Skip to main content

Impact of China’s Air Pollution Prevention and Control Action Plan on PM2.5 chemical composition over eastern China

Abstract

China promulgated the Air Pollution Prevention and Control Action Plan (the Action Plan) in 2013 and developed stringent control measures to mitigate fine particulate matter (PM2.5) pollution. Here, we investigated the PM2.5 chemical composition changes over eastern China associated with the Action Plan during 2013–2017 using satellite-based PM2.5 chemical composition data derived using CMAQ simulations and satellite inputs. The PM2.5 concentrations decreased considerably during this time as a result of the reductions in all chemical species in PM2.5. The population-weighted mean concentrations over eastern China decreased from 11.1 to 6.7 μg m-3 for \({\rm{SO}}_4^{2-}\), 13.8–13.1 μg m-3 for \({\rm{NO}}_3^-\), 7.4–5.8 μg m-3 for \({\rm{NH}}_4^+\), 9.9–8.4 μg m-3 for OM, 4.6–3.8 μg m-3 for BC and 12.9–9.6 μg m-3 for other species in PM2.5. \({\rm{SO}}_4^{2-}\) had the largest reduction of 40%, while \({\rm{NO}}_3^-\) had the lowest reduction of 5%, resulting in a greater fraction of \({\rm{NO}}_3^-\) and a smaller fraction of \({\rm{SO}}_4^{2-}\) in PM2.5. Among the three key regions, Beijing-Tianjin-Hebei had the largest reduction in PM2.5 and its chemical compositions. The decrease in SO4 2 concentrations was in line with the reduction of SO2 emissions, and the major driver of the SO2 emission reductions was the industrial sector. The decrease in \({\rm{NO}}_3^-\) concentrations was limited because the decrease in SO2 emissions and the stable NH3 emissions facilitated the formation of \({\rm{NO}}_3^-\) from HNO3, which partially offset the reduction in NOx emissions driven by the power sector. To mitigate PM2.5 pollution more effectively, future efforts are needed to reduce NH3 emissions.

This is a preview of subscription content, access via your institution.

References

  • Baek J, Hu Y, Odman M T, Russell A G. 2011. Modeling secondary organic aerosol in CMAQ using multigenerational oxidation of semi-volatile organic compounds. J Geophys Res, 116: D22204

    Google Scholar 

  • Bellouin N, Boucher O, Haywood J, Reddy M S. 2005. Global estimate of aerosol direct radiative forcing from satellite measurements. Nature, 438: 1138–1141

    Google Scholar 

  • Bey I, Jacob D J, Yantosca R M, Logan J A, Field B D, Fiore A M, Li Q, Liu H Y, Mickley L J, Schultz M G. 2001. Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. J Geophys Res, 106: 23073–23095

    Google Scholar 

  • Brauer M, Freedman G, Frostad J, van Donkelaar A, Martin R V, Dentener F, van Dingenen R, Estep K, Amini H, Apte J S, Balakrishnan K, Barregard L, Broday D, Feigin V, Ghosh S, Hopke P K, Knibbs L D, Kokubo Y, Liu Y, Ma S, Morawska L, Sangrador J L T, Shaddick G, Anderson H R, Vos T, Forouzanfar M H, Burnett R T, Cohen A. 2016. Ambient air pollution exposure estimation for the global burden of disease 2013. Environ Sci Technol, 50: 79–88

    Google Scholar 

  • Bright E A, Rose A N, Urban M L. 2014. LandScan 2013. Oak Ridge: Oak Ridge National Laboratory

    Google Scholar 

  • Bright E A, Rose A N, Urban M L. 2015. LandScan 2014. Oak Ridge: Oak Ridge National Laboratory

    Google Scholar 

  • Bright E A, Rose A N, Urban M L. 2016. LandScan 2015. Oak Ridge: Oak Ridge National Laboratory

    Google Scholar 

  • Bright E A, Rose A N, Urban M L, McKee J J. 2017. LandScan 2016. Oak Ridge: Oak Ridge National Laboratory

    Google Scholar 

  • Brook R D, Rajagopalan S, Pope C A, Brook J R, Bhatnagar A, Diez-Roux A V, Holguin F, Hong Y, Luepker R V, Mittleman M A, Peters A, Siscovick D, Smith S C, Whitsel L, Kaufman J D, Kaufman J D. 2010. Particulate matter air pollution and cardiovascular disease. Circulation, 121: 2331–2378

    Google Scholar 

  • Chen D, Liu Z, Fast J, Ban J. 2016. Simulations of sulfate-nitrate-ammonium (SNA) aerosols during the extreme haze events over northern China in October 2014. Atmos Chem Phys, 16: 10707–10724

