Anderson D L. 2001. Top-down tectonics. Science, 293: 2016–2018
Google Scholar
Armitage J J, Collier J S, Minshull T A, Henstock T J. 2011. Thin oceanic crust and flood basalts: India-Seychelles breakup. Geochem Geophys Geosyst, 12: Q0AB07
Google Scholar
Artemieva I M. 2009. The continental lithosphere: Reconciling thermal, seismic, and petrologic data. Lithos, 109: 23–46
Google Scholar
Billen M I. 2008. Modeling the dynamics of subducting slabs. Annu Rev Earth Planet Sci, 36: 325–356
Google Scholar
Braun J. 2010. the many surface expressions of mantle dynamics. Nat Geosci, 3: 825–833
Google Scholar
Brune S, Williams S E, Müller R D. 2017. Potential links between continental rifting, CO2 degassing and climate change through time. Nat Geosci, 10: 941–946
Google Scholar
Buiter S J H, Torsvik T H. 2014. A review of Wilson Cycle plate margins: A role for mantle plumes in continental break-up along sutures? Gondwana Res, 26: 627–653
Google Scholar
Burke K, Dewey J F. 1973. Plume-generated triple junctions: Key indicators in applying plate tectonics to old rocks. J Geol, 81: 406–433
Google Scholar
Cande S C, Stegman D R. 2011. Indian and African plate motions driven by the push force of the Réunion plume head. Nature, 475: 47–52
Google Scholar
Chenet A, Quidelleur X, Fluteau F, Courtillot V, Bajpai S. 2007. 40K-40Ar dating of the Main Deccan large igneous province: Further evidence of KTB age and short duration. Earth Planet Sci Lett, 263: 1–15
Google Scholar
Conrad C P, Hager B H. 1999. The thermal evolution of an Earth with strong subduction zones. Geophys Res Lett, 26: 3041–3044
Google Scholar
Conrad C P, Lithgow-Bertelloni C. 2002. How mantle slabs drive plate tectonics. Science, 298: 207–209
Google Scholar
Conrad C P, Lithgow-Bertelloni C. 2004. The temporal evolution of plate driving forces: Importance of “slab suction”versus “slab pull”during the Cenozoic. J Geophys Res, 109: B10407
Google Scholar
Conrad C P, Lithgow-Bertelloni C. 2006. Influence of continental roots and asthenosphere on plate-mantle coupling. Geophys Res Lett, 33: L05312
Google Scholar
Courtillot V, Davaille A, Besse J, Stock J. 2003. Three distinct types of hotspots in the Earth’s mantle. Earth Planet Sci Lett, 205: 295–308
Google Scholar
Courtillot V, Jaupart C, Manighetti I, Tapponnier P, Besse J. 1999. On causal links between flood basalts and continental breakup. Earth Planet Sci Lett, 166: 177–195
Google Scholar
Dannberg J, Gassmöller R. 2018. Chemical trends in ocean islands explained by plume-slab interaction. Proc Natl Acad Sci USA, 115: 4351–4356
Google Scholar
Dodd S C, Mac Niocaill C, Muxworthy A R. 2015. Long duration (>4 Ma) and steady-state volcanic activity in the early Cretaceous Paraná-Etendeka Large Igneous Province: New palaeomagnetic data from Namibia. Earth Planet Sci Lett, 414: 16–29
Google Scholar
Faccenna C, Becker T W, Conrad C P, Husson L. 2013. Mountain building and mantle dynamics. Tectonics, 32: 80–93
Google Scholar
Flesch L M, Holt W E, Haines A J, Shen-Tu B. 2000. Dynamics of the Pacific-North American plate boundary in the WeStern United States. Science, 287: 834–836
Google Scholar
Forsyth D, Uyeda S. 1975. On the relative importance of the driving forces of plate motion. Geophys J Int, 43: 163–200
Google Scholar
Foulger G R, Natland J H. 2003. Is “Hotspot”volcanism a consequence of plate tectonics? Science, 300: 921–922
