Cyclical one-way continental rupture-drift in the Tethyan evolution: Subduction-driven plate tectonics

  • Bo WanEmail author
  • Fuyuan Wu
  • Ling Chen
  • Liang Zhao
  • Xiaofeng Liang
  • Wenjiao Xiao
  • Rixiang Zhu


Numerous continents have rifted and drifted away from Gondwana to repeatedly open ocean basins over the past ∼500 million years. These Gondwana-derived continents drifted towards and collided with components of the Eurasian continent to successively close the preexisting oceans between the two. Plate tectonics satisfactorily describes the continental drift from Gondwana to Eurasia but does not define the geodynamic mechanism of continuously rifting to collisions of continents in the Tethyan Realm. After reappraisal of geological records of the rift, collision and subduction initiation from the surface and various geophysical observations from depth, we propose that Eurasia-directed subducting oceanic slabs would have driven Tethyan system in the Phanerozoic. The Eurasia-directed subduction would have dragged the passive Gondwana margin to rift and drift northwards, giving birth to new oceans since the Paleozoic. The closure of preexisting oceans between the Gondwana-derived continents and Eurasia led to continental collisions, which would have induced the initiation of oceanic subduction in the Tethyan Realm. Multiple episodic switches between collision-subduction-rift repeatedly led to the separation of continental fragments from Gondwana and dragged them to drift towards Eurasia. The final disappearance of Neo-Tethys would have induced collision of the Gondwana-derived continents with the Eurasian continent, giving rise to the Cenozoic Alpine-Zagros-Himalayan collisional system. Therefore, the Eurasia-directed oceanic subduction would have acted as a ‘one-way train’ that successively transferred the ruptured Gondwana continental fragments in the south, into the terminal in the north. In this regard, the engine of this “Tethyan one-way train” is the negative buoyancy of subducting oceanic slabs.


Tethyan geodynamics Oceanic slab Subduction initiation Continental collision Continental rift 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Ting Yang for the help on constructing dynamic topography and Anna Kelbert for providing the data for global electromagnetic induction. We appreciate fruitful discussions with participants in the “2018 Tethyan dynamics” workshop in Beijing. We thank Douwe van Hinsbergen and Zhonghai Li for critical comments and editors Lijun Liu and Yongfei Zheng for constructive suggestions, which improve our manuscript. We finally thank the inspiring talks with many colleagues over the years in Coffice 442 in IGGCAS. This study was supported by the National Natural Science Foundation of China (Grant Nos. 91855207, 41888101) and the Programs of the Chinese Academy of Sciences (Grant Nos. 2013047, GJHZ1776).


  1. Advokaat E L, Bongers M L M, Rudyawan A, BouDagher-Fadel M K, Langereis C G, van Hinsbergen D J J. 2018. Early Cretaceous origin of the Woyla Arc (Sumatra, Indonesia) on the Australian plate. Earth Planet Sci Lett, 498: 348–361CrossRefGoogle Scholar
  2. Barley M E, Pickard A L, Zaw K, Rak P, Doyle M G. 2003. Jurassic to Miocene magmatism and metamorphism in the Mogok metamorphic belt and the India-Eurasia collision in Myanmar. Tectonics, 22: 1019CrossRefGoogle Scholar
  3. Becker T W, Faccenna C. 2011. Mantle conveyor beneath the Tethyan collisional belt. Earth Planet Sci Lett, 310: 453–461CrossRefGoogle Scholar
  4. Brown D, Ryan P D. 2011. Arc-Continent Collision. Heidelberg: Springer. 493CrossRefGoogle Scholar
