Skip to main content
Log in

Observational evidences of wave excitation and inverse cascade in a distant Earth foreshock region

  • Progress
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The foreshock with nascent plasma turbulence is regarded as a fascinating region to understand basic plasma physical processes, e.g., wave-particle interactions as well as wave-wave couplings. Although there have been plenty of intensive studies on this topic, some key clues about the physical processes still lack observations. A relatively comprehensive case study with some new observations is presented in this work based on the WIND spacecraft observations. In this case, upstream energetic protons were drifting at tens of Alfvén speed with respect to the background plasma protons. When looking at the magnetic wave activities, we find the co-existence of high-frequency (0.1−0.5 Hz) large-amplitude right-hand polarized (RHP) waves and low-frequency (0.02−0.1 Hz) small-amplitude left-hand polarized (LHP) waves in the spacecraft (SC) frame. The observed anticorrelation between magnetic and velocity fluctuations along with the sunward magnetic field direction indicates that the low-frequency LHP waves in the SC frame are in fact the sunward upstream RHP Alfvénic waves in the solar wind frame. This new observation corroborates the applicability of theories about plasma non-resonance instability and inverse cascade to the foreshock region, where the downstream high-frequency RHP parent waves are excited by the upstream energetic protons through non-resonance instability and the low-frequency RHP daughter waves are generated by the parent waves due to nonlinear parametric instability. Furthermore, enhanced downstream energetic proton fluxes are inferred to result from scattering of the upstream protons by the nascent turbulent fluctuations. Therefore, some critical clues about the newborn turbulence in the foreshock are provided in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akimoto K, Winske D, Gary S P, Thomsen M F. 1993. Nonlinear evolution of electromagnetic ion beam instabilities. J Geophys Res, 98: 1419–1433

    Article  Google Scholar 

  • Araneda J A, Marsch E, F.-Viñas A. 2008. Proton core heating and beam formation via parametrically unstable Alfvén-cyclotron waves. Phys Rev Lett, 100: 125003

    Article  Google Scholar 

  • Araneda J A, Marsch E, Viñas A F. 2007. Collisionless damping of parametrically unstable Alfvén waves. J Geophys Res, 112: A04104

    Article  Google Scholar 

  • Bale S D, Balikhin M A, Horbury T S, Krasnoselskikh V V, Kucharek H, Möbius E, Walker S N, Balogh A, Burgess D, Lembège B, Lucek E A, Scholer M, Schwartz S J, Thomsen M F. 2005. Quasi-perpendicular shock structure and processes. Space Sci Rev, 118: 161–203

    Article  Google Scholar 

  • Balikhin M A, de Wit T D, Alleyne H S C K, Woolliscroft L J C, Walker S N, Krasnosel'skikh V, Mier-Jedrzejeowicz W A C, Baumjohann W. 1997. Experimental determination of the dispersion of waves observed upstream of a quasi-perpendicular shock. Geophys Res Lett, 24: 787–790

    Article  Google Scholar 

  • Burgess D, Scholer M. 2013. Microphysics of Quasi-parallel shocks in collisionless plasmas. Space Sci Rev, 178: 513–533

    Article  Google Scholar 

  • Derby Jr. N F. 1978. Modulational instability of finite-amplitude, circularly polarized Alfven waves. Astrophys J, 224: 1013–1016

    Article  Google Scholar 

  • Eastwood J P, Lucek E A, Mazelle C, Meziane K, Narita Y, Pickett J, Treumann R A. 2005. The foreshock. Space Sci Rev, 118: 41–94

    Article  Google Scholar 

  • Fairfield D H. 1969. Bow shock associated waves observed in the far upstream interplanetary medium. J Geophys Res, 74: 3541–3553

    Article  Google Scholar 

  • Galeev A A, Oraevskii V N. 1963. The Stability of Alfvén Waves. Soviet Phys Doklady, 7: 988

