Skip to main content
Log in

Resolving rupture processes of great earthquakes: Reviews and perspective from fast response to joint inversion

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Resolving rupture processes of great earthquakes has fundamental importance to the study of earthquake physics, rupture dynamics, fault zone structure, and evolving processes. It also plays an essential role in earthquake hazard estimation, emergency response and seismic hazard mitigation. This paper reviews the major progress of the earthquake rupture process studies in the last decades, with an emphasize on the research directions of the department geophysics of Peking University including real-time response, back-projection techniques, geodetic data analysis, joint inversion and inversion in complex earth medium. We discussed the advantages and limitations of tradition methods; proposed a systematic and integrated approach from fast-response to detailed study. We also raised perspectives of using source models for ground motion prediction and the possibility of full-dynamic inversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams M, Hao J, Ji C. 2019. Energy-based average stress drop and its uncertainty during the 2015 Mw7.8 Nepal earthquake constrained by geodetic data and its implications to earthquake dynamics. Geophys J Int, 217: 784–797

    Google Scholar 

  • Allen R M, Gasparini P, Kamigaichi O, Bose M. 2009. The status of earthquake early warning around the world: An introductory overview. Seismol Res Lett, 80: 682–693

    Google Scholar 

  • Allen R M, Kanamori H. 2003. The potential for earthquake early warning in southern California. Science, 300: 786–789

    Google Scholar 

  • Amante C, Eakins B W. 2009. ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24. 19

    Google Scholar 

  • Ampuero J P, Ben-Zion Y. 2008. Cracks, pulses and macroscopic asymmetry of dynamic rupture on a bimaterial interface with velocityweakening friction. Geophys J Int, 173: 674–692

    Google Scholar 

  • An C, Sepúlveda I, Liu P L F. 2014. Tsunami source and its validation of the 2014 Iquique, Chile, earthquake. Geophys Res Lett, 41: 3988–3994

    Google Scholar 

  • An C, Yue H, Sun J, Meng L, Báez J C. 2017. The 2015 Mw8.3 Illapel, Chile, Earthquake: Direction-reversed along-dip rupture with localized water reverberation. Bull Seismol Soc Am, 107: 2416–2426

    Google Scholar 

  • Aochi H, Ide S. 2004. Numerical study on multi-scaling earthquake rupture. Geophys Res Lett, 31: L02606

    Google Scholar 

  • Aoi S, Kunugi T, Fujiwara H. 2004. Strong-motion seismograph network operated by NIED: K-NET and KiK-net. J JAEE, 4: 65–74

    Google Scholar 

  • Avouac J P, Meng L, Wei S, Wang T, Ampuero J P. 2015. Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nat Geosci, 8: 708–711

    Google Scholar 

  • Bamler R, Eineder M. 2005. Accuracy of differential shift estimation by correlation and split-bandwidth interferometry for wideband and delta-k SAR systems. IEEE Geosci Remote Sens Lett, 2: 151–155

    Google Scholar 

  • Bechor N B D, Zebker H A. 2006. Measuring two-dimensional movements using a single InSAR pair. Geophys Res Lett, 33: L16311

    Google Scholar 

  • Beresnev I A. 2003. Uncertainties in finite-fault slip inversions: To what extent to believe? (A critical review). Bull Seismol Soc Am, 93: 2445–2458

    Google Scholar 

  • Bernard E, Titov V. 2015. Evolution of tsunami warning systems and products. Phil Trans R Soc A, 373: 20140371

    Google Scholar 

  • Beroza G C, Ellsworth W L. 1996. Properties of the seismic nucleation phase. Tectonophysics, 261: 209–227

    Google Scholar 

  • Blewitt G, Kreemer C, Hammond W C, Plag H P, Stein S, Okal E. 2006. Rapid determination of earthquake magnitude using GPS for tsunami warning systems. Geophys Res Lett, 33: 11309–11313

    Google Scholar 

  • Bouchon M, Campillo M, Cotton F. 1998. Stress field associated with the rupture of the 1992 Landers, California, earthquake and its implications concerning the fault strength at the onset of the earthquake. J Geophys Res, 103: 21091–21097

    Google Scholar 

  • Bürgmann R, Rosen P A, Fielding E J. 2000. Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annu Rev Earth Planet Sci, 28: 169–209

    Google Scholar 

  • Carrington L, Komatitsch D, Laurenzano M, Tikir M M, Michéa D, Le Goff N, Snavely A, Tromp J. 2008. High-frequency simulations of global seismic wave propagation using SPECFEM3D_GLOBE on 62K processors. Proceedings of the 2008 ACM/IEEE conference on Supercomputing. IEEE Press. 60

    Google Scholar 

  • Calais E, Freed A, Mattioli G, Amelung F, Jónsson S, Jansma P, Hong S H, Dixon T, Prépetit C, Momplaisir R. 2010. Transpressional rupture of an unmapped fault during the 2010 Haiti earthquake. Nat Geosci, 3: 794–799

    Google Scholar 

  • Das S, Aki K. 1977. Fault plane with barriers: A versatile earthquake model. J Geophys Res, 82: 5658–5670

    Google Scholar 

  • Day S M. 1982. Three-dimensional finite difference simulation of fault dynamics: Rectangular faults with fixed rupture velocity. Bull Seismol Soc Am, 72: 705–727

    Google Scholar 

  • Dong Y, Li Q, Dou A, Wang X. 2011. Extracting damages caused by the 2008 Ms8.0 Wenchuan earthquake from SAR remote sensing data. J Asian Earth Sci, 40: 907–914

    Google Scholar 

  • Douglas J. 2003. Earthquake ground motion estimation using strong-motion records: a review of equations for the estimation of peak ground acceleration and response spectral ordinates. Earth-Sci Rev, 61: 43–104

    Google Scholar 

  • Duan B, Day S M. 2008. Inelastic strain distribution and seismic radiation from rupture of a fault kink. J Geophys Res, 113: 12311–12330

    Google Scholar 

  • Duputel Z, Agram P S, Simons M, Minson S E, Beck J L. 2014. Accounting for prediction uncertainty when inferring subsurface fault slip. Geophys J Int, 197: 464–482

