Skip to main content
Log in

Antagonism between coral pathogen Vibrio coralliilyticus and other bacteria in the gastric cavity of scleractinian coral Galaxea fascicularis

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Scleractinian corals host numerous microbial symbionts with different types of interactions. The gastric cavity of scleractinian coral, as a semiclosed subenvironment with distinct chemical characteristics (e.g., dissolved O2, pH, alkalinity, and nutrients), harbors a distinct microbial community and a diverse array of bacteria that can be pathogenic or beneficial. Galaxea fascicularis is one of the dominant massive scleractinian coral species on inshore fringing reefs in the northern South China Sea. Although the abundance of coral-associated bacteria has been investigated in G. fascicularis, less is known about the microorganisms in the gastric cavity. In this study, we specially isolated cultivable bacterial strains from the gastric cavity of G. fascicularis collected from Hainan Island using a noninvasive sampling approach. Among the 101 representative bacterial strains, one Vibrio coralliilyticus strain, SCSIO 43001, was found to be a temperature-dependent opportunistic pathogen of G. fascicularis. The antagonistic activity between the 100 strains and V. coralliilyticus SCSIO 43001 was tested using a modified Burkholder diffusion assay. Our results showed that V. coralliilyticus SCSIO 43001 inhibits the growth of Erythrobacterflavus and Sphingomonas yabuuchiae. Additionally, we found that three Pseudoalteromonas strains showed moderate to high anti-bacterial activity against V. coralliilyticus SCSIO 43001 and several other coral-associated Gram-negative bacterial strains. These results suggest that competition between the coral pathogen and other bacteria also occurs in the gastric cavity of coral, and Pseudoalteromonas strains in the gastric cavity of G. fascicularis may provide a protective role in the defense against co-inhabiting coral pathogens at elevated temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agostini S, Suzuki Y, Higuchi T, Casareto B E, Yoshinaga K, Nakano Y, Fujimura H. 2012. Biological and chemical characteristics of the coral gastric cavity. Coral Reefs, 31: 147–156

    Google Scholar 

  • Basler M, Ho B T, Mekalanos J J. 2013. Tit-for-tat: Type VI secretion system counterattack during bacterial cell-cell interactions. Cell, 152: 884–894

    Google Scholar 

  • Bosch T C G. 2013. Cnidarian-microbe interactions and the origin of innate immunity in metazoans. Annu Rev Microbiol, 67: 499–518

    Google Scholar 

  • Bosch T C G, McFall-Ngai M J. 2011. Metaorganisms as the new frontier. Zoology, 114: 185–190

    Google Scholar 

  • Bowman J P. 2007. Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Mar Drugs, 5: 220–241

    Google Scholar 

  • Burkholder P R, Pfister R M, Leitz F H. 1966. Production of a pyrrole antibiotic by a marine bacterium. Appl Microbiol, 14: 649–653

    Google Scholar 

  • Cai L, Tian R M, Zhou G, Tong H, Wong Y H, Zhang W, Chui A P Y, Xie J Y, Qiu J W, Ang P O, Liu S, Huang H, Qian P Y. 2018. Exploring coral microbiome assemblages in the South China Sea. Sci Rep, 8: 2428

    Google Scholar 

  • Chao L, Levin B R. 1981. Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc Natl Acad Sci USA, 78: 6324–6328

    Google Scholar 

  • Chen D D, Wang D R, Zhu J T, Li Y C, Wu X X, Wang Y. 2013. Identification and characterization of microsatellite markers for scleractinian coral Galaxea fascicularis and its symbiotic zooxanthellae. Conservation Genet Resour, 5: 741–743

    Google Scholar 

  • Chimetto Tonon L A, Thompson J R, Moreira A P B, Garcia G D, Penn K, Lim R, Berlinck R G S, Thompson C C, Thompson F L. 2017. Quantitative detection of active vibrios associated with white plague disease in Mussismilia braziliensis corals. Front Microbiol, 8: 2272

    Google Scholar 

  • Cornforth D M, Foster K R. 2015. Antibiotics and the art of bacterial war. Proc Natl Acad Sci USA, 112: 10827–10828

