Skip to main content
Log in

Multiscale modeling of the atmospheric environment over a forest canopy

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Vegetation constitutes one of the fundamental types of land use on Earth. The presence of trees in urban areas can decrease local winds and exchange sensible and latent heat with the surrounding environments, thus exerting notable influences on the urban microenvironment. A better understanding of the turbulent transfer of momentum and scalars around vegetation canopy could significantly contribute to improvement of the urban environment. This work develops a large-eddy simulation (LES) method that is applicable to model the flow and scalar transport over the forest canopy. We study the atmospheric flow over complex forested areas under typical weather conditions by coupling LES to the mesoscale model. Models of radiation and energy balance have been developed with explicit treatment of the vegetation canopy. By examining the flow over a forest canopy under a range of stability conditions, we found that buoyancy enhances or suppresses turbulent mixing in unstable or stable atmosphere respectively, with decreasing or increasing wind shear, respectively. From the multiscale modeling of the Beijing Olympic Forest Park, the present coupling scheme proves to better resolve the diurnal variations in wind speed, temperature, and relative humidity over complex urban terrains. The coupling scheme is superior to the traditional mesoscale model in terms of wind field simulation. This is mainly because the coupling scheme not only takes the influences of external mesoscale flow into consideration, but also resolves the heterogeneous urban surface at a fine scale by downscaling, thus better reproducing the complex flow and turbulent transport in the urban roughness sublayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amorim J H, Rodrigues V, Tavares R, Valente J, Borrego C. 2013. CFD modelling of the aerodynamic effect of trees on urban air pollution dispersion. Sci Total Environ, 461-462: 541–551

    Google Scholar 

  • Arnqvist J, Segalini A, Dellwik E, Bergstrom H. 2015. Wind statistics from a forested landscape. Bound-Layer Meteorol, 156: 53–71

    Google Scholar 

  • Arya S P. 2001. Introduction to Micrometeorology. 2nd ed. California: Academic Press. 420

    Google Scholar 

  • Aumond P, Masson V, Lac C, Gauvreau B, Dupont S, Berengier M. 2013. Including the drag effects of canopies: Real case large-eddy simulation studies. Bound-Layer Meteorol, 146: 65–80

    Google Scholar 

  • Bailey B N, Stoll R. 2013. Turbulence in sparse, organized vegetative canopies: A large-eddy simulation study. Bound-Layer Meteorol, 147: 369–400

    Google Scholar 

  • Bailey B N, Stoll R, Pardyjak E R, Mahaffee W F. 2014. Effect of vegetative canopy architecture on vertical transport of massless particles. Atmos Environ, 95: 480–489

    Google Scholar 

  • Barcons J, Avila M, Folch A. 2018. A wind field downscaling strategy based on domain segmentation and transfer functions. Wind Energy, 21: 409–425

    Google Scholar 

  • Belcher S E, Jerram N, Hunt J C R. 2003. Adjustment of a turbulent boundary layer to a canopy of roughness elements. J Fluid Mech, 488: 369–398

    Google Scholar 

  • Bohrer G, Katul G G, Walko R L, Avissar R. 2009. Exploring the effects of microscale structural heterogeneity of forest canopies using large-eddy simulations. Bound-Layer Meteorol, 132: 351–382

    Google Scholar 

  • Bohrer G, Wolosin M, Brady R, Avissar R. 2007. A virtual canopy generator (V-CaGe) for modelling complex heterogeneous forest canopies at high resolution. Tellus B-Chem Phys Meteorol, 59: 566–576

    Google Scholar 

  • Bonan G B. 2016. Ecological Climatology. 3rd ed. Cambridge: Cambridge University Press. 692

    Google Scholar 

  • Bou-Zeid E, Parlange M B, Meneveau C. 2007. On the parameterization of surface roughness at regional scales. J Atmos Sci, 64: 216–227

    Google Scholar 

  • Breton S P, Sumner J, Serensen J N, Hansen K S, Sarmast S, Ivanell S. 2017. A survey of modelling methods for high-fidelity wind farm simulations using large eddy simulation. Phil Trans R Soc A, 375: 20160097

    Google Scholar 

  • Castro F A, Silva Santos C, Lopes da Costa J C. 2015. One-way mesoscale-microscale coupling for the simulation of atmospheric flows over complex terrain. Wind Energ, 18: 1251–1272

    Google Scholar 

  • Cheng W Y Y, Steenburgh W J. 2005. Evaluation of surface sensible weather forecasts by the WRF and the eta models over the western United States. Weather Forecast, 20: 812–821