    Google Scholar 

  • Duputel Z, Jiang J, Jolivet R, Simons M, Rivera L, Ampuero J, Riel B, Owen S E, Moore A W, Samsonov S V, Ortega Culaciati F, Minson S E. 2015. The Iquique earthquake sequence of April 2014: Bayesian modeling accounting for prediction uncertainty. Geophys Res Lett, 42: 7949–7957

    Google Scholar 

  • Duputel Z, Kanamori H, Tsai V C, Rivera L, Meng L, Ampuero J P, Stock J M. 2012. The 2012 Sumatra great earthquake sequence. Earth Planet Sci Lett, 351-352: 247–257

    Google Scholar 

  • Ekström G, Nettles M, Dziewoński A M. 2012. The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Phys Earth Planet Inter, 200-201: 1–9

    Google Scholar 

  • Elliott J L, Freymueller J T, Rabus B. 2007. Coseismic deformation of the 2002 Denali fault earthquake: Contributions from synthetic aperture radar range offsets. J Geophys Res, 112: B06421

    Google Scholar 

  • Elliott J R, Walters R J, Wright T J. 2016. The role of space-based observation in understanding and responding to active tectonics and earthquakes. Nat Commun, 7: 13844

    Google Scholar 

  • Ellsworth W L, Beroza G C. 1995. Seismic evidence for an earthquake nucleation phase. Science, 268: 851–855

    Google Scholar 

  • Fang H, Yao H, Zhang H. 2018. Earthquake rupture imaging with the wavelet domain compressive sensing: Methodology and application to the 2011 Tohoku earthquake. Geophys J Int, 215: 2060–2070

    Google Scholar 

  • Fan W, Shearer P M. 2015. Detailed rupture imaging of the 25 April 2015 Nepal earthquake using teleseismic P waves. Geophys Res Lett, 42: 5744–5752

    Google Scholar 

  • Fan W, Bassett D, Jiang J, Shearer P M, Ji C. 2017. Rupture evolution of the 2006 Java tsunami earthquake and the possible role of splay faults. Tectonophysics, 721: 143–150

    Google Scholar 

  • Feng G C, Hetland E A, Ding X L, Li Z W, Zhang L. 2010. Coseismic fault slip of the 2008 Mw7.9 Wenchuan earthquake estimated from InSAR and GPS measurements. Geophys Res Lett, 37: L01302

    Google Scholar 

  • Feng G, Jónsson S, Klinger Y. 2017. Which fault segments ruptured in the 2008 Wenchuan Earthquake and which did not? New evidence from near-fault 3D surface displacements derived from SAR image offsets. Bull Seismol Soc Am, 107: 1185–1200

    Google Scholar 

  • Ferreira A M G, Weston J, Funning G J. 2011. Global compilation of interferometric synthetic aperture radar earthquake source models: 2. Effects of 3-D Earth structure. J Geophys Res, 116: B08409

    Google Scholar 

  • Fialko Y, Simons M, Agnew D. 2001. The complete (3-D) surface displacement field in the epicentral area of the 1999 MW7.1 Hector Mine Earthquake, California, from space geodetic observations. Geophys Res Lett, 28: 3063–3066

    Google Scholar 

  • Fialko Y, Sandwell D, Simons M, Rosen P. 2005. Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit. Nature, 435: 295–299

    Google Scholar 

  • Field E H, Dawson T E, Felzer K R, Frankel A D, Gupta V, Jordan T H, Parsons T, Petersen M D, Stein R S, Weldon R J, Wills C J. 2009. Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2). Bull Seismol Soc Am, 99: 2053–2107

    Google Scholar 

  • Field E H, Jordan T H, Page M T, Milner K R, Shaw B E, Dawson T E, Biasi G P, Parsons T, Hardebeck J L, Michael A J, WeldonIi R J, Powers P M, Johnson K M, Zeng Y, Felzer K R, Elst N, Madden C, Arrowsmith R, Werner M J, Thatcher W R. 2017. A synoptic view of the third Uniform California Earthquake Rupture Forecast (UCERF3). Seismol Res Lett, 88: 1259–1267

    Google Scholar 

  • Fujii Y, Satake K, Sakai S, Shinohara M, Kanazawa T. 2011. Tsunami source of the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planet Sp, 63: 815–820

    Google Scholar 

  • Fukuyama E, Mikumo T. 1993. Dynamic rupture analysis: Inversion for the source process of the 1990 Izu-Oshima, Japan, earthquake (M=6.5). J Geophys Res, 98: 6529–6542

    Google Scholar 

  • Galetzka J, Melgar D, Genrich J F, Geng J, Owen S, Lindsey E O, Xu X, Bock Y, Avouac J P, Adhikari L B, Upreti B N, Pratt-Sitaula B, Bhattarai T N, Sitaula B P, Moore A, Hudnut K W, Szeliga W, Normandeau J, Fend M, Flouzat M, Bollinger L, Shrestha P, Koirala B, Gautam U, Bhatterai M, Gupta R, Kandel T, Timsina C, Sapkota S N, Rajaure S, Maharjan N. 2015. Slip pulse and resonance of the Kathmandu basin during the 2015 Gorkha earthquake, Nepal. Science, 349: 1091–1095

    Google Scholar 

  • Graves R W, Wald D J. 2001. Resolution analysis of finite fault source inversion using one- and three-dimensional Green’s functions: 1. Strong motions. J Geophys Res, 106: 8745–8766

    Google Scholar 

  • Graves R W, Pitarka A. 2010. Broadband ground-motion simulation using a hybrid approach. Bull Seismol Soc Am, 100: 2095–2123

    Google Scholar 

  • Guatteri M, Spudich P. 2000. What can strong-motion data tell us about slip-weakening fault-friction laws? Bull Seismol Soc Am, 90: 98–116

    Google Scholar 

  • Hallo M, Gallovič F. 2016. Fast and cheap approximation of Green function uncertainty for waveform-based earthquake source inversions. Geophys J Int, 207: 1012–1029

    Google Scholar 

  • Hao J, Ji C, Yao Z. 2017. Slip history of the 2016 Mw7.0 Kumamoto earthquake: Intraplate rupture in complex tectonic environment. Geophys Res Lett, 44: 743–750