    Google Scholar 

  • Feher D, Barlow R, McAtee J, Hemscheidt T K. 2010. Highly brominated antimicrobial metabolites from a marine Pseudoalteromonas sp.. J Nat Prod, 73: 1963–1966

    Google Scholar 

  • García-Bayona L, Comstock L E. 2018. Bacterial antagonism in host-associated microbial communities. Science, 361: eaat2456

    Google Scholar 

  • Garren M, Son K, Tout J, Seymour J R, Stocker R. 2016. Temperature-induced behavioral switches in a bacterial coral pathogen. ISME J, 10: 1363–1372

    Google Scholar 

  • Gavish A R, Shapiro O H, Kramarsky-Winter E, Vardi A. 2018. Microscale tracking of coral disease reveals timeline of infection and heterogeneity of polyp fate. bioRxiv, 302778

  • Gong S Q, Chai G J, Xiao Y L, Xu L J, Yu K F, Li J L, Liu F, Cheng H, Zhang F L, Liao B L, Li Z Y. 2018. Flexible symbiotic associations of Symbiodinium with five typical coral species in tropical and subtropical reef regions of the northern South China Sea. Front Microbiol, 9: 2485

    Google Scholar 

  • Herndl G J, Velimirov B. 1985. Bacteria in the coelenteron of Anthozoa: Control of coelenteric bacterial density by the coelenteric fluid. J Exp Mar Biol Ecol, 93: 115–130

    Google Scholar 

  • Hibbing M E, Fuqua C, Parsek M R, Peterson S B. 2010. Bacterial competition: Surviving and thriving in the microbial jungle. Nat Rev Microbiol, 8: 15–25

    Google Scholar 

  • Jones C G, Lawton J H, Shachak M. 1994. Organisms as ecosystem engineers. Oikos, 69: 373–386

    Google Scholar 

  • Kalinovskaya N I, Ivanova E P, Alexeeva Y V, Gorshkova N M, Kuznetsova T A, Dmitrenok A S, Nicolau D V. 2004. Low-molecular-weight, biologically active compounds from marine Pseudoalteromonas species. Curr Microbiol, 48: 441–446

    Google Scholar 

  • Kim B R. 2006. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser, 322: 1–14

    Google Scholar 

  • Kim O S, Cho Y J, Lee K, Yoon S H, Kim M, Na H, Park S C, Jeon Y S, Lee J H, Yi H, Won S, Chun J. 2012. Introducing EzTaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evolary Microbiol, 62: 716–721

    Google Scholar 

  • Krediet C J, Ritchie K B, Alagely A, Teplitski M. 2013. Members of native coral microbiota inhibit glycosidases and thwart colonization of coral mucus by an opportunistic pathogen. ISME J, 7: 980–990

    Google Scholar 

  • Krediet C J, Ritchie K B, Cohen M, Lipp E K, Sutherland K P, Teplitski M. 2009. Utilization of mucus from the coral Acropora palmata by the pathogen Serratia marcescens and by environmental and coral commensal bacteria. Appl Environ Microbiol, 75: 3851–3858

    Google Scholar 

  • Ley R E, Lozupone C A, Hamady M, Knight R, Gordon J I. 2008. Worlds within worlds: Evolution of the vertebrate gut microbiota. Nat Rev Microbiol, 6: 776–788

    Google Scholar 

  • Li J, Chen Q, Zhang S, Huang H, Yang J, Tian X P, Long L J, Schuch R. 2013. Highly heterogeneous bacterial communities associated with the South China Sea reef corals Porites lutea, Galaxea fascicularis and Acropora millepora. PLoS ONE, 8: e71301

    Google Scholar 

  • Liang J Y, Yu K F, Wang Y H, Huang X Y, Huang W, Qin Z J, Pan Z L, Yao Q C, Wang W J, Wu Z C. 2017. Distinct bacterial communities associated with massive and branching scleractinian corals and potential linkages to coral susceptibility to thermal or cold stress. Front Microbiol, 8: 979

    Google Scholar 

  • Littman R A, Bourne D G, Willis B L. 2010. Responses of coral-associated bacterial communities to heat stress differ with Symbiodinium type on the same coral host. Mol Ecol, 19: 1978–1990

    Google Scholar 

  • Liu G Y, Nizet V. 2009. Color me bad: Microbial pigments as virulence factors. Trends Microbiol, 17: 406–413

