, 512–532 (2020). https://doi.org/10.1007/s11430-019-9567-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11430-019-9567-y