Cyclical one-way continental rupture-drift in the Tethyan evolution: Subduction-driven plate tectonics

Abstract

Numerous continents have rifted and drifted away from Gondwana to repeatedly open ocean basins over the past ∼500 million years. These Gondwana-derived continents drifted towards and collided with components of the Eurasian continent to successively close the preexisting oceans between the two. Plate tectonics satisfactorily describes the continental drift from Gondwana to Eurasia but does not define the geodynamic mechanism of continuously rifting to collisions of continents in the Tethyan Realm. After reappraisal of geological records of the rift, collision and subduction initiation from the surface and various geophysical observations from depth, we propose that Eurasia-directed subducting oceanic slabs would have driven Tethyan system in the Phanerozoic. The Eurasia-directed subduction would have dragged the passive Gondwana margin to rift and drift northwards, giving birth to new oceans since the Paleozoic. The closure of preexisting oceans between the Gondwana-derived continents and Eurasia led to continental collisions, which would have induced the initiation of oceanic subduction in the Tethyan Realm. Multiple episodic switches between collision-subduction-rift repeatedly led to the separation of continental fragments from Gondwana and dragged them to drift towards Eurasia. The final disappearance of Neo-Tethys would have induced collision of the Gondwana-derived continents with the Eurasian continent, giving rise to the Cenozoic Alpine-Zagros-Himalayan collisional system. Therefore, the Eurasia-directed oceanic subduction would have acted as a ‘one-way train’ that successively transferred the ruptured Gondwana continental fragments in the south, into the terminal in the north. In this regard, the engine of this “Tethyan one-way train” is the negative buoyancy of subducting oceanic slabs.

This is a preview of subscription content, log in to check access.

References

  1. Advokaat E L, Bongers M L M, Rudyawan A, BouDagher-Fadel M K, Langereis C G, van Hinsbergen D J J. 2018. Early Cretaceous origin of the Woyla Arc (Sumatra, Indonesia) on the Australian plate. Earth Planet Sci Lett, 498: 348–361

    Article  Google Scholar 

  2. Barley M E, Pickard A L, Zaw K, Rak P, Doyle M G. 2003. Jurassic to Miocene magmatism and metamorphism in the Mogok metamorphic belt and the India-Eurasia collision in Myanmar. Tectonics, 22: 1019

    Article  Google Scholar 

  3. Becker T W, Faccenna C. 2011. Mantle conveyor beneath the Tethyan collisional belt. Earth Planet Sci Lett, 310: 453–461

    Article  Google Scholar 

  4. Brown D, Ryan P D. 2011. Arc-Continent Collision. Heidelberg: Springer. 493

    Google Scholar 

  5. Buiter S J H, Torsvik T H. 2014. A review of Wilson Cycle plate margins: A role for mantle plumes in continental break-up along sutures? Gondwana Res, 26: 627–653

    Article  Google Scholar 

  6. Burg J P. 2018. Geology of the onshore Makran accretionary wedge: Synthesis and tectonic interpretation. Earth-Sci Rev, 185: 1210–1231

    Article  Google Scholar 

  7. Capitanio F A, Morra G, Goes S, Weinberg R F, Moresi L. 2010. India-Asia convergence driven by the subduction of the Greater Indian continent. Nat Geosci, 3: 136–139

    Article  Google Scholar 

  8. Chen Y W, Wu J, Suppe J. 2019. Southward propagation of Nazca subduction along the Andes. Nature, 565: 441–447

    Article  Google Scholar 

  9. Chiu H Y, Chung S L, Zarrinkoub M H, Mohammadi S S, Khatib M M, Iizuka Y. 2013. Zircon U-Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos, 162-163: 70–87

    Article  Google Scholar 

  10. Conrad C P, Lithgow-Bertelloni C. 2002. How mantle slabs drive plate tectonics. Science, 298: 207–209

    Article  Google Scholar 

  11. Copley A, Avouac J P, Royer J Y. 2010. India-Asia collision and the Cenozoic slowdown of the Indian plate: Implications for the forces driving plate motions. J Geophys Res, 115: B03410