    Google Scholar 

  • Hartzell S, Mendoza C, Ramirez-Guzman L, Zeng Y, Mooney W. 2013. Rupture History of the 2008 Mw7.9 Wenchuan, China, Earthquake: Evaluation of Separate and Joint Inversions of Geodetic, Teleseismic, and Strong-Motion Data. Bull Seismol Soc Am, 103: 353–370

    Google Scholar 

  • Hartzell S H, Heaton T H. 1983. Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake. Bull Seismol Soc Am, 73: 1553–1583

    Google Scholar 

  • Hayes G P. 2017. The finite, kinematic rupture properties of great-sized earthquakes since 1990. Earth Planet Sci Lett, 468: 94–100

    Google Scholar 

  • Heaton T H. 2017. Correspondence: Response of a gravimeter to an instantaneous step in gravity. Nat Commun, 8: 966

    Google Scholar 

  • He X H, Ni S D, Liu J. 2015a. Rupture directivity of the August 3rd, 2014 Ludian earthquake (Yunan, China). Sci China Earth Sci, 58: 795–804

    Google Scholar 

  • He X, Ni S, Ye L, Lay T, Liu Q, Koper K D. 2015b. Rapid seismological quantification of source parameters of the 25 April 2015 Nepal earthquake. Seismol Res Lett, 86: 1568–1577

    Google Scholar 

  • Hoshiba M, Kamigaichi O, Saito M, Tsukada S, Hamada N. 2008. Earthquake early warning starts nationwide in Japan. Eos Trans AGU, 89: 73–74

    Google Scholar 

  • Hsiao N C, Wu Y M, Shin T C, Zhao L, Teng T L. 2009. Development of earthquake early warning system in Taiwan. Geophys Res Lett, 36: L00B02

    Google Scholar 

  • Hsieh M C. 2015. Efficient waveform inversions for finite-source models of moderate and large earthquakes in three-dimensional structures. Doctoral Dissertation. Taoyuan: “National” Central University. 145

    Google Scholar 

  • Hsieh M, Zhao L, Chen J, Ma K. 2016. Efficient inversions for earthquake slip distributions in 3D structures. Seismol Res Lett, 87: 1342–1354

    Google Scholar 

  • Hsieh M C, Zhao L, Ma K F. 2014. Efficient waveform inversion for average earthquake rupture in three-dimensional structures. Geophys J Int, 198: 1279–1292

    Google Scholar 

  • Hu J, Li Z W, Ding X L, Zhu J J, Zhang L, Sun Q. 2014. Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth-Sci Rev, 133: 1–17

    Google Scholar 

  • Ide S, Baltay A, Beroza G C. 2011. Shallow dynamic overshoot and energetic deep rupture in the 2011 Mw9.0 Tohoku-Oki earthquake. Science, 332: 1426–1429

    Google Scholar 

  • Imanishi Y, Sato T, Higashi T, Sun W, Okubo S. 2004. A network of superconducting gravimeters detects submicrogal coseismic gravity changes. Science, 306: 476–478

    Google Scholar 

  • Ishii M, Shearer P M, Houston H, Vidale J E. 2005. Extent, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-Net array. Nature, 435: 933–936

    Google Scholar 

  • Ito Y, Tsuji T, Osada Y, Kido M, Inazu D, Hayashi Y, Tsushima H, Hino R, Fujimoto H. 2011. Frontal wedge deformation near the source region of the 2011 Tohoku-Oki earthquake. Geophys Res Lett, 38: 0005

    Google Scholar 

  • Ji C, Wald D J, Helmberger D V. 2002a. Source description of the 1999 Hector Mine, California, earthquake, part I: Wavelet domain inversion theory and resolution analysis. Bull Seismol Soc Am, 92: 1192–1207

    Google Scholar 

  • Ji C, Wald D J, Helmberger D V. 2002b. Source description of the 1999 Hector Mine, California, earthquake, part II: Complexity of slip history. Bull Seismol Soc Am, 92: 1208–1226

    Google Scholar 

  • Ji C, Helmberger D V, Wald D J, Ma K F. 2003. Slip history and dynamic implications of the 1999 Chi-Chi, Taiwan, earthquake. J Geophys Res, 108: 2412

    Google Scholar 

  • Jiang H, Feng G, Wang T, Bürgmann R. 2017. Toward full exploitation of coherent and incoherent information in Sentinel-1 TOPS data for retrieving surface displacement: Application to the 2016 Kumamoto (Japan) earthquake. Geophys Res Lett, 44: 1758

    Google Scholar 

  • Jónsson S, Zebker H, Segall P, Amelung F. 2002. Fault slip distribution of the 1999 Mw7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements. Bull Seismol Soc Am, 92: 1377–1389

    Google Scholar 

  • Jung H S, Won J S, Kim S W. 2009. An improvement of the performance of multiple-aperture SAR interferometry (MAI). IEEE Trans Geosci Remote Sens, 47: 2859–2869

    Google Scholar 

  • Jung H S, Lu Z, Won J S, Poland M P, Miklius A. 2011. Mapping three-dimensional surface deformation by combining multiple-aperture interferometry and conventional interferometry: Application to the June 2007 eruption of Kilauea volcano, Hawaii. IEEE Geosci Remote Sens Lett, 8: 34–38

    Google Scholar 

  • Ihmlé P F, Madariaga R. 1996. Monochromatic body waves excited by great subduction zone earthquakes. Geophys Res Lett, 23: 2999–3002

    Google Scholar 

  • Kamigaichi O. 2004. JMA earthquake early warning. J JAEE, 4: 134–137

    Google Scholar 

  • Kanamori H. 1972. Mechanism of tsunami earthquakes. Phys Earth Planet Inter, 6: 346–359

    Google Scholar 

  • Kanamori H, Kikuchi M. 1993. The 1992 Nicaragua earthquake: A slow tsunami earthquake associated with subducted sediments. Nature, 361: 714–716

    Google Scholar 

  • Kanamori H, Rivera L. 2008. Source inversion of W phase: Speeding up seismic tsunami warning. Geophys J Int, 175: 222–238

    Google Scholar 

  • Kao H, Jian P R, Ma K F, Huang B S, Liu C C. 1998. Moment-tensor inversion for offshore earthquakes east of Taiwan and their implications to regional collision. Geophys Res Lett, 25: 3619–3622