    Google Scholar 

  • Cui G X, Zhang Z S, Xu C X, Huang W X. 2013. Research advances in large eddy simulation of urban atmospheric environment (in Chinese). Adv Mech, 43: 295–328

    Google Scholar 

  • Dupont S, Brunet Y. 2008. Influence of foliar density profile on canopy flow: A large-eddy simulation study. Agric For Meteorol, 148: 976–990

    Google Scholar 

  • Dwyer M J, Patton E G, Shaw R H. 1997. Turbulent kinetic energy budgets from a large-eddy simulation of airflow above and within a forest canopy. Bound-Layer Meteorol, 84: 23–43

    Google Scholar 

  • Eder F, Serafimovich A, Foken T. 2013. Coherent structures at a forest edge: Properties, coupling and impact of secondary circulations. Bound-Layer Meteorol, 148: 285–308

    Google Scholar 

  • Finnigan J. 2000. Turbulence in plant canopies. Annu Rev Fluid Mech, 32: 519–571

    Google Scholar 

  • Finnigan J J, Shaw R H, Patton E G. 2009. Turbulence structure above a vegetation canopy. J Fluid Mech, 637: 387–424

    Google Scholar 

  • Foken T. 2006. 50 years of the Monin-Obukhov similarity theory. Bound-Layer Meteorol, 119: 431–447

    Google Scholar 

  • Gao W, Shaw R H, Paw U K T. 1989. Observation of organized structure in turbulent flow within and above a forest canopy. Bound-Layer Meteorol, 47: 349–377

    Google Scholar 

  • Garratt J R. 1992. The Atmospheric Boundary Layer. Cambridge: Cambridge University Press. 316

    Google Scholar 

  • Gillies J A, Nickling W G, King J. 2002. Drag coefficient and plant form response to wind speed in three plant species: Burning Bush (Euonymus alatus), Colorado Blue Spruce (Picea pungens glauca.), and Fountain Grass (Pennisetum setaceum). J Geophys Res, 107: 4760

    Google Scholar 

  • Ji J J, Miao M Q. 1994. Numerical experiments of influence of heterogeneous vegetation distribution on the states of surface and atmospheric boundary layer (in Chinese). Sci Atmos Sin, 18: 293–302

    Google Scholar 

  • Jiang W M, Miao S G, Zhang N, Liu H N, Hu F, Li L, Wang Y W, Wang C G. 2010. Numerical simulation on urban meteorology and urban boundary layer (in Chinese). Adv Earth Sci, 25: 463–473

    Google Scholar 

  • Jiang W M, Miao S G. 2004. Large eddy simulation and atmospheric boundary layer-Review and prospect in the past 30 years (in Chinese). Prog Nat Sci, 14: 11–19

    Google Scholar 

  • Jimenez P A, Dudhia J, Gonzalez-Rouco J F, Navarro J, Montavez J P, Garcia-Bustamante E. 2012. A revised scheme for the WRF surface layer formulation. Mon Weather Rev, 140: 898–918

    Google Scholar 

  • Jimenez P A, Dudhia J. 2012. Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J Appl Meteorol Climatol, 51: 300–316

    Google Scholar 

  • Jimenez P A, Dudhia J, Gonzalez-Rouco J F, Montavez J P, Garcia-Bus-tamante E, Navarro J, Vila-Guerau de Arellano J, Munoz-Roldan A. 2013. An evaluation of WRF’s ability to reproduce the surface wind over complex terrain based on typical circulation patterns. J Geophys Res-Atmos, 118: 7651–7669

    Google Scholar 

  • Kaimal J C, Finnigan J J. 1994. Atmospheric Boundary Layer Flows: Their Structure and Measurement. New York: Oxford University Press. 289

    Google Scholar 

  • Kruijt B, Malhi Y, Lloyd J, Norbre A D, Miranda A C, Pereira M G P, Culf A, Grace J. 2000. Turbulence statistics above and within two amazon rain forest canopies. Bound-Layer Meteorol, 94: 297–331

    Google Scholar 

  • Lalic B, Mihailovic D T. 2004. An empirical relation describing leaf-area density inside the forest for environmental modeling. J Appl Meteorol, 43: 641–645

    Google Scholar 

  • Launiainen S, Vesala T, MoLder M, Mammarella I, Smolander S, Rannik U, Kolari P, Hari P, Lindroth A, G. Katul G. 2007. Vertical variability and effect of stability on turbulence characteristics down to the floor of a pine forest. Tellus B-Chem Phys Meteorol, 59: 919–936

    Google Scholar 

  • Li H F, Wang B B, Cui G X, Zhang Z S. 2015. Study on thermal environment and pollutant dispersion in real urban area by Large Eddy Simulation (in Chinese). Sci Sin-Phys Mech Astron, 45: 66–82