    Article  Google Scholar 

  12. Courtillot V, Jaupart C, Manighetti I, Tapponnier P, Besse J. 1999. On causal links between flood basalts and continental breakup. Earth Planet Sci Lett, 166: 177–195

    Article  Google Scholar 

  13. Dewey J F, Burke K. 1974. Hot spots and continental break-up: Implications for collisional orogeny. Geology, 2: 57–60

    Article  Google Scholar 

  14. Dong Y, He D, Sun S, Liu X, Zhou X, Zhang F, Yang Z, Cheng B, Zhao G, Li J. 2018. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System. Earth-Sci Rev, 186: 231–261

    Article  Google Scholar 

  15. Faccenna C, Becker T W, Auer L, Billi A, Boschi L, Brun J P, Capitanio F A, Funiciello F, Horvàth F, Jolivet L, Piromallo C, Royden L, Rossetti F, Serpelloni E. 2014. Mantle dynamics in the Mediterranean. Rev Geophys, 52: 283–332

    Article  Google Scholar 

  16. Fan J J, Li C, Xie C M, Liu Y M. 2016. Depositional environment and provenance of the upper Permian-Lower Triassic Tianquanshan Formation, northern Tibet: Implications for the Palaeozoic evolution of the Southern Qiangtang, Lhasa, and Himalayan terranes in the Tibetan Plateau. Int Geol Rev, 58: 228–245

    Article  Google Scholar 

  17. Forsyth D, Uyedaf S. 1975. On the relative importance of the driving forces of plate motion. Geophys J Int, 43: 163–200

    Article  Google Scholar 

  18. French S W, Romanowicz B A. 2014. Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography. Geophys J Int, 199: 1303–1327

    Article  Google Scholar 

  19. French S W, Romanowicz B. 2015. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature, 525: 95–99

    Article  Google Scholar 

  20. Furman T, Bryce J, Rooney T, Hanan B, Yirgu G, Ayalew D. 2006. Heads and tails: 30 million years of the Afar plume. Geol Soc London Spec Publ, 259: 95–119

    Article  Google Scholar 

  21. Gerya T V, Stern R J, Baes M, Sobolev S V, Whattam S A. 2015. Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature, 527: 221–225

    Article  Google Scholar 

  22. Glišović P, Forte A M. 2017. On the deep-mantle origin of the Deccan Traps. Science, 355: 613–616

    Article  Google Scholar 

  23. Guillot S, Hattori K, Agard P, Schwartz S, Vidal O. 2009. Exhumation processes in oceanic and continental subduction contexts: A review. In: Lallemand S, Funiciello F, eds. Subduction Zone Geodynamics. Berlin Heidelberg: Springer. 175–205

    Google Scholar 

  24. Gutiérrez-Alonso G, Fernández-Suárez J, Weil A B, Brendan Murphy J, Damian Nance R, Corfú F, Johnston S T. 2008. Self-subduction of the Pangaean global plate. Nat Geosci, 1: 549–553

    Article  Google Scholar 

  25. Hall R. 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. J Asian Earth Sci, 20: 353–431

    Article  Google Scholar 

  26. Hall R. 2017. Southeast Asia: New views of the geology of the Malay archipelago. Annu Rev Earth Planet Sci, 45: 331–358

    Article  Google Scholar 

  27. Hatzfeld D, Molnar P. 2010. Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications. Rev Geophys, 48: RG2005

    Article  Google Scholar 

  28. Hoggard M J, White N, Al-Attar D. 2016. Global dynamic topography observations reveal limited influence of large-scale mantle flow. Nat Geosci, 9: 456–463

    Article  Google Scholar 

  29. Hu X, Garzanti E, Wang J, Huang W, An W, Webb A. 2016. The timing of India-Asia collision onset—Facts, theories, controversies. Earth-Sci Rev, 160: 264–299

    Article  Google Scholar 

  30. Isozaki Y, Aoki K, Nakama T, Yanai S. 2010. New insight into a subduction-related orogen: A reappraisal of the geotectonic framework and evolution of the Japanese Islands. Gondwana Res, 18: 82–105

    Article  Google Scholar 

  31. Ji W Q, Wu F Y, Chung S L, Li J X, Liu C Z. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem Geol, 262: 229–245