    Google Scholar 

  • Klinger Y, Xu X, Tapponnier P, Van der Woerd J, Lasserre C, King G. 2005. High-resolution satellite imagery mapping of the surface rupture and slip distribution of the Mw7.8, 14 November 2001 Kokoxili Earthquake, Kunlun fault, northern Tibet, China. Bull Seismol Soc Am, 95: 1970–1987

    Google Scholar 

  • Klinger Y, Okubo K, Vallage A, Champenois J, Delorme A, Rougier E, Lei Z, Knight E E, Munjiza A, Satriano C, Baize S, Langridge R, Bhat H S. 2018. Earthquake damage patterns resolve complex rupture processes. Geophys Res Lett, 45: 10279–10287

    Google Scholar 

  • Koper K D, Hutko A R, Lay T, Ammon C J, Kanamori H. 2011. Frequency-dependent rupture process of the 2011 Mw9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models. Earth Planet Sp, 63: 599–602

    Google Scholar 

  • Krüger F, Ohrnberger M. 2005. Tracking the rupture of the Mw=9.3 Sumatra earthquake over 1,150 km at teleseismic distance. Nature, 435: 937–939

    Google Scholar 

  • Kuo-Chen H, Wu F T, Roecker S W. 2012. Three-dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets. J Geophys Res, 117: B06306

    Google Scholar 

  • Lay T. 2018. A review of the rupture characteristics of the 2011 Tohoku-oki Mw9.1 earthquake. Tectonophysics, 733: 4–36

    Google Scholar 

  • Lay T, Ammon C J, Hutko A R, Kanamori H. 2010. Effects of kinematic constraints on teleseismic finite-source rupture inversions: Great Peruvian earthquakes of 23 June 2001 and 15 August 2007. Bull Seismol Soc Am, 100: 969–994

    Google Scholar 

  • Lay T, Kanamori H. 1981. An asperity model of large earthquake sequences. In: Simpson D W, Richards P G, Eds. Earthquake Prediction: An International Review. AGU

    Google Scholar 

  • Lay T, Kanamori H, Ammon C J, Koper K D, Hutko A R, Ye L, Yue H, Rushing T M. 2012. Depth-varying rupture properties of subduction zone megathrust faults. J Geophys Res, 117: B04311

    Google Scholar 

  • Lay T, Yue H, Brodsky E E, An C. 2014. The 1 April 2014 Iquique, Chile, Mw 8.1 earthquake rupture sequence. Geophys Res Lett, 41: 3818–3825

    Google Scholar 

  • Lay T, Li L, Cheung K F. 2016. Modeling tsunami observations to evaluate a proposed late tsunami earthquake stage for the 16 September 2015 Illapel, Chile, Mw8.3 earthquake. Geophys Res Lett, 43: 7902–7912

    Google Scholar 

  • Lay T, Rhode A. 2019. Evaluating the updip extent of large megathrust ruptures using Pcoda levels. Geophys Res Lett, 46: 5198–5206

    Google Scholar 

  • Lee S, Yeh T, Lin T, Lin Y, Song T, Huang B. 2016. Two-stage composite megathrust rupture of the 2015 Mw8.4 Illapel, Chile, earthquake identified by spectral-element inversion of teleseismic waves. Geophys Res Lett, 43: 4979–4985

    Google Scholar 

  • Lin A, Satsukawa T, Wang M, Mohammadi Asl Z, Fueta R, Nakajima F. 2016. Coseismic rupturing stopped by Aso volcano during the 2016 Mw 7.1 Kumamoto earthquake, Japan. Science, 354: 869–874

    Google Scholar 

  • Liu C L, Zheng Y, Ge C, Xiong X, Hsu H T. 2013. Rupture process of the Ms7.0 Lushan earthquake, 2013. Sci China Earth Sci, 56: 1187–1192

    Google Scholar 

  • Liu C, Zheng Y, Xiong X, Wang R, López A, Li J. 2015. Rupture processes of the 2012 September 5 Mw7.6 Nicoya, Costa Rica earthquake constrained by improved geodetic and seismological observations. Geophys J Int, 203: 175–183

    Google Scholar 

  • Liu Z, Song C, Meng L, Ge Z, Huang Q, Wu Q. 2017. Utilizing a 3D global P-wave tomography model to improve backprojection imaging: A case study of the 2015 Nepal earthquake. Bull Seismol Soc Am, 107: 2459–2466

    Google Scholar 

  • Liu W, Yao H. 2018. A new strategy of finite-fault inversion using multiscale waveforms and its application to the 2015 Gorkha, Nepal, earthquake. Bull Seismol Soc Am, 108: 1947–1961

    Google Scholar 

  • Loveless J P, Meade B J. 2011. Spatial correlation of interseismic coupling and coseismic rupture extent of the 2011 MW=9.0 Tohoku-oki earthquake. Geophys Res Lett, 38: L17306

    Google Scholar 

  • Luo Y, Hsieh M, Zhao L. 2018. Source rupture process of the 2014 Ms6.5 Ludian, Yunnan, China, earthquake in 3D Structure: The strain Green’s tensor database approach. Bull Seismol Soc Am, 108: 3270–3277

    Google Scholar 

  • Luo Y, Tan Y, Wei S, Helmberger D, Zhan Z, Ni S, Hauksson E, Chen Y. 2010. Source mechanism and rupture directivity of the 18 May 2009 Mw4.6 Inglewood, California, earthquake. Bull Seismol Soc Am, 100: 3269–3277

    Google Scholar 

  • Madariaga R, Olsen K, Archuleta R. 1998. Modeling dynamic rupture in a 3D earthquake fault model. Bull Seismol Soc Am, 88: 1182–1197

    Google Scholar 

  • Mai P, Burjanek J, Delouis B, Festa G, Francois-Holden C, Monelli D, Uchide T, Zahradnik J. 2007. Earthquake source inversion blindtest: Initial results and further developments. AGU Fall Meeting Abstracts

    Google Scholar 

  • Mai P M, Schorlemmer D, Page M, Ampuero J, Asano K, Causse M, Custodio S, Fan W, Festa G, Galis M, Gallovic F, Imperatori W, Käser M, Malytskyy D, Okuwaki R, Pollitz F, Passone L, Razafindrakoto H N T, Sekiguchi H, Song S G, Somala S N, Thingbaijam K K S, Twardzik C, van Driel M, Vyas J C, Wang R, Yagi Y, Zielke O. 2016. The earthquake-source inversion validation (SIV) project. Seismol Res Lett, 87: 690–708