  5. Buiter S J H, Torsvik T H. 2014. A review of Wilson Cycle plate margins: A role for mantle plumes in continental break-up along sutures? Gondwana Res, 26: 627–653CrossRefGoogle Scholar
  6. Burg J P. 2018. Geology of the onshore Makran accretionary wedge: Synthesis and tectonic interpretation. Earth-Sci Rev, 185: 1210–1231CrossRefGoogle Scholar
  7. Capitanio F A, Morra G, Goes S, Weinberg R F, Moresi L. 2010. India-Asia convergence driven by the subduction of the Greater Indian continent. Nat Geosci, 3: 136–139CrossRefGoogle Scholar
  8. Chen Y W, Wu J, Suppe J. 2019. Southward propagation of Nazca subduction along the Andes. Nature, 565: 441–447CrossRefGoogle Scholar
  9. Chiu H Y, Chung S L, Zarrinkoub M H, Mohammadi S S, Khatib M M, Iizuka Y. 2013. Zircon U-Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos, 162-163: 70–87CrossRefGoogle Scholar
  10. Conrad C P, Lithgow-Bertelloni C. 2002. How mantle slabs drive plate tectonics. Science, 298: 207–209CrossRefGoogle Scholar
  11. Copley A, Avouac J P, Royer J Y. 2010. India-Asia collision and the Cenozoic slowdown of the Indian plate: Implications for the forces driving plate motions. J Geophys Res, 115: B03410CrossRefGoogle Scholar
  12. Courtillot V, Jaupart C, Manighetti I, Tapponnier P, Besse J. 1999. On causal links between flood basalts and continental breakup. Earth Planet Sci Lett, 166: 177–195CrossRefGoogle Scholar
  13. Dewey J F, Burke K. 1974. Hot spots and continental break-up: Implications for collisional orogeny. Geology, 2: 57–60CrossRefGoogle Scholar
  14. Dong Y, He D, Sun S, Liu X, Zhou X, Zhang F, Yang Z, Cheng B, Zhao G, Li J. 2018. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System. Earth-Sci Rev, 186: 231–261CrossRefGoogle Scholar
  15. Faccenna C, Becker T W, Auer L, Billi A, Boschi L, Brun J P, Capitanio F A, Funiciello F, Horvàth F, Jolivet L, Piromallo C, Royden L, Rossetti F, Serpelloni E. 2014. Mantle dynamics in the Mediterranean. Rev Geophys, 52: 283–332CrossRefGoogle Scholar
  16. Fan J J, Li C, Xie C M, Liu Y M. 2016. Depositional environment and provenance of the upper Permian-Lower Triassic Tianquanshan Formation, northern Tibet: Implications for the Palaeozoic evolution of the Southern Qiangtang, Lhasa, and Himalayan terranes in the Tibetan Plateau. Int Geol Rev, 58: 228–245CrossRefGoogle Scholar
  17. Forsyth D, Uyedaf S. 1975. On the relative importance of the driving forces of plate motion. Geophys J Int, 43: 163–200CrossRefGoogle Scholar
  18. French S W, Romanowicz B A. 2014. Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography. Geophys J Int, 199: 1303–1327CrossRefGoogle Scholar
  19. French S W, Romanowicz B. 2015. Broad plumes rooted at the base of the Earth's mantle beneath major hotspots. Nature, 525: 95–99CrossRefGoogle Scholar
  20. Furman T, Bryce J, Rooney T, Hanan B, Yirgu G, Ayalew D. 2006. Heads and tails: 30 million years of the Afar plume. Geol Soc London Spec Publ, 259: 95–119CrossRefGoogle Scholar
  21. Gerya T V, Stern R J, Baes M, Sobolev S V, Whattam S A. 2015. Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature, 527: 221–225CrossRefGoogle Scholar
  22. Glišović P, Forte A M. 2017. On the deep-mantle origin of the Deccan Traps. Science, 355: 613–616CrossRefGoogle Scholar
  23. Guillot S, Hattori K, Agard P, Schwartz S, Vidal O. 2009. Exhumation processes in oceanic and continental subduction contexts: A review. In: Lallemand S, Funiciello F, eds. Subduction Zone Geodynamics. Berlin Heidelberg: Springer. 175–205CrossRefGoogle Scholar