    Article  Google Scholar 

  32. Jolivet L, Faccenna C, Agard P, Frizon de Lamotte D, Menant A, Sternai P, Guillocheau F, Polat A. 2016. Neo-Tethys geodynamics and mantle convection: From extension to compression in Africa and a conceptual model for obduction. Can J Earth Sci, 53: 1190–1204

    Article  Google Scholar 

  33. Kelbert A, Schultz A, Egbert G. 2009. Global electromagnetic induction constraints on transition-zone water content variations. Nature, 460: 1003–1006

    Article  Google Scholar 

  34. Kent D V, Muttoni G. 2008. Equatorial convergence of India and early Cenozoic climate trends. Proc Natl Acad Sci USA, 105: 16065–16070

    Article  Google Scholar 

  35. Khaksar K, Rezvannia F, Kebriaei-Zadeh M R. 2014. Stratigraphy of Vali-Abad section (Central Alborz North Iran) based on corals. J Geosci Geomat, 2: 120–124

    Google Scholar 

  36. Knesel K M, Cohen B E, Vasconcelos P M, Thiede D S. 2008. Rapid change in drift of the Australian plate records collision with Ontong Java plateau. Nature, 454: 754–757

    Article  Google Scholar 

  37. Lapierre H. 2004. The Tethyan plume: Geochemical diversity of Middle Permian basalts from the Oman rifted margin. Lithos, 74: 167–198

    Article  Google Scholar 

  38. Li C, Zhai Q, Dong Y, Huang X. 2006. Discovery of eclogite and its geological significance in Qiangtang area, central Tibet. Chin Sci Bull, 51: 1095–1100

    Article  Google Scholar 

  39. Li S, Jagoutz E, Chen Y, Li Q. 2000. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China. Geochim Cosmochim Acta, 64: 1077–1093

    Article  Google Scholar 

  40. Li Z X, Bogdanova S V, Collins A S, Davidson A, De Waele B, Ernst R E, Fitzsimons I C W, Fuck R A, Gladkochub D P, Jacobs J, Karlstrom K E, Lu S, Natapov L M, Pease V, Pisarevsky S A, Thrane K, Vernikovsky V. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Res, 160: 179–210

    Article  Google Scholar 

  41. Li Z X, Mitchell R N, Spencer C J, Ernst R, Pisarevsky S, Kirscher U, Murphy J B. 2019. Decoding Earth’s rhythms: Modulation of supercontinent cycles by longer superocean episodes. Precambrian Res, 323: 1–5

    Article  Google Scholar 

  42. Liao S Y, Wang D B, Tang Y, Yin F G, Cao S N, Wang L Q, Wang B D, Sun Z M. 2015. Late Paleozoic Woniusi basaltic province from Sibumasu terrane: Implications for the breakup of eastern Gondwana’s northern margin. Geol Soc Am Bull, 127: 1313–1330

    Article  Google Scholar 

  43. Liu C Z, Chung S L, Wu F Y, Zhang C, Xu Y, Wang J G, Chen Y, Guo S. 2016. Tethyan suturing in Southeast Asia: Zircon U-Pb and Hf-O isotopic constraints from Myanmar ophiolites. Geology, 44: 311–314

    Article  Google Scholar 

  44. Liu L, Spasojevic S, Gurnis M. 2008. Reconstructing farallon plate subduction beneath North America back to the Late Cretaceous. Science, 322: 934–938

    Article  Google Scholar 

  45. Macdonald F A, Swanson-Hysell N L, Park Y, Lisiecki L, Jagoutz O. 2019. Arc-continent collisions in the tropics set Earth’s climate state. Science, 364: 181–184

    Google Scholar 

  46. McKenzie D P, Parker R L. 1967. The North Pacific: An example of tectonics on a sphere. Nature, 216: 1276–1280

    Article  Google Scholar 

  47. Metcalfe I. 2011. Palaeozoic-Mesozoic history of SE Asia. Geol Soc London Spec Publ, 355: 7–35

    Article  Google Scholar 

  48. Metcalfe I. 2017. Tectonic evolution of Sundaland. Bull Geol Soc Malaysia, 63: 27–60

    Article  Google Scholar 

  49. Morgan W J. 1968. Rises, trenches, great faults, and crustal blocks. J Geophys Res, 73: 1959–1982

    Article  Google Scholar 

  50. Müller R D, Sdrolias M, Gaina C, Roest W R. 2008. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem Geophys Geosyst, 9: Q04006