    Google Scholar 

  • Gao X, Lu Q, Tao X, Hao Y, Wang S. 2013. Effects of alpha beam on the parametric decay of a parallel propagating circularly polarized Alfven wave: Hybrid simulations. Phys Plasmas, 20: 092106

    Article  Google Scholar 

  • Gary S P. 1993. Theory of Space Plasma Microinstabilities. Cambridge: Cambridge University Press. 193

    Book  Google Scholar 

  • Gary S P, Jian L K, Broiles T W, Stevens M L, Podesta J J, Kasper J C. 2015. Ion-driven instabilities in the solar wind: Wind observations of 19 March 2005. J Geophys Res-Space Phys, 121: 30–41

    Article  Google Scholar 

  • Goldstein B E, Neugebauer M, Zhang L D, Gary S P. 2000. Observed constraint on proton-proton relative velocities in the solar wind. Geophys Res Lett, 27: 53–56

    Article  Google Scholar 

  • Goldstein M L. 1978. An instability of finite amplitude circularly polarized Alfven waves. Astrophys J, 219: 700–704

    Article  Google Scholar 

  • Goldstein M L, Smith C W, Matthaeus W H. 1983. Large amplitude MHD waves upstream of the Jovian bow shock. J Geophys Res, 88: 9989–9999

    Article  Google Scholar 

  • He J, Pei Z, Wang L, Tu C, Marsch E, Zhang L, Salem C. 2015. Sunward propagating Alfvén waves in association with sunward drifting proton beams in the solar wind. Astrophys J, 805: 176

    Article  Google Scholar 

  • He J, Tu C, Marsch E, Yao S. 2011. Do oblique Alfvén/ion-cyclotron or fast-mode/whistler waves dominate the dissipation of solar wind turbulence near the proton inertial length? Astrophys J, 745: L8

    Article  Google Scholar 

  • He J, Wang L, Tu C, Marsch E, Zong Q. 2015. Evidence of Landau and cyclotron resonance between protons and kinetic waves in solar wind turbulence. Astrophys J, 800: L31

    Article  Google Scholar 

  • Hollweg J V. 1994. Beat, modulational, and decay instabilities of a circularly polarized Alfvén wave. J Geophys Res, 99: 23431

    Article  Google Scholar 

  • Hoppe M M, Russell C T. 1982. Particle acceleration at planetary bow shock waves. Nature, 295: 41–42

    Article  Google Scholar 

  • Horbury T S, Cargill P J, Lucek E A, Balogh A, Dunlop M W, Oddy T M, Carr C, Brown P, Szabo A, Fornaçon K H. 2001. Cluster magnetic field observations of the bowshock: Orientation, motion and structure. Ann Geophys, 19: 1399–1409

    Article  Google Scholar 

  • Karimabadi H, Roytershteyn V, Vu H X, Omelchenko Y A, Scudder J, Daughton W, Dimmock A, Nykyri K, Wan M, Sibeck D, Tatineni M, Majumdar A, Loring B, Geveci B. 2014. The link between shocks, turbulence, and magnetic reconnection in collisionless plasmas. Phys Plasmas, 21: 062308

    Article  Google Scholar 

  • Kempf Y, Pokhotelov D, Gutynska O, Wilson III L B, Walsh B M, von Alfthan S, Hannuksela O, Sibeck D G, Palmroth M. 2015. Ion distributions in the Earth’s foreshock: Hybrid-Vlasov simulation and THEMIS observations. J Geophys Res-Space Phys, 120: 3684–3701

    Article  Google Scholar 

  • Koval A, Szabo A. 2013. Magnetic field turbulence spectra observed by the wind spacecraft. SOLAR WIND 13: Proceedings of the Thirteenth International Solar Wind Conference. 211–214

    Google Scholar 

  • Le G, Russell C T, Smith E J. 1989. Discrete wave packets upstream from the earth and comets. J Geophys Res, 94: 3755–3760