  24. Gutiérrez-Alonso G, Fernández-Suárez J, Weil A B, Brendan Murphy J, Damian Nance R, Corfú F, Johnston S T. 2008. Self-subduction of the Pangaean global plate. Nat Geosci, 1: 549–553CrossRefGoogle Scholar
  25. Hall R. 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. J Asian Earth Sci, 20: 353–431CrossRefGoogle Scholar
  26. Hall R. 2017. Southeast Asia: New views of the geology of the Malay archipelago. Annu Rev Earth Planet Sci, 45: 331–358CrossRefGoogle Scholar
  27. Hatzfeld D, Molnar P. 2010. Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications. Rev Geophys, 48: RG2005CrossRefGoogle Scholar
  28. Hoggard M J, White N, Al-Attar D. 2016. Global dynamic topography observations reveal limited influence of large-scale mantle flow. Nat Geosci, 9: 456–463CrossRefGoogle Scholar
  29. Hu X, Garzanti E, Wang J, Huang W, An W, Webb A. 2016. The timing of India-Asia collision onset—Facts, theories, controversies. Earth-Sci Rev, 160: 264–299CrossRefGoogle Scholar
  30. Isozaki Y, Aoki K, Nakama T, Yanai S. 2010. New insight into a subduction-related orogen: A reappraisal of the geotectonic framework and evolution of the Japanese Islands. Gondwana Res, 18: 82–105CrossRefGoogle Scholar
  31. Ji W Q, Wu F Y, Chung S L, Li J X, Liu C Z. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem Geol, 262: 229–245CrossRefGoogle Scholar
  32. Jolivet L, Faccenna C, Agard P, Frizon de Lamotte D, Menant A, Sternai P, Guillocheau F, Polat A. 2016. Neo-Tethys geodynamics and mantle convection: From extension to compression in Africa and a conceptual model for obduction. Can J Earth Sci, 53: 1190–1204CrossRefGoogle Scholar
  33. Kelbert A, Schultz A, Egbert G. 2009. Global electromagnetic induction constraints on transition-zone water content variations. Nature, 460: 1003–1006CrossRefGoogle Scholar
  34. Kent D V, Muttoni G. 2008. Equatorial convergence of India and early Cenozoic climate trends. Proc Natl Acad Sci USA, 105: 16065–16070CrossRefGoogle Scholar
  35. Khaksar K, Rezvannia F, Kebriaei-Zadeh M R. 2014. Stratigraphy of Vali-Abad section (Central Alborz North Iran) based on corals. J Geosci Geomat, 2: 120–124Google Scholar
  36. Knesel K M, Cohen B E, Vasconcelos P M, Thiede D S. 2008. Rapid change in drift of the Australian plate records collision with Ontong Java plateau. Nature, 454: 754–757CrossRefGoogle Scholar
  37. Lapierre H. 2004. The Tethyan plume: Geochemical diversity of Middle Permian basalts from the Oman rifted margin. Lithos, 74: 167–198CrossRefGoogle Scholar
  38. Li C, Zhai Q, Dong Y, Huang X. 2006. Discovery of eclogite and its geological significance in Qiangtang area, central Tibet. Chin Sci Bull, 51: 1095–1100CrossRefGoogle Scholar
  39. Li S, Jagoutz E, Chen Y, Li Q. 2000. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China. Geochim Cosmochim Acta, 64: 1077–1093CrossRefGoogle Scholar
  40. Li Z X, Bogdanova S V, Collins A S, Davidson A, De Waele B, Ernst R E, Fitzsimons I C W, Fuck R A, Gladkochub D P, Jacobs J, Karlstrom K E, Lu S, Natapov L M, Pease V, Pisarevsky S A, Thrane K, Vernikovsky V. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Res, 160: 179–210CrossRefGoogle Scholar
  41. Li Z X, Mitchell R N, Spencer C J, Ernst R, Pisarevsky S, Kirscher U, Murphy J B. 2019. Decoding Earth’s rhythms: Modulation of supercontinent cycles by longer superocean episodes. Precambrian Res, 323: 1–5CrossRefGoogle Scholar
  42. Liao S Y, Wang D B, Tang Y, Yin F G, Cao S N, Wang L Q, Wang B D, Sun Z M. 2015. Late Paleozoic Woniusi basaltic province from Sibumasu terrane: Implications for the breakup of eastern Gondwana’s northern margin. Geol Soc Am Bull, 127: 1313–1330CrossRefGoogle Scholar