Google Scholar
Frisch W, Blakey R, Meschede M. 2011. Plate Tectonics-Continental Drift and Mountain Building. Heidelberg: Springer. Chapter 1. 5
Fukao Y, Obayashi M. 2013. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J Geophys Res-Solid Earth, 118: 5920–5938
Google Scholar
Garnero E J, McNamara A K, Shim S H. 2016. Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nat Geosci, 9: 481–489
Google Scholar
Ghosh A, Holt W E. 2012. Plate motions and stresses from global dynamic models. Science, 335: 838–843
Google Scholar
Goes S, Capitanio F A, Morra G. 2008. Evidence of lower-mantle slab penetration phases in plate motions. Nature, 451: 981–984
Google Scholar
Gordon R G, Stein S. 1992. Global tectonics and space geodesy. Science, 256: 333–342
Google Scholar
Guest A, Schubert G, Gable C W. 2003. Stress field in the subducting lithosphere and comparison with deep earthquakes in Tonga. J Geophys Res, 108: 2288
Google Scholar
Gung Y, Panning M, Romanowicz B. 2003. Global anisotropy and the thickness of continents. Nature, 422: 707–711
Google Scholar
Hassan R, Müller R D, Gurnis M, Williams S E, Flament N. 2016. A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow. Nature, 533: 239–242
Google Scholar
Hess H H. 1962. History of Ocean Basins. In: Engel A E J, James H L, Leonard B F, eds. Petrologic Studies: A Volume in Honor of A. F. Buddington. Boulder, CO: Geological Society of America. 599–620
Holmes A. 1931. Radioactivity and earth movements. Trans Geol Soc Glasgow, 18: 559–606
Google Scholar
Hu J, Liu L, Faccenda M, Zhou Q, Fischer K M, Marshak S, Lundstrom C. 2018. Modification of the Western Gondwana craton by plume-lithosphere interaction. Nat Geosci, 11: 203–210
Google Scholar
Isacks B, Molnar P. 1969. Mantle earthquake mechanisms and the sinking of the lithosphere. Nature, 223: 1121–1124
Google Scholar
Isacks B, Oliver J, Sykes L R. 1968. Seismology and the new global tectonics. J Geophys Res, 73: 5855–5899
Google Scholar
Jarrard R D. 1986. Relations among subduction parameters. Rev Geophys, 24: 217–284
Google Scholar
Karato S I, Barbot S. 2018. Dynamics of fault motion and the origin of contrasting tectonic style between Earth and Venus. Sci Rep, 8: 11884
Google Scholar
Kumamoto K M, Thom C A, Wallis D, Hansen L N, Armstrong D E J, Warren J M, Goldsby D L, Wilkinson A J. 2017. Size effects resolve discrepancies in 40 years of work on low-temperature plasticity in olivine. Sci Adv, 3: e1701338
Google Scholar
Kumar P, Yuan X, Kumar M R, Kind R, Li X, Chadha R K. 2007. The rapid drift of the Indian tectonic plate. Nature, 449: 894–897
Google Scholar
Lee C T A, Luffi P, Chin E J. 2011. Building and destroying continental mantle. Annu Rev Earth Planet Sci, 39: 59–90
Google Scholar
Leonard T, Liu L. 2016. The role of a mantle plume in the formation of Yellowstone volcanism. Geophys Res Lett, 43: 1132–1139
Google Scholar
Li S, Suo Y, Li X, Liu B, Dai L, Wang G, Zhou J, Li Y, Liu Y, Cao X, Somerville I, Mu D, Zhao S, Liu J, Meng F, Zhen L, Zhao L, Zhu J, Yu S, Liu Y, Zhang G. 2018. Microplate tectonics: New insights from micro-blocks in the global oceans, continental margins and deep mantle. Earth-Sci Rev, 185: 1029–1064
Google Scholar
Li S Z, Zhang G W, Liu B H, et al. 2010. The future of structural geology in the new century: Advances in fields of deep-sea, deep-interior, deep-space and deep-time and related key techniques (in Chinese with English abstract). Earth Sci Front, 17: 27–43