    Google Scholar 

  • McFall-Ngai M, Hadfield M G, Bosch T C G, Carey H V, Domazet-Lošo T, Douglas A E, Dubilier N, Eberl G, Fukami T, Gilbert S F, Hentschel U, King N, Kjelleberg S, Knoll A H, Kremer N, Mazmanian S K, Metcalf J L, Nealson K, Pierce N E, Rawls J F, Reid A, Ruby E G, Rumpho M, Sanders J G, Tautz D, Wernegreen J J. 2013. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA, 110: 3229–3236

    Google Scholar 

  • Mitova M, Tommonaro G, Hentschel U, Müller W E G, De Rosa S. 2004. Exocellular cyclic dipeptides from a Ruegeria strain associated with cell cultures of Suberites domuncula. Mar Biotech, 6: 95–103

    Google Scholar 

  • Miura N, Motone K, Takagi T, Aburaya S, Watanabe S, Aoki W, Ueda M. 2019. Ruegeria sp. strains isolated from the reef-building coral Galaxea fascicularis inhibit growth of the temperature-dependent pathogen Vibrio coralliilyticus. Mar Biotechnol, 21: 1–8

    Google Scholar 

  • Pantos O, Bongaerts P, Dennis P G, Tyson G W, Hoegh-Guldberg O. 2015. Habitat-specific environmental conditions primarily control the microbiomes of the coral Seriatopora hystrix. ISME J, 9: 1916–1927

    Google Scholar 

  • Peixoto R S, Rosado P M, Leite DCA, Rosado A S, Bourne D G. 2017. Beneficial microorganisms for corals (BMC): Proposed mechanisms for coral health and resilience. Front Microbiol, 8: 341

    Google Scholar 

  • Rivers A R, Burns A S, Chan L K, Moran M A. 2016. Experimental identification of small non-coding RNAs in the model marine bacterium Ruegeria pomeroyi DSS-3. Front Microbiol, 7: 380

    Google Scholar 

  • Rosado P M, Leite D C A, Duarte G A S, Chaloub R M, Jospin G, Nunes da Rocha U P, Saraiva J, Dini-Andreote F, Eisen J A, Bourne D G, Peixoto R S. 2018. Marine probiotics: Increasing coral resistance to bleaching through microbiome manipulation. ISME J, 13: 921–936

    Google Scholar 

  • Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. 2007. The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol, 5: 355–362

    Google Scholar 

  • Rubio-Portillo E, Santos F, Martínez-García M, de Los Ríos A, Ascaso C, Souza-Egipsy V, Ramos-Esplá A A, Anton J. 2016. Structure and temporal dynamics of the bacterial communities associated to microhabitats of the coral Oculina patagonica. Environ Microbiol, 18: 4564–4578

    Google Scholar 

  • Rypien K L, Ward J R, Azam F. 2010. Antagonistic interactions among coral-associated bacteria. Environ Microbiol, 12: 28–39

    Google Scholar 

  • Sachs J L, Skophammer R G, Regus J U. 2011. Evolutionary transitions in bacterial symbiosis. Proc Natl Acad Sci USA, 108: 10800–10807

    Google Scholar 

  • Sharon G, Rosenberg E. 2008. Bacterial growth on coral mucus. Curr Microbiol, 56: 481–488

    Google Scholar 

  • Shnit-Orland M, Kushmaro A. 2009. Coral mucus-associated bacteria: A possible first line of defense. FEMS Microbiol Ecol, 67: 371–380

    Google Scholar 

  • Shnit-Orland M, Sivan A, Kushmaro A. 2012. Antibacterial activity of Pseudoalteromonas in the coral holobiont. Microb Ecol, 64: 851–859

    Google Scholar 

  • Soliev A B, Hosokawa K, Enomoto K. 2011. Bioactive pigments from marine bacteria: Applications and physiological roles. Evid-based Compl Alt Med, 2011: 1–17

    Google Scholar 

  • Sonnenschein E C, Nielsen K F, D’Alvise P, Porsby C H, Melchiorsen J, Heilmann J, Kalatzis P G, López-Pérez M, Bunk B, Spröer C, Middelboe M, Gram L. 2017. Global occurrence and heterogeneity of the Roseobacter-clade species Ruegeria mobilis. ISME J, 11: 569–583