    Article  Google Scholar 

  • Le G, Russell C T, Thomsen M F, Gosling J T. 1992. Observations of a new class of upstream waves with periods near 3 seconds. J Geophys Res, 97: 2917–2925

    Article  Google Scholar 

  • Li H, Pang Y, Huang S, Zhou M, Deng X, Yuan Z, Wang D, Li H M. 2013. The turbulence evolution in the high β region of the Earth’s foreshock. J Geophys Res-Space Phys, 118: 7151–7159

    Article  Google Scholar 

  • Lin R P, Anderson K A, Ashford S, Carlson C, Curtis D, Ergun R, Larson D, McFadden J, McCarthy M, Parks G K, Rème H, Bosqued J M, Coutelier J, Cotin F, D’Uston C, Wenzel K P, Sanderson T R, Henrion J, Ronnet J C, Paschmann G. 1995. A three-dimensional plasma and energetic particle investigation for the Wind spacecraft. Space Sci Rev, 71: 125–153

    Article  Google Scholar 

  • Lin Y, Wang X Y. 2005. Three-dimensional global hybrid simulation of dayside dynamics associated with the quasi-parallel bow shock. J Geophys Res, 110: A12216

    Article  Google Scholar 

  • Maneva Y G, Viñas A F, Ofman L. 2013. Turbulent heating and acceleration of He++ ions by spectra of Alfvén-cyclotron waves in the expanding solar wind: 1.5-D hybrid simulations. J Geophys Res-Space Phys, 118: 2842–2853

    Article  Google Scholar 

  • Marsch E. 2006. Kinetic physics of the solar corona and solar wind. Living Rev Sol Phys, 3: 1

    Article  Google Scholar 

  • Meziane K, Wilber M, Hamza A M, Mazelle C, Parks G K, Rème H, Lucek E A. 2007. Evidence for a high-energy tail associated with foreshock field-aligned beams. J Geophys Res, 112: A01101

    Article  Google Scholar 

  • Mio K, Ogino T, Takeda S, Minami K. 1976. Modulational instability and envelope-solitons for nonlinear Alfvén waves propagating along the magnetic field in plasmas. J Phys Soc Jpn, 41: 667–673

    Article  Google Scholar 

  • Narita Y, Glassmeier K H, Fränz M, Nariyuki Y, Hada T. 2007. Observations of linear and nonlinear processes in the foreshock wave evolution. Nonlin Processes Geophys, 14: 361–371

    Article  Google Scholar 

  • Nariyuki Y, Hada T. 2006. Remarks on nonlinear relation among phases and frequencies in modulational instabilities of parallel propagating Alfvén waves. Nonlin Processes Geophys, 13: 425–441

    Article  Google Scholar 

  • Omidi N, Sibeck D G, Blanco-Cano X. 2009. Foreshock compressional boundary. J Geophys Res, 114: A08205

    Google Scholar 

  • Palmroth M, Archer M, Vainio R, Hietala H, Pfau-Kempf Y, Hoilijoki S, Hannuksela O, Ganse U, Sandroos A, von Alfthan S, Eastwood J P. 2015. ULF foreshock under radial IMF: THEMIS observations and global kinetic simulation Vlasiator results compared. J Geophys Res Space Phys, 120: 8782–8798

    Article  Google Scholar 

  • Parks G K, Lee E, Lin N, Fu S Y, McCarthy M, Cao J B, Hong J, Liu Y, Shi J K, Goldstein M L, Canu P, Dandouras I, Rème H. 2013. Reinterpretation of slowdown of solar wind mean velocity in nonlinear structures observed upstream of Earth’s bow shock. Astrophys J, 771: L39

    Article  Google Scholar 

  • Sagdeev R Z, Galeev A A. 1969. Nonlinear Plasma Theory. New York: Benjamin

    Google Scholar 

  • Santolík O, Parrot M, Lefeuvre F. 2003. Singular value decomposition methods for wave propagation analysis. Radio Sci, 38: 1010