    Article  Google Scholar 

  51. Replumaz A, Kárason H, van der Hilst R D, Besse J, Tapponnier P. 2004. 4-D evolution of SE Asia’s mantle from geological reconstructions and seismic tomography. Earth Planet Sci Lett, 221: 103–115

    Article  Google Scholar 

  52. Robertson A H F. 2012. Late Palaeozoic-Cenozoic tectonic development of Greece and Albania in the context of alternative reconstructions of Tethys in the Eastern Mediterranean region. Int Geol Rev, 54: 373–454

    Article  Google Scholar 

  53. Rossetti F, Monié P, Nasrabady M, Theye T, Lucci F, Saadat M. 2017. Early Carboniferous subduction-zone metamorphism preserved within the Palaeo-Tethyan Rasht ophiolites (western Alborz, Iran). J Geol Soc, 174: 741–758

    Article  Google Scholar 

  54. Royden L, Faccenna C. 2018. Subduction orogeny and the Late Cenozoic evolution of the Mediterranean Arcs. Annu Rev Earth Planet Sci, 46: 261–289

    Article  Google Scholar 

  55. Scotese C. 2014. Atlas of Plate Tectonic Reconstructions (Mollweide Projection). PALEOMAP Project Paleo Atlas for Arc GIS, Volumes 1–6, Evanston, Illinois

  56. Searle M P, Noble S R, Cottle J M, Waters D J, Mitchell A H G, Hlaing T, Horstwood M S A. 2007. Tectonic evolution of the Mogok meta-morphic belt, Burma (Myanmar) constrained by U-Th-Pb dating of metamorphic and magmatic rocks. Tectonics, 26: TC3014

    Google Scholar 

  57. Şengor A M C. 1990. Plate tectonics and orogenic research after 25 years: A Tethyan perspective. Earth Sci Rev, 27: 1-201

    Article  Google Scholar 

  58. Shellnutt J G, Bhat G M, Brookfield M E, Jahn B M. 2011. No link between the Panjal Traps (Kashmir) and the Late Permian mass extinctions. Geophys Res Lett, 38: L19308

    Article  Google Scholar 

  59. Spakman W, Chertova M V, van den Berg A, van Hinsbergen D J J. 2018. Puzzling features of western Mediterranean tectonics explained by slab dragging. Nat Geosci, 11: 211–216

    Article  Google Scholar 

  60. Stampfli G M, Borel G D. 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet Sci Lett, 196: 17–33

    Article  Google Scholar 

  61. Stampfli G M, Hochard C, Vérard C, Wilhem C, vonRaumer J. 2013. The formation of Pangea. Tectonophysics, 593: 1–19

    Article  Google Scholar 

  62. Stern R J. 2002. Subduction zones. Rev Geophys, 40: 1012

    Article  Google Scholar 

  63. Stern R. 2004. Subduction initiation: Spontaneous and induced. Earth Planet Sci Lett, 226: 275–292

    Article  Google Scholar 

  64. Storey B C. 1995. The role of mantle plumes in continental breakup: Case histories from Gondwanaland. Nature, 377: 301–308

    Article  Google Scholar 

  65. Storey M, Mahoney J J, Saunders A D, Duncan R A, Kelley S P, Coffin M F. 1995. Timing of hot spot—related volcanism and the breakup of Madagascar and India. Science, 267: 852–855

    Article  Google Scholar 

  66. Sun W, Liu L, Hu Y, Ding W, Liu J, Ling M, Ding X, Zhang Z, Sun X, Li C, Li H, Fan W. 2018. Post-ridge-subduction acceleration of the Indian plate induced by slab rollback. Solid Earth Sci, 3: 1–7

    Article  Google Scholar 

  67. Torsvik T H, Amundsen H, Hartz E H, Corfu F, Kusznir N, Gaina C, Doubrovine P V, Steinberger B, Ashwal L D, Jamtveit B. 2013. A Precambrian microcontinent in the Indian Ocean. Nat Geosci, 6: 223–227