    Google Scholar 

  • Maksymowicz A, Chadwell C D, Ruiz J, Tréhu A M, Contreras-Reyes E, Weinrebe W, Díaz-Naveas J, Gibson J C, Lonsdale P, Tryon M D. 2017. Coseismic seafloor deformation in the trench region during the Mw8.8 Maule megathrust earthquake. Sci Rep, 7: 45918

    Google Scholar 

  • Massonnet D, Rossi M, Carmona C, Adragna F, Peltzer G, Feigl K, Rabaute T. 1993. The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 364: 138–142

    Google Scholar 

  • Meier M A, Ampuero J P, Heaton T H. 2017. The hidden simplicity of subduction megathrust earthquakes. Science, 357: 1277–1281

    Google Scholar 

  • Michel R, Avouac J P, Taboury J. 1999. Measuring ground displacements from SAR amplitude images: Application to the Landers Earthquake. Geophys Res Lett, 26: 875–878

    Google Scholar 

  • Meng L, Inbal A, Ampuero J P. 2011. A window into the complexity of the dynamic rupture of the 2011 Mw9 Tohoku-Oki earthquake. Geophys Res Lett, 38: L00G07

    Google Scholar 

  • Meng L, Ampuero J P, Stock J, Duputel Z, Luo Y, Tsai V C. 2012. Earthquake in a maze: Compressional rupture branching during the 2012 Mw8.6 Sumatra earthquake. Science, 337: 724–726

    Google Scholar 

  • Mikumo T, Santoyo M A, Singh S K. 2000. Dynamic rupture and stress change in a normal faulting earthquake in the subducting Cocos plate. Geophys J Int, 140: 611–620

    Google Scholar 

  • Minson S E, Simons M, Beck J L. 2013. Bayesian inversion for finite fault earthquake source models I—Theory and algorithm. Geophys J Int, 194: 1701–1726

    Google Scholar 

  • Montagner J P, Juhel K, Barsuglia M, Ampuero J P, Chassande-Mottin E, Harms J, Whiting B, Bernard P, Clévédé E, Lognonné P. 2016. Prompt gravity signal induced by the 2011 Tohoku-Oki earthquake. Nat Commun, 7: 13349

    Google Scholar 

  • Mori J, Kanamori H. 1996. Initial rupture of earthquakes in the 1995 Ridgecrest, California sequence. Geophys Res Lett, 23: 2437–2440

    Google Scholar 

  • Mueller C S. 1985. Source pulse enhancement by deconvolution of an empirical Green’s function. Geophys Res Lett, 12: 33–36

    Google Scholar 

  • Mungov G, Eblé M, Bouchard R. 2013. DART® Tsunameter retrospective and real-time data: A reflection on 10 years of processing in support of Tsunami research and operations. Pure Appl Geophys, 170: 1369–1384

    Google Scholar 

  • Okamoto T, Takenaka H. 2009. Waveform inversion for slip distribution of the 2006 Java tsunami earthquake by using 2.5D finite-difference Green’s function. Earth Planet Sp, 61: e17–e20

    Google Scholar 

  • Okuwaki R, Yagi Y, Aránguiz R, González J, González G. 2017. Rupture process during the 2015 Illapel, Chile earthquake: Zigzag-along-dip rupture episodes. In: Braitenberg C, Rabinovich A. eds. The Chile-2015 (Illapel) Earthquake and Tsunami. Cham: Springer. 23–32

    Google Scholar 

  • Pathier E, Fielding E J, Wright T J, Walker R, Parsons B E, Hensley S. 2006. Displacement field and slip distribution of the 2005 Kashmir earthquake from SAR imagery. Geophys Res Lett, 33: L20310

    Google Scholar 

  • Peltzer G, Rosen P. 1995. Surface displacement of the 17 May 1993 Eureka Valley, California, earthquake observed by SAR interferometry. Science, 268: 1333–1336

    Google Scholar 

  • Qian Y, Wei S, Wu W, Zeng H, Coudurier-Curveur A, Ni S. 2019. Teleseismic waveform complexities caused by near trench structures and their impacts on earthquake source study: Application to the 2015 Illapel aftershocks (Central Chile). J Geophys Res-Solid Earth, 124: 870–889

    Google Scholar 

  • Rosen P A, Gurrola E, Sacco G F, Zebker H. 2012. The InSAR scientific computing environment. EUSAR 2012—9thEuropean Conference on Synthetic Aperture Radar. 730-733

    Google Scholar 

  • Ruiz S, Madariaga R. 2011. Determination of the friction law parameters of the Mw6.7 Michilla earthquake in northern Chile by dynamic inversion. Geophys Res Lett, 38: L09317

    Google Scholar 

  • Satake K, Fujii Y, Harada T, Namegaya Y. 2013. Time and space distribution of coseismic slip of the 2011 Tohoku earthquake as inferred from tsunami waveform data. Bull Seismol Soc Am, 103: 1473–1492

    Google Scholar 

  • Sato M, Ishikawa T, Ujihara N, Yoshida S, Fujita M, Mochizuki M, Asada A. 2011. Displacement above the hypocenter of the 2011 Tohoku-Oki earthquake. Science, 332: 1395

    Google Scholar 

  • Schmidt R. 1986. Multiple emitter location and signal parameter estimation. IEEE Trans Antennas Propagat, 34: 276–280

    Google Scholar 

  • Segall P. 2010. Earthquake and Volcano Deformation. Princeton: Princeton University Press

    Google Scholar 

  • Shao G, Ji C. 2012. What the exercise of the SPICE source inversion validation BlindTest 1 did not tell you. Geophys J Int, 189: 569–590

    Google Scholar 

  • Shirahama Y, Yoshimi M, Awata Y, Maruyama T, Azuma T, Miyashita Y, Mori H, Imanishi K, Takeda N, Ochi T, Otsubo M, Asahina D, Miyakawa A. 2016. Characteristics of the surface ruptures associated with the 2016 Kumamoto earthquake sequence, central Kyushu, Japan. Earth Planets Space, 68: 191–196