    Article  Google Scholar 

  • Sundkvist D, Krasnoselskikh V, Bale S D, Schwartz S J, Soucek J, Mozer F. 2012. Dispersive nature of high Mach number collisionless plasma shocks: Poynting flux of oblique whistler waves. Phys Rev Lett, 108: 025002

    Article  Google Scholar 

  • Tsurutani B T, Rodriguez P. 1981. Upstream waves and particles: An overview of ISEE results. J Geophys Res, 86: 4317–4324

    Article  Google Scholar 

  • Tu C Y, Marsch E, Qin Z R. 2004. Dependence of the proton beam drift velocity on the proton core plasma beta in the solar wind. J Geophys Res, 109: A05101

    Article  Google Scholar 

  • Vinas A F, Goldstein M L, Acuna M H. 1984. Spectral analysis of magnetohydrodynamic fluctuations near interplanetary shocks. J Geophys Res, 89: 3762–3774

    Article  Google Scholar 

  • Wang X, Tu C, Wang L, He J, Marsch E. 2015. The upstream-propagating Alfvénic fluctuations with power law spectra in the upstream region of the Earth’s bow shock. Geophys Res Lett, 42: 3654–3661

    Article  Google Scholar 

  • Wang X Y, Lin Y. 2003. Generation of nonlinear Alfvén and magnetosonic waves by beam-plasma interaction. Phys Plasmas, 10: 3528–3538

    Article  Google Scholar 

  • Wicks R T, Alexander R L, Stevens M, Iii L B W, Moya P S, Viñas A, Jian L K, Roberts D A, O’Modhrain S, Gilbert J A, Zurbuchen T H. 2016. A proton-cyclotron wave storm generated by unstable proton distribution functions in the solar wind. Astrophys J, 819: 6

    Article  Google Scholar 

  • Wilson L B. 2016. Low Frequency Waves at and Upstream of Collisionless Shocks. In: Andreas Keiling, Dong-Hun Lee, Valery Nakariakov, eds. Low-Frequency Waves in Space Plasmas. Washington DC American Geophysical Union Geophysical Monograph Series, 216: 269–291, doi: 10.1002/9781119055006.ch16

    Article  Google Scholar 

  • Wilson III L B, Cattell C A, Kellogg P J, Goetz K, Kersten K, Kasper J C, Szabo A, Meziane K. 2009. Low-frequency whistler waves and shocklets observed at quasi-perpendicular interplanetary shocks. J Geophys Res, 114: A10106

    Article  Google Scholar 

  • Yang L, Lee L C, Chao J K, Hsieh W C, Luo Q Y, Li J P, Shi J K, Wu D J. 2016. Observational evidence for the relationship between Walén slope and amplitude ratio of inward to outward Alfvén waves in the solar wind. Astrophys J, 817: 178

    Article  Google Scholar 

  • Zhao J S, Voitenko Y, De Keyser J, Wu D J. 2015. Scalar and vector nonlinear decays of low-frequency Alfvén waves. Astrophys J, 799: 222

    Article  Google Scholar 

Download references

Acknowledgements

We thank the 3DP team and MFI team on WIND for sharing data with us. We thank Lynn Wilson III for providing the download of programs, which are used to analyze the PESA-High data. Jiansen He thanks C. H. K. Chen for helpful comments on the calibration of magnetic field data. The group from Peking University is supported by National Natural Science Foundation of China (Grant Nos. 41574168, 41874200, 41674171, 41774183, and 41421003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiansen He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Duan, D., Zhu, X. et al. Observational evidences of wave excitation and inverse cascade in a distant Earth foreshock region. Sci. China Earth Sci. 62, 619–630 (2019). https://doi.org/10.1007/s11430-019-9330-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-019-9330-3

Keywords

Navigation