    Google Scholar 

  • Li H, Cui G, Zhang Z. 2018. A new scheme for the simulation of micro-scale flow and dispersion in urban areas by coupling large-eddy simulation with mesoscale models. Bound-Layer Meteorol, 167: 145–170

    Google Scholar 

  • Liu S H, Deng Y, Hu F, Liang F M, Liu H P, Wang J H. 2004. Numerical simulation of interaction between forest ecosystem and atmosphere boundary layer (in Chinese). Chin J Appl Ecol, 15: 2005–2012

    Google Scholar 

  • Liu Y J, Miao S G, Hu F, Liu Y B. 2018. Large eddy simulation of flow field over the Xiaohaituo mountain division for the 24th Winter Olympic Games (in Chinese). Plateau Meteorol, 37: 1388–1401

    Google Scholar 

  • Liu Y S, Cui G X, Wang Z S, Zhang Z S. 2011. Large eddy simulation of wind field and pollutant dispersion in downtown Macao. Atmos Environ, 45: 2849–2859

    Google Scholar 

  • Liu Y S, Miao S G, Zhang C L, Cui G X, Zhang Z S. 2012. Study on micro-atmospheric environment by coupling large eddy simulation with mesoscale model. J Wind Eng Ind Aerodyn, 107-108: 106–117

    Google Scholar 

  • Liu Z, Chen J M, Jin G, Qi Y. 2015. Estimating seasonal variations of leaf area index using litterfall collection and optical methods in four mixed evergreen-deciduous forests. Agric For Meteorol, 209-210: 36–48

    Google Scholar 

  • Lorente-Plazas R, Jimenez P A, Dudhia J, Montavez J P. 2016. Evaluating and improving the impact of the atmospheric stability and orography on surface winds in the WRF model. Mon Weather Rev, 144: 2685–2693

    Google Scholar 

  • Meneveau C, Lund T S, Cabot W H. 1996. A Lagrangian dynamic subgrid-scale model of turbulence. J Fluid Mech, 319: 353–385

    Google Scholar 

  • Moeng C H. 1984. A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J Atmos Sci, 41: 2052–2062

    Google Scholar 

  • Moeng C H, Dudhia J, Klemp J, Sullivan P. 2007. Examining two-way grid nesting for large eddy simulation of the pbl using the WRF model. Mon Weather Rev, 135: 2295–2311

    Google Scholar 

  • Nakai T, Sumida A, Matsumoto K, Daikoku K, Iida S, Park H, Miyahara M, Kodama Y, Kononov A V, Maximov T C, Yabuki H, Hara T, Ohta T. 2008. Aerodynamic scaling for estimating the mean height of dense canopies. Bound-Layer Meteorol, 128: 423–443

    Google Scholar 

  • Nebenführ B, Davidson L. 2015. Large-eddy simulation study of thermally stratified canopy flow. Bound-Layer Meteorol, 156: 253–276

    Google Scholar 

  • Nebenfiihr B, Davidson L. 2017. Prediction of wind-turbine fatigue loads in forest regions based on turbulent LES inflow fields. Wind Energ, 20: 1003–1015

    Google Scholar 

  • Pan Y, Chamecki M, Nepf H M. 2016. Estimating the instantaneous drag-wind relationship for a horizontally homogeneous canopy. Bound-Layer Meteorol, 160: 63–82

    Google Scholar 

  • Pan Y, Follett E, Chamecki M, Nepf H. 2014. Strong and weak, unsteady reconfiguration and its impact on turbulence structure within plant canopies. Phys Fluids, 26: 105102

    Google Scholar 

  • Parlange M B, Brutsaert W. 1989. Regional roughness of the landes forest and surface shear stress under neutral conditions. Bound-Layer Meteorol, 48: 69–81

    Google Scholar 

  • Pinard J D J P, Wilson J D. 2001. First- and second-order closure models for wind in a plant canopy. J Appl Meteorol, 40: 1762–1768

    Google Scholar 

  • Poggi D, Porporato A, Ridolfi L, Albertson J D, Katul G G. 2004. The effect of vegetation density on canopy sub-layer turbulence. Bound-Layer Meteorol, 111: 565–587

    Google Scholar 

  • Pope S B. 2000. Turbulent Flows. Cambridge: Cambridge University Press. 773

    Google Scholar 

  • Sauer J A, Munoz-Esparza D, Canfield J M, Costigan K R, Linn R R, Kim Y J. 2016. A large-eddy simulation study of atmospheric boundary layer influence on stratified flows over terrain. J Atmos Sci, 73: 2615–2632