    Article  Google Scholar 

  68. Torsvik T H, Burke K, Steinberger B, Webb S J, Ashwal L D. 2010. Diamonds sampled by plumes from the core-mantle boundary. Nature, 466: 352–355

    Article  Google Scholar 

  69. Torsvik T H, Cocks L R M. 2017. Earth History and Palaeogeography. Cambridge: Cambridge University Press. 317

    Google Scholar 

  70. Torsvik T H, Müller R D, Van der Voo R, Steinberger B, Gaina C. 2008. Global plate motion frames: Toward a unified model. Rev Geophys, 46: RG3004

    Article  Google Scholar 

  71. Torsvik T H, van der Voo R, Doubrovine P V, Burke K, Steinberger B, Ashwal L D, Trønnes R G, Webb S J, Bull A L. 2014. Deep mantle structure as a reference frame for movements in and on the Earth. Proc Natl Acad Sci USA, 111: 8735–8740

    Article  Google Scholar 

  72. Touret J L R, Huizenga J M. 2012. Fluid-assisted granulite metamorphism: A continental journey. Gondwana Res, 21: 224–235

    Article  Google Scholar 

  73. Vaes B, van Hinsbergen D J J, Boschman L M. 2019. Reconstruction of subduction and back-arc spreading in the NW Pacific and Aleutian Basin: Clues to causes of Cretaceous and Eocene plate reorganizations. Tectonics, 38: 1367–1413

    Article  Google Scholar 

  74. van der Meer D G, van Hinsbergen D J J, Spakman W. 2018. Atlas of the underworld: Slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity. Tectonophysics, 723: 309–448

    Article  Google Scholar 

  75. van Hinsbergen D J J, Hafkenscheid E, Spakman W, Meulenkamp J E, Wortel R. 2005. Nappe stacking resulting from subduction of oceanic and continental lithosphere below Greece. Geology, 33: 325–328

    Article  Google Scholar 

  76. Hinsbergen D J J, Steinberger B, Doubrovine P V, Gassmöller R. 2011. Acceleration and deceleration of India-Asia convergence since the Cretaceous: Roles of mantle plumes and continental collision. J Geophys Res, 116: B06101

    Google Scholar 

  77. Wan B, Xiao W, Windley B F, Yuan C. 2013. Permian hornblende gabbros in the Chinese Altai from a subduction-related hydrous parent magma, not from the Tarim mantle plume. Lithosphere, 5: 290–299

    Article  Google Scholar 

  78. White R, McKenzie D. 1989. Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. J Geophys Res, 94: 7685–7729

    Article  Google Scholar 

  79. Wilson J T. 1966. Did the Atlantic close and then re-open? Nature, 211: 676–681

    Article  Google Scholar 

  80. Xiao W J, Windley B F, Chen H L, Zhang G C, Li J L. 2002. Carboniferous-Triassic subduction and accretion in the western Kunlun, China: Implications for the collisional and accretionary tectonics of the northern Tibetan Plateau. Geology, 30: 295–298

    Article  Google Scholar 

  81. Xu Z, Zheng Y F. 2017. Continental basalts record the crust-mantle interaction in oceanic subduction channel: A geochemical case study from eastern China. J Asian Earth Sci, 145: 233–259

    Article  Google Scholar 

  82. Yin A. 2010. Cenozoic tectonic evolution of Asia: A preliminary synthesis. Tectonophysics, 488: 293–325

    Article  Google Scholar 

  83. Yin A, Harrison T M. 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annu Rev Earth Planet Sci, 28: 211–280

    Article  Google Scholar 

  84. Yoshida M. 2016. Formation of a future supercontinent through plate motion-driven flow coupled with mantle downwelling flow. Geology, 44: 755–758

    Article  Google Scholar 

  85. Zahirovic S, Seton M, Müller R D. 2014. The Cretaceous and Cenozoic tectonic evolution of Southeast Asia. Solid Earth, 5: 227–273