  43. Liu C Z, Chung S L, Wu F Y, Zhang C, Xu Y, Wang J G, Chen Y, Guo S. 2016. Tethyan suturing in Southeast Asia: Zircon U-Pb and Hf-O isotopic constraints from Myanmar ophiolites. Geology, 44: 311–314CrossRefGoogle Scholar
  44. Liu L, Spasojevic S, Gurnis M. 2008. Reconstructing farallon plate subduction beneath North America back to the Late Cretaceous. Science, 322: 934–938CrossRefGoogle Scholar
  45. Macdonald F A, Swanson-Hysell N L, Park Y, Lisiecki L, Jagoutz O. 2019. Arc-continent collisions in the tropics set Earth’s climate state. Science, 364: 181–184Google Scholar
  46. McKenzie D P, Parker R L. 1967. The North Pacific: An example of tectonics on a sphere. Nature, 216: 1276–1280CrossRefGoogle Scholar
  47. Metcalfe I. 2011. Palaeozoic-Mesozoic history of SE Asia. Geol Soc London Spec Publ, 355: 7–35CrossRefGoogle Scholar
  48. Metcalfe I. 2017. Tectonic evolution of Sundaland. Bull Geol Soc Malaysia, 63: 27–60CrossRefGoogle Scholar
  49. Morgan W J. 1968. Rises, trenches, great faults, and crustal blocks. J Geophys Res, 73: 1959–1982CrossRefGoogle Scholar
  50. Müller R D, Sdrolias M, Gaina C, Roest W R. 2008. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem Geophys Geosyst, 9: Q04006CrossRefGoogle Scholar
  51. Replumaz A, Kárason H, van der Hilst R D, Besse J, Tapponnier P. 2004. 4-D evolution of SE Asia’s mantle from geological reconstructions and seismic tomography. Earth Planet Sci Lett, 221: 103–115CrossRefGoogle Scholar
  52. Robertson A H F. 2012. Late Palaeozoic-Cenozoic tectonic development of Greece and Albania in the context of alternative reconstructions of Tethys in the Eastern Mediterranean region. Int Geol Rev, 54: 373–454CrossRefGoogle Scholar
  53. Rossetti F, Monié P, Nasrabady M, Theye T, Lucci F, Saadat M. 2017. Early Carboniferous subduction-zone metamorphism preserved within the Palaeo-Tethyan Rasht ophiolites (western Alborz, Iran). J Geol Soc, 174: 741–758CrossRefGoogle Scholar
  54. Royden L, Faccenna C. 2018. Subduction orogeny and the Late Cenozoic evolution of the Mediterranean Arcs. Annu Rev Earth Planet Sci, 46: 261–289CrossRefGoogle Scholar
  55. Scotese C. 2014. Atlas of Plate Tectonic Reconstructions (Mollweide Projection). PALEOMAP Project Paleo Atlas for Arc GIS, Volumes 1–6, Evanston, IllinoisGoogle Scholar
  56. Searle M P, Noble S R, Cottle J M, Waters D J, Mitchell A H G, Hlaing T, Horstwood M S A. 2007. Tectonic evolution of the Mogok meta-morphic belt, Burma (Myanmar) constrained by U-Th-Pb dating of metamorphic and magmatic rocks. Tectonics, 26: TC3014Google Scholar
  57. Şengor A M C. 1990. Plate tectonics and orogenic research after 25 years: A Tethyan perspective. Earth Sci Rev, 27: 1-201CrossRefGoogle Scholar
  58. Shellnutt J G, Bhat G M, Brookfield M E, Jahn B M. 2011. No link between the Panjal Traps (Kashmir) and the Late Permian mass extinctions. Geophys Res Lett, 38: L19308CrossRefGoogle Scholar
  59. Spakman W, Chertova M V, van den Berg A, van Hinsbergen D J J. 2018. Puzzling features of western Mediterranean tectonics explained by slab dragging. Nat Geosci, 11: 211–216CrossRefGoogle Scholar
  60. Stampfli G M, Borel G D. 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet Sci Lett, 196: 17–33CrossRefGoogle Scholar
  61. Stampfli G M, Hochard C, Vérard C, Wilhem C, vonRaumer J. 2013. The formation of Pangea. Tectonophysics, 593: 1–19CrossRefGoogle Scholar
  62. Stern R J. 2002. Subduction zones. Rev Geophys, 40: 1012CrossRefGoogle Scholar