    Google Scholar 

  • Schlegel F, Stiller J, Bienert A, Maas H G, Queck R, Bernhofer C. 2012. Large-eddy simulation of inhomogeneous canopy flows using high resolution terrestrial laser scanning Data. Bound-Layer Meteorol, 142: 223–243

    Google Scholar 

  • Schlegel F, Stiller J, Bienert A, Maas H G, Queck R, Bernhofer C. 2015. Large-eddy simulation study of the effects on flow of a heterogeneous forest at sub-tree resolution. Bound-Layer Meteorol, 154: 27–56

    Google Scholar 

  • Shaw R H, den Hartog G, Neumann H H. 1988. Influence of foliar density and thermal stability on profiles of reynolds stress and turbulence intensity in a deciduous forest. Bound-Layer Meteorol, 45: 391–409

    Google Scholar 

  • Shaw R H, Schumann U. 1992. Large-eddy simulation of turbulent flow above and within a forest. Bound-Layer Meteorol, 61: 47–64

    Google Scholar 

  • Shen S, Leclerc M Y. 1997. Modelling the turbulence structure in the canopy layer. Agric For Meteorol, 87: 3–25

    Google Scholar 

  • Stoll R, Porte-agel F. 2006. Effect of roughness on surface boundary conditions for large-eddy simulation. Bound-Layer Meteorol, 118: 169–187

    Google Scholar 

  • Su H B, Schmid H P, Vogel C S, Curtis P S. 2008. Effects of canopy morphology and thermal stability on mean flow and turbulence statistics observed inside a mixed hardwood forest. Agric For Meteorol, 148: 862–882

    Google Scholar 

  • Tao W Q. 2004. Numerical Heat Transfer (in Chinese). 2nd ed. Xi’an: Xi’an Jiaotong University Press. 537

    Google Scholar 

  • Tjernstrom M. 1989. Some tests with a surface energy balance scheme, including a bulk parameterisation for vegetation, in a mesoscale model. Bound-Layer Meteorol, 48: 33–68

    Google Scholar 

  • Versteeg H K, Malalasekera W. 2007. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. 2nd ed. Harlow: Pearson Prentice Hall. 517

    Google Scholar 

  • Villani M G, Schmid H P, Su H B, Hutton J L, Vogel C S. 2003. Turbulence statistics measurements in a Northern Hardwood Forest. Bound-Layer Meteorol, 108: 343–364

    Google Scholar 

  • Vogel S. 1989. Drag and reconfiguration of broad leaves in high winds. J Exp Bot, 40: 941–948

    Google Scholar 

  • Wang L, Li D, Gao Z, Sun T, Guo X, Bou-Zeid E. 2014. Turbulent transport of momentum and scalars above an urban canopy. Bound-Layer Meteorol, 150: 485–511

    Google Scholar 

  • Wyngaard J C. 2010. Turbulence in the Atmosphere. New York: Cambridge University Press. 407

    Google Scholar 

  • Xu L, Pyles R D, Paw U K T, Chen S H, Monier E. 2014. Coupling the high-complexity land surface model ACASA to the mesoscale model WRF. Geosci Model Dev, 7: 2917–2932

    Google Scholar 

  • Yan C, Huang W X, Miao S G, Cui G X, Zhang Z S. 2017. Large-eddy simulation of flow over a vegetation-like canopy modelled as arrays of bluff-body elements. Bound-Layer Meteorol, 165: 233–249

    Google Scholar 

  • Yin X Y 1991. Study on turbulence in vegetation (in Chinese). Adv Mech, 25: 444–456

    Google Scholar 

  • Yue W, Parlange M B, Meneveau C, Zhu W, van Hout R, Katz J. 2007. Large-eddy simulation of plant canopy flows using plant-scale representation. Bound-Layer Meteorol, 124: 183–203

    Google Scholar 

  • Zhou X, Beljaars A, Wang Y, Huang B, Lin C, Chen Y, Wu H. 2017. Evaluation of WRF simulations with different selections of subgrid orographic drag over the Tibetan Plateau. J Geophys Res-Atmos, 122: 9759–9772

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Beijing Natural Science Foundation (Grant No. 8184074), the National Natural Science Foundation of China (Grant Nos. 41705006 & 41805011), and the Beijing Young Scholars Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiguang Miao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, C., Miao, S., Liu, Y. et al. Multiscale modeling of the atmospheric environment over a forest canopy. Sci. China Earth Sci. 63, 875–890 (2020). https://doi.org/10.1007/s11430-019-9525-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-019-9525-6

Keywords

Navigation