    Article  Google Scholar 

  86. Zanchi A, Zanchetta S, Balini M, Ghassemi M R. 2016. Oblique convergence during the Cimmerian collision: Evidence from the Triassic Aghdarband Basin, NE Iran. Gondwana Res, 38: 149–170

    Article  Google Scholar 

  87. Zhai Q, Jahn B, Su L, Ernst R E, Wang K, Zhang R, Wang J, Tang S. 2013. SHRIMP zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopic compositions of a mafic dyke swarm in the Qiangtang terrane, northern Tibet and geodynamic implications. Lithos, 174: 28–43

    Article  Google Scholar 

  88. Zhang N, Dang Z, Huang C, Li Z X. 2018. The dominant driving force for supercontinent breakup: Plume push or subduction retreat? Geosci Front, 9: 997–1007

    Article  Google Scholar 

  89. Zhang R Y, Lo C H, Chung S L, Grove M, Omori S, Iizuka Y, Liou J G, Tri T V. 2013. Origin and tectonic implication of ophiolite and eclogite in the Song Ma Suture Zone between the South China and Indochina blocks. J Metamorph Geol, 31: 49–62

    Article  Google Scholar 

  90. Zhang Z, Zhao G, Santosh M, Wang J, Dong X, Shen K. 2010. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet: Evidence for Neo-Tethyan mid-ocean ridge subduction? Gondwana Res, 17: 615–631

    Article  Google Scholar 

  91. Zheng Y, Xu Z, Zhao Z, Dai L. 2018. Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere. Sci China Earth Sci, 61: 353–385

    Article  Google Scholar 

  92. Zheng Y F. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chem Geol, 328: 5–48

    Article  Google Scholar 

  93. Zheng Y F, Chen R X. 2017. Regional metamorphism at extreme conditions: Implications for orogeny at convergent plate margins. J Asian Earth Sci, 145: 46–73

    Article  Google Scholar 

  94. Zheng Y F, Chen Y X. 2016. Continental versus oceanic subduction zones. Natl Sci Rev, 3: 495–519

    Google Scholar 

  95. Zheng Y, Mao J, Chen Y, Sun W, Ni P, Yang X. 2019. Hydrothermal ore deposits in collisional orogens. Sci Bull, 64: 205–212

    Article  Google Scholar 

  96. Zheng Y, Wu F. 2018. The timing of continental collision between India and Asia. Sci Bull, 63: 1649–1654

    Article  Google Scholar 

  97. Zheng Y F, Zhao Z F. 2017. Introduction to the structures and processes of subduction zones. J Asian Earth Sci, 145: 1–15

    Article  Google Scholar 

  98. Zhu D C, Wang Q, Cawood P A, Zhao Z D, Mo X X. 2017. Raising the Gangdese Mountains in southern Tibet. J Geophys Res-Solid Earth, 122: 214–223

    Article  Google Scholar 

  99. Zhu D C, Zhao Z D, Niu Y, Mo X X, Chung S L, Hou Z Q, Wang L Q, Wu F Y. 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth Planet Sci Lett, 301: 241–255

    Article  Google Scholar 

Download references

Acknowledgements

We thank Ting Yang for the help on constructing dynamic topography and Anna Kelbert for providing the data for global electromagnetic induction. We appreciate fruitful discussions with participants in the “2018 Tethyan dynamics” workshop in Beijing. We thank Douwe van Hinsbergen and Zhonghai Li for critical comments and editors Lijun Liu and Yongfei Zheng for constructive suggestions, which improve our manuscript. We finally thank the inspiring talks with many colleagues over the years in Coffice 442 in IGGCAS. This study was supported by the National Natural Science Foundation of China (Grant Nos. 91855207, 41888101) and the Programs of the Chinese Academy of Sciences (Grant Nos. 2013047, GJHZ1776).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bo Wan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wan, B., Wu, F., Chen, L. et al. Cyclical one-way continental rupture-drift in the Tethyan evolution: Subduction-driven plate tectonics. Sci. China Earth Sci. 62, 2005–2016 (2019). https://doi.org/10.1007/s11430-019-9393-4

Download citation

Keywords

  • Tethyan geodynamics
  • Oceanic slab
  • Subduction initiation
  • Continental collision
  • Continental rift