  63. Stern R. 2004. Subduction initiation: Spontaneous and induced. Earth Planet Sci Lett, 226: 275–292CrossRefGoogle Scholar
  64. Storey B C. 1995. The role of mantle plumes in continental breakup: Case histories from Gondwanaland. Nature, 377: 301–308CrossRefGoogle Scholar
  65. Storey M, Mahoney J J, Saunders A D, Duncan R A, Kelley S P, Coffin M F. 1995. Timing of hot spot—related volcanism and the breakup of Madagascar and India. Science, 267: 852–855CrossRefGoogle Scholar
  66. Sun W, Liu L, Hu Y, Ding W, Liu J, Ling M, Ding X, Zhang Z, Sun X, Li C, Li H, Fan W. 2018. Post-ridge-subduction acceleration of the Indian plate induced by slab rollback. Solid Earth Sci, 3: 1–7CrossRefGoogle Scholar
  67. Torsvik T H, Amundsen H, Hartz E H, Corfu F, Kusznir N, Gaina C, Doubrovine P V, Steinberger B, Ashwal L D, Jamtveit B. 2013. A Precambrian microcontinent in the Indian Ocean. Nat Geosci, 6: 223–227CrossRefGoogle Scholar
  68. Torsvik T H, Burke K, Steinberger B, Webb S J, Ashwal L D. 2010. Diamonds sampled by plumes from the core-mantle boundary. Nature, 466: 352–355CrossRefGoogle Scholar
  69. Torsvik T H, Cocks L R M. 2017. Earth History and Palaeogeography. Cambridge: Cambridge University Press. 317CrossRefGoogle Scholar
  70. Torsvik T H, Müller R D, Van der Voo R, Steinberger B, Gaina C. 2008. Global plate motion frames: Toward a unified model. Rev Geophys, 46: RG3004CrossRefGoogle Scholar
  71. Torsvik T H, van der Voo R, Doubrovine P V, Burke K, Steinberger B, Ashwal L D, Trønnes R G, Webb S J, Bull A L. 2014. Deep mantle structure as a reference frame for movements in and on the Earth. Proc Natl Acad Sci USA, 111: 8735–8740CrossRefGoogle Scholar
  72. Touret J L R, Huizenga J M. 2012. Fluid-assisted granulite metamorphism: A continental journey. Gondwana Res, 21: 224–235CrossRefGoogle Scholar
  73. Vaes B, van Hinsbergen D J J, Boschman L M. 2019. Reconstruction of subduction and back-arc spreading in the NW Pacific and Aleutian Basin: Clues to causes of Cretaceous and Eocene plate reorganizations. Tectonics, 38: 1367–1413CrossRefGoogle Scholar
  74. van der Meer D G, van Hinsbergen D J J, Spakman W. 2018. Atlas of the underworld: Slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity. Tectonophysics, 723: 309–448CrossRefGoogle Scholar
  75. van Hinsbergen D J J, Hafkenscheid E, Spakman W, Meulenkamp J E, Wortel R. 2005. Nappe stacking resulting from subduction of oceanic and continental lithosphere below Greece. Geology, 33: 325–328CrossRefGoogle Scholar
  76. Hinsbergen D J J, Steinberger B, Doubrovine P V, Gassmöller R. 2011. Acceleration and deceleration of India-Asia convergence since the Cretaceous: Roles of mantle plumes and continental collision. J Geophys Res, 116: B06101Google Scholar
  77. Wan B, Xiao W, Windley B F, Yuan C. 2013. Permian hornblende gabbros in the Chinese Altai from a subduction-related hydrous parent magma, not from the Tarim mantle plume. Lithosphere, 5: 290–299CrossRefGoogle Scholar
  78. White R, McKenzie D. 1989. Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. J Geophys Res, 94: 7685–7729CrossRefGoogle Scholar
  79. Wilson J T. 1966. Did the Atlantic close and then re-open? Nature, 211: 676–681CrossRefGoogle Scholar
  80. Xiao W J, Windley B F, Chen H L, Zhang G C, Li J L. 2002. Carboniferous-Triassic subduction and accretion in the western Kunlun, China: Implications for the collisional and accretionary tectonics of the northern Tibetan Plateau. Geology, 30: 295–298CrossRefGoogle Scholar
  81. Xu Z, Zheng Y F. 2017. Continental basalts record the crust-mantle interaction in oceanic subduction channel: A geochemical case study from eastern China. J Asian Earth Sci, 145: 233–259CrossRefGoogle Scholar