    Google Scholar 

  • Cohen A J, Brauer M, Burnett R, Anderson H R, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R, Feigin V, Freedman G, Hubbell B, Jobling A, Kan H, Knibbs L, Liu Y, Martin R, Morawska L, Pope Iii C A, Shin H, Straif K, Shaddick G, Thomas M, van Dingenen R, van Donkelaar A, Vos T, Murray C J L, Forouzanfar M H. 2017. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the global burden of diseases study 2015. Lancet, 389: 1907–1918

    Google Scholar 

  • Fu X, Wang S, Chang X, Cai S, Xing J, Hao J. 2016. Modeling analysis of secondary inorganic aerosols over China: Pollution characteristics, and meteorological and dust impacts. Sci Rep, 6: 35992

    Google Scholar 

  • Fu X, Wang S, Xing J, Zhang X, Wang T, Hao J. 2017. Increasing Ammonia Concentrations Reduce the Effectiveness of Particle Pollution Control Achieved via SO2 and NOx Emissions Reduction in East China. Environ Sci Technol Lett, 4: 221–227

    Google Scholar 

  • Geng G, Zhang Q, Martin R V, Lin J, Huo H, Zheng B, Wang S, He K. 2017a. Impact of spatial proxies on the representation of bottom-up emission inventories: A satellite-based analysis. Atmos Chem Phys, 17: 4131–4145

    Google Scholar 

  • Geng G, Zhang Q, Tong D, Li M, Zheng Y, Wang S, He K. 2017b. Chemical composition of ambient PM2.5 over China and relationship to precursor emissions during 2005–2012. Atmos Chem Phys, 17: 9187–9203

    Google Scholar 

  • Grantz D A, Garner J H B, Johnson D W. 2003. Ecological effects of particulate matter. Environ Int, 29: 213–239

    Google Scholar 

  • Guenther A B, Jiang X, Heald C L, Sakulyanontvittaya T, Duhl T, Emmons L K, Wang X. 2012. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geosci Model Dev, 5: 1471–1492

    Google Scholar 

  • Hand J L, Schichtel B A, Malm W C, Pitchford M L. 2012. Particulate sulfate ion concentration and SO2 emission trends in the United States from the early 1990s through 2010. Atmos Chem Phys, 12: 10353–10365

    Google Scholar 

  • Hu J, Chen J, Ying Q, Zhang H. 2016. One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system. Atmos Chem Phys, 16: 10333–10350

    Google Scholar 

  • Hueglin C, Gehrig R, Baltensperger U, Gysel M, Monn C, Vonmont H. 2005. Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmos Environ, 39: 637–651

    Google Scholar 

  • Li M, Liu H, Geng G, Hong C, Liu F, Song Y, Tong D, Zheng B, Cui H, Man H, Zhang Q, He K. 2017a. Anthropogenic emission inventories in China: A review. Natl Sci Rev, 4: 834–866

    Google Scholar 

  • Li M, Zhang Q, Kurokawa J, Woo J H, He K, Lu Z, Ohara T, Song Y, Streets D G, Carmichael G R, Cheng Y, Hong C, Huo H, Jiang X, Kang S, Liu F, Su H, Zheng B. 2017b. MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos Chem Phys, 17: 935–963

    Google Scholar 

  • Li M, Zhang Q, Streets D G, He K B, Cheng Y F, Emmons L K, Huo H, Kang S C, Lu Z, Shao M, Su H, Yu X, Zhang Y. 2014. Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms. Atmos Chem Phys, 14: 5617–5638

    Google Scholar 

  • Liu F, Zhang Q, Tong D, Zheng B, Li M, Huo H, He K B. 2015. High-resolution inventory of technologies, activities, and emissions of coalfired power plants in China from 1990 to 2010. Atmos Chem Phys, 15: 13299–13317

    Google Scholar 

  • Liu L, Zhang X, Xu W, Liu X, Li Y, Lu X, Zhang Y, Zhang W. 2017. Temporal characteristics of atmospheric ammonia and nitrogen dioxide over China based on emission data, satellite observations and atmospheric transport modeling since 1980. Atmos Chem Phys, 17: 9365–9378

    Google Scholar 

  • Liu X H, Zhang Y, Cheng S H, Xing J, Zhang Q, Streets D G, Jang C, Wang W X, Hao J M. 2010. Understanding of regional air pollution over China using CMAQ, part I performance evaluation and seasonal variation. Atmos Environ, 44: 2415–2426

    Google Scholar 

  • Masri S, Kang C M, Koutrakis P. 2015. Composition and sources of fine and coarse particles collected during 2002–2010 in Boston, MA. J Air Waste Manage Assoc, 65: 287–297