    Google Scholar 

  • Speare L, Cecere A G, Guckes K R, Smith S, Wollenberg M S, Mandel M J, Miyashiro T, Septer A N. 2018. Bacterial symbionts use a type VI secretion system to eliminate competitors in their natural host. Proc Natl Acad Sci USA, 115: E8528–E8537

    Google Scholar 

  • Stubbendieck R M, Straight P D. 2016. Multifaceted interfaces of bacterial competition. J Bacteriol, 198: 2145–2155

    Google Scholar 

  • Tang K H, Wang Y, Wang X X. 2019. Recent progress on signalling molecules of coral-associated microorganisms. Sci China Earth Sci, 62: 609–618

    Google Scholar 

  • Ushijima B, Smith A, Aeby G S, Callahan S M. 2012. Vibrio owensii induces the tissue loss disease Montipora white syndrome in the Hawaiian reef coral Montipora capitata. PLoS ONE, 7: e46717

    Google Scholar 

  • Ushijima B, Videau P, Burger A H, Shore-Maggio A, Runyon C M, Sudek M, Aeby G S, Callahan S M, Wommack K E. 2014. Vibrio coralliilyticus strain OCN008 is an etiological agent of acute Montipora white syndrome. Appl Environ Microbiol, 80: 2102–2109

    Google Scholar 

  • Ushijima B, Videau P, Poscablo D, Stengel J W, Beurmann S, Burger A H, Aeby G S, Callahan S M. 2016. Mutation of the toxR or mshA genes from Vibrio coralliilyticus strain OCN014 reduces infection of the coral Acropora cytherea. Environ Microbiol, 18: 4055–4067

    Google Scholar 

  • van Oppen M J H, Oliver J K, Putnam H M, Gates R D. 2015. Building coral reef resilience through assisted evolution. Proc Natl Acad Sci USA, 112: 2307–2313

    Google Scholar 

  • Veron J E N. 2000. Paleobiology: Reef processes in the long view. Science, 287: 811–812

    Google Scholar 

  • Vynne N G, Månsson M, Nielsen K F, Gram L. 2011. Bioactivity, chemical profiling, and 16S rRNA-based phylogeny of Pseudoalteromonas strains collected on a global research cruise. Mar Biotechnol, 13: 1062–1073

    Google Scholar 

  • Weisburg W G, Barns S M, Pelletier D A, Lane D J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol, 173: 697–703

    Google Scholar 

  • Yang L H, Xiong H, Lee O O, Qi S H, Qian P Y. 2007. Effect of agitation on violacein production in Pseudoalteromonas luteoviolacea isolated from a marine sponge. Lett Appl Microbiol, 44: 625–630

    Google Scholar 

  • Yu K F. 2012. Coral reefs in the South China Sea: Their response to and records on past environmental changes. Sci China Earth Sci, 55: 1217–1229

    Google Scholar 

  • Yu M, Wang J F, Tang K H, Shi X C, Wang S S, Zhu W M, Zhang X H. 2012. Purification and characterization of antibacterial compounds of Pseudoalteromonas flavipulchra JG1. Microbiology, 158: 835–842

    Google Scholar 

  • Zhao W J, Caro F, Robins W, Mekalanos J J. 2018. Antagonism toward the intestinal microbiota and its effect on Vibrio cholerae virulence. Science, 359: 210–213

    Google Scholar 

  • Zilber-Rosenberg I, Rosenberg E. 2008. Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution. FEMS Microbiol Rev, 32: 723–735

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant Nos. 2018YFC1406500 & 2017YFC0506303), the National Natural Science Foundation of China (Grant Nos. 41706172, 31625001 & 41376174) and the Hainan Provincial Key R&D (Grant No. ZDYF2018108).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Wang or Xiaoxue Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, K., Zhan, W., Zhou, Y. et al. Antagonism between coral pathogen Vibrio coralliilyticus and other bacteria in the gastric cavity of scleractinian coral Galaxea fascicularis. Sci. China Earth Sci. 63, 157–166 (2020). https://doi.org/10.1007/s11430-019-9388-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-019-9388-3

Keywords

Navigation