    Google Scholar 

  • Simmons N A, Myers S C, Johannesson G, Matzel E. 2012. LLNL-G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction. J Geophys Res, 117: B10302

    Google Scholar 

  • Simons M, Minson S E, Sladen A, Ortega F, Jiang J, Owen S E, Meng L, Ampuero J P, Wei S, Chu R, Helmberger D V, Kanamori H, Hetland E, Moore A W, Webb F H. 2011. The 2011 magnitude 9.0 Tohoku-Oki earthquake: Mosaicking the megathrust from seconds to centuries. Science, 332: 1421–1425

    Google Scholar 

  • Sudhaus H, Jónsson S. 2009. Improved source modelling through combined use of InSAR and GPS under consideration of correlated data errors: Application to the June 2000 Kleifarvatn earthquake, Iceland. Geophys J Int, 176: 389–404

    Google Scholar 

  • Tan F, Ge Z, Kao H, Nissen E. 2019. Validation of the 3-D phase-weighted relative back projection technique and its application to the 2016 Mw7.8 Kaikōura earthquake. Geophys J Int, 217: 375–388

    Google Scholar 

  • Tan Y, Helmberger D. 2010. Rupture directivity characteristics of the 2003 Big Bear sequence. Bull Seismol Soc Am, 100: 1089–1106

    Google Scholar 

  • Tape C, Holtkamp S, Silwal V, Hawthorne J, Kaneko Y, Ampuero J P, Ji C, Ruppert N, Smith K, West M E. 2018. Earthquake nucleation and fault slip complexity in the lower crust of central Alaska. Nat Geosci, 11: 536–541

    Google Scholar 

  • Tape C, West M, Silwal V, Ruppert N. 2013. Earthquake nucleation and triggering on an optimally oriented fault. Earth Planet Sci Lett, 363: 231–241

    Google Scholar 

  • Tarentola A. 1987. Inverse Problem Theory: Methods for data fitting and model parameters estimation. Amsterdam: Elsevier

    Google Scholar 

  • Telford J, Cosgrave J. 2006. Joint evaluation of the international response to the Indian Ocean tsunami: Synthesis report. Tsunami Evaluation Coalition (TEC)

    Google Scholar 

  • Tong X, Sandwell D T, Fialko Y. 2010. Coseismic slip model of the 2008 Wenchuan earthquake derived from joint inversion of interferometric synthetic aperture radar, GPS, and field data. J Geophys Res, 115: B04314

    Google Scholar 

  • Trifunac M. 1974. A three-dimensional dislocation model for the San Fernando, California, earthquake of February 9, 1971. Bull Seismol Soc Am, 64: 149–172

    Google Scholar 

  • Tsuji T, Ito Y, Kido M, Osada Y, Fujimoto H, Ashi J, Kinoshita M, Matsuoka T. 2011. Potential tsunamigenic faults of the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planet Sp, 63: 831–834

    Google Scholar 

  • Uchide T. 2013. High-speed rupture in the first 20 s of the 2011 Tohoku earthquake, Japan. Geophys Res Lett, 40: 2993–2997

    Google Scholar 

  • Uchide T, Ide S. 2007. Development of multiscale slip inversion method and its application to the 2004 mid-Niigata Prefecture earthquake. J Geophys Res, 112: B06313

    Google Scholar 

  • Uchide T, Ide S. 2010. Scaling of earthquake rupture growth in the Parkfield area: Self-similar growth and suppression by the finite seismogenic layer. J Geophys Res, 115: B11302

    Google Scholar 

  • USGS Earthquake Science Center. 1931. United States National Strong-Motion Network. International Federation of Digital Seismograph Networks. Dataset/Seismic Network. 10.7914/SN/NP

    Google Scholar 

  • Vallée M, Ampuero J P, Juhel K, Bernard P, Montagner J P, Barsuglia M. 2017. Observations and modeling of the elastogravity signals preceding direct seismic waves. Science, 358: 1164–1168

    Google Scholar 

  • Van Houtte C, Bannister S, Holden C, Bourguignon S, McVerry G. 2017. The New Zealand strong motion database. Bull New Zeal Soc Earthq Eng, 50: 1–20

    Google Scholar 

  • Velasco A A, Ammon C J, Lay T. 1994. Empirical green function deconvolution of broadband surface waves: Rupture directivity of the 1992 Landers, California (Mw=7.3), earthquake. Bull Seismol Soc Am, 84: 735–750

    Google Scholar 

  • Wald D J, Graves R W. 2001. Resolution analysis of finite fault source inversion using one- and three-dimensional Green’s functions: 2. Combining seismic and geodetic data. J Geophys Res, 106: 8767–8788

    Google Scholar 

  • Wang D, Takeuchi N, Kawakatsu H, Mori J. 2016. Estimating high frequency energy radiation of large earthquakes by image deconvolution back-projection. Earth Planet Sci Lett, 449: 155–163

    Google Scholar 

  • Wang J, Yang D, Jing H, Wu H. 2019. Full waveform inversion based on the ensemble Kalman filter method using uniform sampling without replacement. Sci Bull, 64: 321–330

    Google Scholar 

  • Wang T, Jónsson S. 2015. Improved SAR amplitude image offset measurements for deriving three-dimensional coseismic displacements. IEEE J Sel Top Appl Earth Observations Remote Sens, 8: 3271–3278

    Google Scholar 

  • Wang T, Wei S, Shi X, Qiu Q, Li L, Peng D, Weldon R J, Barbot S. 2018. The 2016 Kaikōura earthquake: Simultaneous rupture of the subduction interface and overlying faults. Earth Planet Sci Lett, 482: 44–51

    Google Scholar 

  • Wang W M, Hao J L, Yao Z X. 2013. Preliminary result for rupture process of Apr. 20, 2013, Lushan Earthquake, Sichuan, China (in Chinese). Chin J Geophys, 56: 1412–1417

    Google Scholar 

  • Wei S, Chen M, Wang X, Graves R, Lindsey E, Wang T, Karakaş Ç, Helmberger D. 2018. The 2015 Gorkha (Nepal) earthquake sequence: I. Source modeling and deterministic 3D ground shaking. Tectonophysics, 722: 447–461