    Google Scholar 

  • Park R S, Lee S, Shin S K, Song C H. 2014. Contribution of ammonium nitrate to aerosol optical depth and direct radiative forcing by aerosols over East Asia. Atmos Chem Phys, 14: 2185–2201

    Google Scholar 

  • Pope C A, Dockery D W. 2006. Health effects of fine particulate air pollution: Lines that connect. J Air Waste Manage Assoc, 56: 709–742

    Google Scholar 

  • Putaud J P, Raes F, Van Dingenen R, Brüggemann E, Facchini M C, Decesari S, Fuzzi S, Gehrig R, Hüglin C, Laj P, Lorbeer G, Maenhaut W, Mihalopoulos N, Müller K, Querol X, Rodriguez S, Schneider J, Spindler G, Brink H, Tørseth K, Wiedensohler A. 2004. A European aerosol phenomenology—2: Chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos Environ, 38: 2579–2595

    Google Scholar 

  • Rose A N, McKee J J, Urban M L, Bright E A. 2018. LandScan 2017. Oak Ridge: Oak Ridge National Laboratory

    Google Scholar 

  • Snider G, Weagle C L, Martin R V, van Donkelaar A, Conrad K, Cunningham D, Gordon C, Zwicker M, Akoshile C, Artaxo P, Anh N X, Brook J, Dong J, Garland R M, Greenwald R, Griffith D, He K, Holben B N, Kahn R, Koren I, Lagrosas N, Lestari P, Ma Z, Vanderlei Martins J, Quel E J, Rudich Y, Salam A, Tripathi S N, Yu C, Zhang Q, Zhang Y, Brauer M, Cohen A, Gibson M D, Liu Y. 2015. SPARTAN: A global network to evaluate and enhance satellite-based estimates of groundlevel particulate matter for global health applications. Atmos Meas Tech, 8: 505–521

    Google Scholar 

  • Snider G, Weagle C L, Murdymootoo K K, Ring A, Ritchie Y, Stone E, Walsh A, Akoshile C, Anh N X, Balasubramanian R, Brook J, Qonitan F D, Dong J, Griffith D, He K, Holben B N, Kahn R, Lagrosas N, Lestari P, Ma Z, Misra A, Norford L K, Quel E J, Salam A, Schichtel B, Segev L, Tripathi S, Wang C, Yu C, Zhang Q, Zhang Y, Brauer M, Cohen A, Gibson M D, Liu Y, Vanderlei Martins J, Rudich Y, Martin R V. 2016. Variation in global chemical composition of PM2.5: Emerging results from SPARTAN. Atmos Chem Phys, 16: 9629–9653

    Google Scholar 

  • Tong D, Zhang Q, Liu F, Geng G, Zheng Y, Xue T, Hong C, Wu R, Qin Y, Zhao H, Yan L, He K. 2018. Current emissions and future mitigation pathways of coal-fired power plants in China from 2010 to 2030. Environ Sci Technol, 52: 12905–12914

    Google Scholar 

  • Wang Y, Zhang Q, Jiang J, Zhou W, Wang B, He K, Duan F, Zhang Q, Philip S, Xie Y. 2014. Enhanced sulfate formation during China’s severe winter haze episode in January 2013 missing from current models. J Geophys Res-Atmos, 119: 10,425–10,440

    Google Scholar 

  • West J J, Cohen A, Dentener F, Brunekreef B, Zhu T, Armstrong B, Bell M L, Brauer M, Carmichael G, Costa D L, Dockery D W, Kleeman M, Krzyzanowski M, Künzli N, Liousse C, Lung S C C, Martin R V, Pöschl U, Pope Iii C A, Roberts J M, Russell A G, Wiedinmyer C. 2016. What we breathe impacts our health: Improving understanding of the link between air pollution and health. Environ Sci Technol, 50: 4895–4904

    Google Scholar 

  • Xiao Q, Chang H H, Geng G, Liu Y. 2018. An ensemble machine-learning model to predict historical PM2.5 concentrations in China from satellite data. Environ Sci Technol, 52: 13260–13269

    Google Scholar 

  • Xiao Q, Wang Y, Chang H H, Meng X, Geng G, Lyapustin A, Liu Y. 2017. Full-coverage high-resolution daily PM2.5 estimation using MAIAC AOD in the Yangtze River Delta of China. Remote Sens Environ, 199: 437–446