  82. Yin A. 2010. Cenozoic tectonic evolution of Asia: A preliminary synthesis. Tectonophysics, 488: 293–325CrossRefGoogle Scholar
  83. Yin A, Harrison T M. 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annu Rev Earth Planet Sci, 28: 211–280CrossRefGoogle Scholar
  84. Yoshida M. 2016. Formation of a future supercontinent through plate motion-driven flow coupled with mantle downwelling flow. Geology, 44: 755–758CrossRefGoogle Scholar
  85. Zahirovic S, Seton M, Müller R D. 2014. The Cretaceous and Cenozoic tectonic evolution of Southeast Asia. Solid Earth, 5: 227–273CrossRefGoogle Scholar
  86. Zanchi A, Zanchetta S, Balini M, Ghassemi M R. 2016. Oblique convergence during the Cimmerian collision: Evidence from the Triassic Aghdarband Basin, NE Iran. Gondwana Res, 38: 149–170CrossRefGoogle Scholar
  87. Zhai Q, Jahn B, Su L, Ernst R E, Wang K, Zhang R, Wang J, Tang S. 2013. SHRIMP zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopic compositions of a mafic dyke swarm in the Qiangtang terrane, northern Tibet and geodynamic implications. Lithos, 174: 28–43CrossRefGoogle Scholar
  88. Zhang N, Dang Z, Huang C, Li Z X. 2018. The dominant driving force for supercontinent breakup: Plume push or subduction retreat? Geosci Front, 9: 997–1007CrossRefGoogle Scholar
  89. Zhang R Y, Lo C H, Chung S L, Grove M, Omori S, Iizuka Y, Liou J G, Tri T V. 2013. Origin and tectonic implication of ophiolite and eclogite in the Song Ma Suture Zone between the South China and Indochina blocks. J Metamorph Geol, 31: 49–62CrossRefGoogle Scholar
  90. Zhang Z, Zhao G, Santosh M, Wang J, Dong X, Shen K. 2010. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet: Evidence for Neo-Tethyan mid-ocean ridge subduction? Gondwana Res, 17: 615–631CrossRefGoogle Scholar
  91. Zheng Y, Xu Z, Zhao Z, Dai L. 2018. Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere. Sci China Earth Sci, 61: 353–385CrossRefGoogle Scholar
  92. Zheng Y F. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chem Geol, 328: 5–48CrossRefGoogle Scholar
  93. Zheng Y F, Chen R X. 2017. Regional metamorphism at extreme conditions: Implications for orogeny at convergent plate margins. J Asian Earth Sci, 145: 46–73CrossRefGoogle Scholar
  94. Zheng Y F, Chen Y X. 2016. Continental versus oceanic subduction zones. Natl Sci Rev, 3: 495–519Google Scholar
  95. Zheng Y, Mao J, Chen Y, Sun W, Ni P, Yang X. 2019. Hydrothermal ore deposits in collisional orogens. Sci Bull, 64: 205–212CrossRefGoogle Scholar
  96. Zheng Y, Wu F. 2018. The timing of continental collision between India and Asia. Sci Bull, 63: 1649–1654CrossRefGoogle Scholar
  97. Zheng Y F, Zhao Z F. 2017. Introduction to the structures and processes of subduction zones. J Asian Earth Sci, 145: 1–15CrossRefGoogle Scholar
  98. Zhu D C, Wang Q, Cawood P A, Zhao Z D, Mo X X. 2017. Raising the Gangdese Mountains in southern Tibet. J Geophys Res-Solid Earth, 122: 214–223CrossRefGoogle Scholar
  99. Zhu D C, Zhao Z D, Niu Y, Mo X X, Chung S L, Hou Z Q, Wang L Q, Wu F Y. 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth Planet Sci Lett, 301: 241–255CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Bo Wan
    • 1
    Email author
  • Fuyuan Wu
    • 1
  • Ling Chen
    • 1
  • Liang Zhao
    • 1
  • Xiaofeng Liang
    • 1
  • Wenjiao Xiao
    • 1
  • Rixiang Zhu
    • 1
  1. 1.State Key Laboratory of Lithospheric Evolution, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina

Personalised recommendations