Google Scholar
Li Z H, Ribe N M. 2012. Dynamics of free subduction from 3-D boundary element modeling. J Geophys Res, 117: B06408
Google Scholar
Li Z X, Zhong S. 2009. Supercontinent-superplume coupling, true polar wander and plume mobility: Plate dominance in whole-mantle tectonics. Phys Earth Planet Inter, 176: 143–156
Google Scholar
Li Z X, Mitchell R N, Spencer C J, Ernst R, Pisarevsky S, Kirscher U, Murphy J B. 2019. Decoding Earth’s rhythms: Modulation of supercontinent cycles by longer superocean episodes. Precambrian Res, 323: 1–5
Google Scholar
Lithgow-Bertelloni C, Richards M A. 1998. The dynamics of Cenozoic and Mesozoic plate motions. Rev Geophys, 36: 27–78
Google Scholar
Liu L, Hasterok D. 2016. High-resolution lithosphere viscosity and dynamics revealed by magnetotelluric imaging. Science, 353: 1515–1519
Google Scholar
Liu L, Stegman D R. 2011. Segmentation of the Farallon slab. Earth Planet Sci Lett, 311: 1–10
Google Scholar
Liu L, Zhang J S. 2015. Differential contraction of subducted lithosphere layers generates deep earthquakes. Earth Planet Sci Lett, 421: 98–106
Google Scholar
Liu M Q, Li Z H. 2018. Dynamics of thinning and destruction of the continental cratonic lithosphere: Numerical modeling. Sci China Earth Sci, 61: 823–852
Google Scholar
Maruyama S, Yuen D A, Windley B F. 2007. Dynamics of plumes and superplumes through time. In: Yuen D A, Maruyama S, Karato S I, Windley B F, eds. Superplumes: Beyond Plate Tectonics. Dordrecht: Springer Netherlands. 441–502
Maruyama S. 1994. Plume tectonics. J Geol Soc Jpn, 100: 24–49
Google Scholar
McNamara A K. 2019. A review of large low shear velocity provinces and ultra low velocity zones. Tectonophysics, 760: 199–220
Google Scholar
Morgan W J. 1971. Convection plumes in the lower mantle. Nature, 230: 42–43
Google Scholar
Müller R D. 2011. Plate motion and mantle plumes. Nature, 475: 40–41
Google Scholar
Müller R D, Seton M, Zahirovic S, Williams S E, Matthews K J, Wright N M, Shephard G E, Maloney K T, Barnett-Moore N, Hosseinpour M, Bower D J, Cannon J. 2016. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup. Annu Rev Earth Planet Sci, 44: 107–138
Google Scholar
Nishikawa T, Ide S. 2014. Earthquake size distribution in subduction zones linked to slab buoyancy. Nat Geosci, 7: 904–908
Google Scholar
Prokoph A, El Bilali H, Ernst R. 2013. Periodicities in the emplacement of large igneous provinces through the Phanerozoic: Relations to ocean chemistry and marine biodiversity evolution. Geosci Front, 4: 263–276
Google Scholar
Quinteros J, Sobolev S V. 2013. Why has the Nazca plate slowed since the Neogene? Geology, 41: 31–34
Google Scholar
Rowley D B, Forte A M, Rowan C J, Glišović P, Moucha R, Grand S P, Simmons N A. 2016. Kinematics and dynamics of the East Pacific Rise linked to a stable, deep-mantle upwelling. Sci Adv, 2: e1601107
Google Scholar
Schellart W P. 2004. Quantifying the net slab pull force as a driving mechanism for plate tectonics. Geophys Res Lett, 31: L07611
Google Scholar
Seton M, Müller R D, Zahirovic S, Gaina C, Torsvik T, Shephard G, Talsma A, Gurnis M, Turner M, Maus S, Chandler M. 2012. Global continental and ocean basin reconstructions since 200 Ma. Earth-Sci Rev, 113: 212–270
Google Scholar
Sharp W D, Clague D A. 2006. 50-Ma Initiation of Hawaiian-Emperor Bend records major change in Pacific plate motion. Science, 313: 1281–1284