    Google Scholar 

  • Xing J, Ding D, Wang S, Zhao B, Jang C, Wu W, Zhang F, Zhu Y, Hao J. 2018. Quantification of the enhanced effectiveness of NOx control from simultaneous reductions of VOC and NH3 for reducing air pollution in the Beijing-Tianjin-Hebei region, China. Atmos Chem Phys, 18: 7799–7814

    Google Scholar 

  • Xing J, Mathur R, Pleim J, Hogrefe C, Gan C M, Wong D C, Wei C, Gilliam R, Pouliot G. 2015. Observations and modeling of air quality trends over 1990–2010 across the Northern Hemisphere: China, the United States and Europe. Atmos Chem Phys, 15: 2723–2747

    Google Scholar 

  • Xue T, Zheng Y, Geng G, Zheng B, Jiang X, Zhang Q, He K. 2017. Fusing observational, satellite remote sensing and air quality model simulated data to estimate spatiotemporal variations of PM2.5 exposure in China. Remote Sens, 9: 221

    Google Scholar 

  • Zhang L, Liu L, Zhao Y, Gong S, Zhang X, Henze D K, Capps S L, Fu T M, Zhang Q, Wang Y. 2015. Source attribution of particulate matter pollution over North China with the adjoint method. Environ Res Lett, 10: 084011

    Google Scholar 

  • Zhang Q, Streets D G, Carmichael G R, He K B, Huo H, Kannari A, Klimont Z, Park I S, Reddy S, Fu J S, Chen D, Duan L, Lei Y, Wang L T, Yao Z L. 2009. Asian emissions in 2006 for the NASA INTEX-B mission. Atmos Chem Phys, 9: 5131–5153

    Google Scholar 

  • Zhang X, Zhang Q, Hong C, Zheng Y, Geng G, Tong D, Zhang Y, Zhang X. 2018. Enhancement of PM2.5 Concentrations by Aerosol-Meteorology Interactions Over China. J Geophys Res Atmos, 123: 1179-1194

    Google Scholar 

  • Zhang X Y, Wang Y Q, Niu T, Zhang X C, Gong S L, Zhang Y M, Sun J Y. 2012. Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos Chem Phys, 12: 779–799

    Google Scholar 

  • Zhao Y, Nielsen C P, Lei Y, McElroy M B, Hao J. 2011. Quantifying the uncertainties of a bottom-up emission inventory of anthropogenic atmospheric pollutants in China. Atmos Chem Phys, 11: 2295–2308

    Google Scholar 

  • Zheng B, Huo H, Zhang Q, Yao Z L, Wang X T, Yang X F, Liu H, He K B. 2014. High-resolution mapping of vehicle emissions in China in 2008. Atmos Chem Phys, 14: 9787–9805

    Google Scholar 

  • Zheng B, Tong D, Li M, Liu F, Hong C, Geng G, Li H, Li X, Peng L, Qi J, Yan L, Zhang Y, Zhao H, Zheng Y, He K, Zhang Q. 2018. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos Chem Phys, 18: 14095–14111

    Google Scholar 

  • Zheng B, Zhang Q, Zhang Y, He K B, Wang K, Zheng G J, Duan F K, Ma Y L, Kimoto T. 2015. Heterogeneous chemistry: A mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China. Atmos Chem Phys, 15: 2031–2049

    Google Scholar 

  • Zheng G J, Duan F K, Su H, Ma Y L, Cheng Y, Zheng B, Zhang Q, Huang T, Kimoto T, Chang D, Pöschl U, Cheng Y F, He K B. 2015. Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions. Atmos Chem Phys, 15: 2969–2983

    Google Scholar 

  • Zheng Y, Xue T, Zhang Q, Geng G, Tong D, Li X, He K. 2017. Air quality improvements and health benefits from China’s clean air action since 2013. Environ Res Lett, 12: 114020

    Google Scholar 

Download references

Acknowledgements

We thank the SPARTAN Project for its effort in establishing and maintaining the Beijing site. The SPARTAN network was initiated with funding from the Natural Sciences and Engineering Research Council of Canada. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41571130032 & 41571130035) and the National Key R & D Program (Grant No. 2016YFC0201506). The work of G. GENG and Y. LIU was supported by the MAIA science team at the JPL, California Institute of Technology (Grant No. 1588347).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kebin He or Yang Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Geng, G., Xiao, Q., Zheng, Y. et al. Impact of China’s Air Pollution Prevention and Control Action Plan on PM2.5 chemical composition over eastern China. Sci. China Earth Sci. 62, 1872–1884 (2019). https://doi.org/10.1007/s11430-018-9353-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-018-9353-x

Keywords

  • PM2.5 chemical composition
  • Air Pollution Prevention and Control Action Plan
  • Satellite remote sensing