    Google Scholar 

  • Wei S, Graves R, Helmberger D, Avouac J P, Jiang J. 2012. Sources of shaking and flooding during the Tohoku-Oki earthquake: A mixture of rupture styles. Earth Planet Sci Lett, 333-334: 91–100

    Google Scholar 

  • Wei S, Helmberger D, Avouac J P. 2013. Modeling the 2012 Wharton basin earthquakes off-Sumatra: Complete lithospheric failure. J Geophys Res Solid Earth, 118: 3592–3609

    Google Scholar 

  • Wen R, Ren Y. 2014. Strong-motion observations of the Lushan earthquake on 20 April 2013. Seismol Res Lett, 85: 1043–1055

    Google Scholar 

  • Wright T J, Parsons B E, Lu Z. 2004. Toward mapping surface deformation in three dimensions using InSAR. Geophys Res Lett, 31: L016007

    Google Scholar 

  • Wu Y M, Kanamori H. 2008. Development of an earthquake early warning system using real-time strong motion signals. Sensors, 8: 1–9

    Google Scholar 

  • Wurman G, Allen R M, Lombard P. 2007. Toward earthquake early warning in northern California. J Geophys Res, 112: B08311

    Google Scholar 

  • Xie X B, Yao Z X. 1991. The faulting process of Tangshan earthquake inverted simultaneously from the teleseismic waveforms and geodesic deformation data. Phys Earth Planet Inter, 66: 265–277

    Google Scholar 

  • Xu Y, Koper K D, Sufri O, Zhu L, Hutko A R. 2009. Rupture imaging of the Mw7.9 12 May 2008 Wenchuan earthquake from back projection of teleseismic P waves. Geochem Geophys Geosyst, 10: Q04006

    Google Scholar 

  • Xu C, Liu Y, Wen Y, Wang R. 2010. Coseismic slip distribution of the 2008 Mw7.9 Wenchuan earthquake from joint inversion of GPS and InSAR data. Bull Seismol Soc Am, 100: 2736–2749

    Google Scholar 

  • Xu J, Zhang H, Chen X. 2015. Rupture phase diagrams for a planar fault in 3-D full-space and half-space. Geophys J Int, 202: 2194–2206

    Google Scholar 

  • Yagi Y, Nakao A, Kasahara A. 2012. Smooth and rapid slip near the Japan Trench during the 2011 Tohoku-oki earthquake revealed by a hybrid back-projection method. Earth Planet Sci Lett, 355-356: 94–101

    Google Scholar 

  • Yamazaki Y, Lay T, Cheung K F, Yue H, Kanamori H. 2011. Modeling near-field tsunami observations to improve finite-fault slip models for the 11 March 2011 Tohoku earthquake. Geophys Res Lett, 38: L00G15

    Google Scholar 

  • Yao H, Gerstoft P, Shearer P M, Mecklenbräuker C. 2011. Compressive sensing of the Tohoku-Oki Mw 9.0 earthquake: Frequency-dependent rupture modes. Geophys Res Lett, 38: L20310

    Google Scholar 

  • Ye L, Lay T, Kanamori H, Rivera L. 2016. Rupture characteristics of major and great (Mw ≥ 7.0) megathrust earthquakes from 1990 to 2015: 1. Source parameter scaling relationships. J Geophys Res-Solid Earth, 121: 826–844

    Google Scholar 

  • Yokota Y, Koketsu K, Fujii Y, Satake K, Sakai S, Shinohara M, Kanazawa T. 2011. Joint inversion of strong motion, teleseismic, geodetic, and tsunami datasets for the rupture process of the 2011 Tohoku earthquake. Geophys Res Lett, 38: L00G21

    Google Scholar 

  • Yue H, Lay T. 2011. Inversion of high-rate (1 sps) GPS data for rupture process of the 11 March 2011 Tohoku earthquake (Mw9.1). Geophys Res Lett, 38: L00G09

    Google Scholar 

  • Yue H, Lay T. 2013. Source rupture models for the Mw9.0 2011 Tohoku earthquake from joint inversions of high-rate geodetic and seismic data. Bull Seismol Soc Am, 103: 1242–1255

    Google Scholar 

  • Yue H, Lay T, Koper K D. 2012. En échelon and orthogonal fault ruptures of the 11 April 2012 great intraplate earthquakes. Nature, 490: 245–249

    Google Scholar 

  • Yue H, Lay T, Freymueller J, Ding K, Rivera L, Ruppert N, Koper K. 2013a. Supershear rupture of 2013 Jan 05, Mw7.5, Craig, Alaska earthquake. AGU Fall Meeting Abstracts

    Google Scholar 

  • Yue H, Lay T, Schwartz S Y, Rivera L, Protti M, Dixon T H, Owen S, Newman AV. 2013b. The 5 September 2012 Nicoya, Costa Rica Mw7.6 earthquake rupture process from joint inversion of high-rate GPS, strong-motion, and teleseismic P wave data and its relationship to adjacent plate boundary interface properties. J Geophys Res-Solid Earth, 118: 5453–5466

    Google Scholar 

  • Yue H, Lay T, Rivera L, An C, Vigny C, Tong X, Báez Soto J C. 2014. Localized fault slip to the trench in the 2010 Maule, Chile Mw= 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations. J Geophys Res-Solid Earth, 119: 7786–7804

    Google Scholar 

  • Yue H, Ross Z E, Liang C, Michel S, Fattahi H, Fielding E, Moore A, Liu Z, Jia B. 2017a. The 2016 Kumamoto Mw= 7.0 Earthquake: A Significant Event in a Fault-Volcano System. J Geophys Res-Solid Earth, 122: 9166–9183

    Google Scholar 

  • Yue H, Simons M, Duputel Z, Jiang J, Fielding E, Liang C, Owen S, Moore A, Riel B, Ampuero J P, Samsonov S V. 2017b. Depth varying rupture properties during the 2015 Mw7.8 Gorkha (Nepal) earthquake. Tectonophysics, 714-715: 44–54

    Google Scholar 

  • Yue H, Castellanos J C, Yu C, Meng L, Zhan Z. 2017c. Localized water reverberation phases and its impact on backprojection images. Geophys Res Lett, 44: 9573–9580