Google Scholar
Stadler G, Gurnis M, Burstedde C, Wilcox L C, Alisic L, Ghattas O. 2010. The dynamics of plate tectonics and mantle flow: From local to global scales. Science, 329: 1033–1038
Google Scholar
Stern R J. 2002. Subduction zones. Rev Geophys, 40: 1012
Google Scholar
Stern R J. 2007. When and how did plate tectonics begin? Theoretical and empirical considerations. Chin Sci Bull, 52: 578–591
Google Scholar
Storey B C. 1995. The role of mantle plumes in continental breakup: Case histories from Gondwanaland. Nature, 377: 301–308
Google Scholar
Strategic Plan for the Development of Disciplines-Plate Tectonics and Continental Dynamics. 2017. Jointly Funded by the National Natural Science Foundation of China and Chinese Academy of Sciences (in Chinese). Beijing: Science Press
Tapponnier P, Molnar P. 1977. Active faulting and tectonics in China. J Geophys Res, 82: 2905–2930
Google Scholar
Taylor B. 2006. The single largest oceanic plateau: Ontong Java-Manihiki-Hikurangi. Earth Planet Sci Lett, 241: 372–380
Google Scholar
Torsvik T H, Doubrovine P V, Steinberger B, Gaina C, Spakman W, Domeier M. 2017. Pacific plate motion change caused the Hawaiian-Emperor Bend. Nat Commun, 8: 15660
Google Scholar
van Hinsbergen D J J, Steinberger B, Doubrovine P V, Gassmöller R. 2011. Acceleration and deceleration of India-Asia convergence since the Cretaceous: Roles of mantle plumes and continental collision. J Geophys Res, 116: B06101
Google Scholar
Walter M J, Kohn S C, Araujo D, Bulanova G P, Smith C B, Gaillou E, Wang J, Steele A, Shirey S B. 2011. Deep mantle cycling of oceanic crust: Evidence from diamonds and their mineral inclusions. Science, 334: 54–57
Google Scholar
Wan B, Wu F, Chen L, Zhao L, Liang X, Xiao W, Zhu R. 2019. Cyclical one-way continental rupture-drift in the Tethyan evolution: Subduction-driven plate tectonics. Sci China Earth Sci, 62: 2005–2016
Google Scholar
Wessel P, Müller R D. 2015. Plate tectonics. In: Schubert G, ed. Treatise on Geophysics. Amsterdam: Elsevier. 6: 45–93
Google Scholar
Whittaker J M, Afonso J C, Masterton S, Müller R D, Wessel P, Williams S E, Seton M. 2015. Long-term interaction between mid-ocean ridges and mantle plumes. Nat Geosci, 8: 479–483
Google Scholar
Wilson J T. 1963. Evidence from islands on the spreading of ocean floors. Nature, 197: 536–538
Google Scholar
Wilson J T. 1973. Mantle plumes and plate motions. Tectonophysics, 19: 149–164
Google Scholar
Wu F Y, Yang J H, Xu Y G, Wilde S A, Walker R J. 2019. Destruction of the North China craton in the Mesozoic. Annu Rev Earth Planet Sci, 47: 173–195
Google Scholar
Yin A. 2010. Cenozoic tectonic evolution of Asia: A preliminary synthesis. Tectonophysics, 488: 293–325
Google Scholar
Zahirovic S, Müller R D, Seton M, Flament N. 2015. Tectonic speed limits from plate kinematic reconstructions. Earth Planet Sci Lett, 418: 40–52
Google Scholar
Zhang N, Dang Z, Huang C, Li Z X. 2018. The dominant driving force for supercontinent breakup: Plume push or subduction retreat? Geosci Front, 9: 997–1007
Google Scholar
Zhou Q, Liu L, Hu J. 2018. Western US volcanism due to intruding oceanic mantle driven by ancient Farallon slabs. Nat Geosci, 11: 70–76
Google Scholar
Zhu R X, Chen L, Wu F Y, Liu J L. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Sci China Earth Sci, 54: 789–797
Google Scholar