    Google Scholar 

  • Yun S H, Hudnut K, Owen S, Webb F, Simons M, Sacco P, Gurrola E, Manipon G, Liang C, Fielding E, Milillo P, Hua H, Coletta A. 2015. Rapid Damage Mapping for the 2015 Mw7.8 Gorkha Earthquake Using Synthetic Aperture Radar Data from COSMO-SkyMed and ALOS-2 Satellites. Seismol Res Lett, 86: 1549–1556

    Google Scholar 

  • Zhang H, Chen X. 2006. Dynamic rupture on a planar fault in three-dimensional half space—I. Theory. Geophys J Int, 164: 633–652

    Google Scholar 

  • Zhang H, Ge Z. 2010. Tracking the rupture of the 2008 Wenchuan earthquake by using the relative back-projection method. Bull Seismol Soc Am, 100: 2551–2560

    Google Scholar 

  • Zhang H, Chen J, Ge Z. 2012. Multi-fault rupture and successive triggering during the 2012 Mw8.6 Sumatra offshore earthquake. Geophys Res Lett, 39: L22305

    Google Scholar 

  • Zhang H, Koper K D, Pankow K, Ge Z. 2017. Imaging the 2016 Mw7.8 Kaikoura, New Zealand, earthquake with teleseismic P waves: A cascading rupture across multiple faults. Geophys Res Lett, 44: 4790–4798

    Google Scholar 

  • Zhang H, Lee S, Ge Z. 2016a. Multiarray rupture imaging of the devastating 2015 Gorkha, Nepal, earthquake sequence. Geophys Res Lett, 43: 584–591

    Google Scholar 

  • Zhang H, Jin X, Wei Y, Li J, Kang L, Wang S, Huang L, Yu P. 2016b. An earthquake early warning system in Fujian, China. Bull Seismol Soc Am, 106: 755–765

    Google Scholar 

  • Zhang W, Iwata T, Irikura K, Sekiguchi H, Bouchon M. 2003. Heterogeneous distribution of the dynamic source parameters of the 1999 ChiChi, Taiwan, earthquake. J Geophys Res, 108: 2232

    Google Scholar 

  • Zhang Y, Chen Y, Xu L. 2012. Fast and robust inversion of earthquake source rupture process and its application to earthquake emergency response. Earthq Sci, 25: 121–128

    Google Scholar 

  • Zhang Y, Wang R, Zschau J, Chen Y, Parolai S, Dahm T. 2014. Automatic imaging of earthquake rupture processes by iterative deconvolution and stacking of high-rate GPS and strong motion seismograms. J Geophys Res-Solid Earth, 119: 5633–5650

    Google Scholar 

  • Zhang Y, Xu L S, Chen Y T. 2010. Fast inversion of rupture process for 14 April 2010 Yushu, Qinghai, earthquake (in Chinese). Acta Seismol Sin, 32: 361–365

    Google Scholar 

  • Zhang Y, Xu L S, Chen Y T. 2013. Rupture process of the Lushan 4.20 earthquake and preliminary analysis on the disaster-causing mechanism (in Chinese). Chin J Geophys, 56: 1408–1411

    Google Scholar 

  • Zhang Z, Zhang W, Chen X. 2014. Three-dimensional curved grid finite-difference modelling for non-planar rupture dynamics. Geophys J Int, 199: 860–879

    Google Scholar 

  • Zhang W, Zhang Z, Chen X. 2012. Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids. Geophys J Int, 190: 358–378

    Google Scholar 

  • Zhao L, Chen P, Jordan T H. 2006. Strain Green’s tensors, reciprocity, and their applications to seismic source and structure studies. Bull Seismol Soc Am, 96: 1753–1763

    Google Scholar 

  • Zhao L, Chevrot S. 2011a. An efficient and flexible approach to the calculation of three-dimensional full-wave Fréchet kernels for seismic tomography—I. Theory. Geophys J Int, 185: 922–938

    Google Scholar 

  • Zhao L, Chevrot S. 2011b. An efficient and flexible approach to the calculation of three-dimensional full-wave Fréchet kernels for seismic tomography—II. Numerical results. Geophys J Int, 185: 939–954

    Google Scholar 

  • Zhao C P, Zhou L Q, Chen Z L. 2013. Source rupture process of Lushan MS7.0 earthquake, Sichuan, China and its tectonic implications. Chin Sci Bull, 58: 3444–3450

    Google Scholar 

  • Zheng X, Zhang Y, Ma Q, Wang R. 2018. Fast inversion of rupture process based on strong motion data and the feasibility of its automation (in Chinese). Chin J Geophys, 61: 4021–4036

    Google Scholar 

  • Zheng Y, Liu C L. 2016. Towards combining multiple geophysical datasets to determine earthquake source parameters in China. Sci China Earth Sci, 59: 2260–2262

    Google Scholar 

  • Zhu L, Rivera L A. 2002. A note on the dynamic and static displacements from a point source in multilayered media. Geophys J Int, 148: 619–627

    Google Scholar 

  • Zollo A, Iannaccone G, Convertito V, Elia L, Iervolino I, Lancieri M, Lomax A, Martino C, Satriano C, Weber E. 2009. Earthquake early warning system in southern Italy, Encyclopedia of Complexity and Systems Science. New York: Springer. 2395–2421

    Google Scholar 

Download references

Acknowledgements

We thank all researchers who contribute to the source inversion and dynamic modeling studies, in terms of developing and validating algorithms, exploring study cases and maintain networks and data accessibility. We especially gratitude professor Chen JI, Don HELMBERGER and Zhenxing YAO for their contribution of developing fundamental inversion algorithms of source studies. We thank Dr. Gavin HAYES and Thorne LAY for the sustained study of great earthquakes and providing research databases. We also thank Professor Kenji SATAKE for his contribution in adopting tsunami data in source inversion. Data availability benefits from the service made by institutes such as IRIS, NIED, UNAVCO and ESA. Software commonly used in source inversion includes SAC, matlab, python, GIPSY, GAMIT, ISCE, GMT. This work was supported by the National Key R&D Program of China (Grant No. 2018YFC1504203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Yue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, H., Zhang, Y., Ge, Z. et al. Resolving rupture processes of great earthquakes: Reviews and perspective from fast response to joint inversion. Sci. China Earth Sci. 63, 492–511 (2020). https://doi.org/10.1007/s11430-019-9549-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-019-9549-1

Keywords

Navigation