Impact of China’s Air Pollution Prevention and Control Action Plan on PM2.5 chemical composition over eastern China

  • Guannan Geng
  • Qingyang Xiao
  • Yixuan Zheng
  • Dan Tong
  • Yuxuan Zhang
  • Xiaoye Zhang
  • Qiang Zhang
  • Kebin HeEmail author
  • Yang LiuEmail author
Research Paper SPECIAL TOPIC: Impact of the Air Pollution Prevention and Control Action Plan on air quality improvemnt in China


China promulgated the Air Pollution Prevention and Control Action Plan (the Action Plan) in 2013 and developed stringent control measures to mitigate fine particulate matter (PM2.5) pollution. Here, we investigated the PM2.5 chemical composition changes over eastern China associated with the Action Plan during 2013–2017 using satellite-based PM2.5 chemical composition data derived using CMAQ simulations and satellite inputs. The PM2.5 concentrations decreased considerably during this time as a result of the reductions in all chemical species in PM2.5. The population-weighted mean concentrations over eastern China decreased from 11.1 to 6.7 μg m-3 for \({\rm{SO}}_4^{2-}\), 13.8–13.1 μg m-3 for \({\rm{NO}}_3^-\), 7.4–5.8 μg m-3 for \({\rm{NH}}_4^+\), 9.9–8.4 μg m-3 for OM, 4.6–3.8 μg m-3 for BC and 12.9–9.6 μg m-3 for other species in PM2.5. \({\rm{SO}}_4^{2-}\) had the largest reduction of 40%, while \({\rm{NO}}_3^-\) had the lowest reduction of 5%, resulting in a greater fraction of \({\rm{NO}}_3^-\) and a smaller fraction of \({\rm{SO}}_4^{2-}\) in PM2.5. Among the three key regions, Beijing-Tianjin-Hebei had the largest reduction in PM2.5 and its chemical compositions. The decrease in SO4 2 concentrations was in line with the reduction of SO2 emissions, and the major driver of the SO2 emission reductions was the industrial sector. The decrease in \({\rm{NO}}_3^-\) concentrations was limited because the decrease in SO2 emissions and the stable NH3 emissions facilitated the formation of \({\rm{NO}}_3^-\) from HNO3, which partially offset the reduction in NOx emissions driven by the power sector. To mitigate PM2.5 pollution more effectively, future efforts are needed to reduce NH3 emissions.


PM2.5 chemical composition Air Pollution Prevention and Control Action Plan Satellite remote sensing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank the SPARTAN Project for its effort in establishing and maintaining the Beijing site. The SPARTAN network was initiated with funding from the Natural Sciences and Engineering Research Council of Canada. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41571130032 & 41571130035) and the National Key R & D Program (Grant No. 2016YFC0201506). The work of G. GENG and Y. LIU was supported by the MAIA science team at the JPL, California Institute of Technology (Grant No. 1588347).


  1. Baek J, Hu Y, Odman M T, Russell A G. 2011. Modeling secondary organic aerosol in CMAQ using multigenerational oxidation of semivolatile organic compounds. J Geophys Res, 116: D22204CrossRefGoogle Scholar
  2. Bellouin N, Boucher O, Haywood J, Reddy M S. 2005. Global estimate of aerosol direct radiative forcing from satellite measurements. Nature, 438: 1138–1141CrossRefGoogle Scholar
  3. Bey I, Jacob D J, Yantosca R M, Logan J A, Field B D, Fiore A M, Li Q, Liu H Y, Mickley L J, Schultz M G. 2001. Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. J Geophys Res, 106: 23073–23095CrossRefGoogle Scholar
  4. Brauer M, Freedman G, Frostad J, van Donkelaar A, Martin R V, Dentener F, van Dingenen R, Estep K, Amini H, Apte J S, Balakrishnan K, Barregard L, Broday D, Feigin V, Ghosh S, Hopke P K, Knibbs L D, Kokubo Y, Liu Y, Ma S, Morawska L, Sangrador J L T, Shaddick G, Anderson H R, Vos T, Forouzanfar M H, Burnett R T, Cohen A. 2016. Ambient air pollution exposure estimation for the global burden of disease 2013. Environ Sci Technol, 50: 79–88CrossRefGoogle Scholar
  5. Bright E A, Rose A N, Urban M L. 2014. LandScan 2013. Oak Ridge: Oak Ridge National LaboratoryGoogle Scholar
  6. Bright E A, Rose A N, Urban M L. 2015. LandScan 2014. Oak Ridge: Oak Ridge National LaboratoryGoogle Scholar
  7. Bright E A, Rose A N, Urban M L. 2016. LandScan 2015. Oak Ridge: Oak Ridge National LaboratoryGoogle Scholar
  8. Bright E A, Rose A N, Urban M L, McKee J J. 2017. LandScan 2016. Oak Ridge: Oak Ridge National LaboratoryGoogle Scholar
  9. Brook R D, Rajagopalan S, Pope C A, Brook J R, Bhatnagar A, Diez-Roux A V, Holguin F, Hong Y, Luepker R V, Mittleman M A, Peters A, Siscovick D, Smith S C, Whitsel L, Kaufman J D, Kaufman J D. 2010. Particulate matter air pollution and cardiovascular disease. Circulation, 121: 2331–2378CrossRefGoogle Scholar
  10. Chen D, Liu Z, Fast J, Ban J. 2016. Simulations of sulfate-nitrate-ammonium (SNA) aerosols during the extreme haze events over northern China in October 2014. Atmos Chem Phys, 16: 10707–10724CrossRefGoogle Scholar
  11. Cohen A J, Brauer M, Burnett R, Anderson H R, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R, Feigin V, Freedman G, Hubbell B, Jobling A, Kan H, Knibbs L, Liu Y, Martin R, Morawska L, Pope Iii C A, Shin H, Straif K, Shaddick G, Thomas M, van Dingenen R, van Donkelaar A, Vos T, Murray C J L, Forouzanfar M H. 2017. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the global burden of diseases study 2015. Lancet, 389: 1907–1918CrossRefGoogle Scholar
  12. Fu X, Wang S, Chang X, Cai S, Xing J, Hao J. 2016. Modeling analysis of secondary inorganic aerosols over China: Pollution characteristics, and meteorological and dust impacts. Sci Rep, 6: 35992CrossRefGoogle Scholar
  13. Fu X, Wang S, Xing J, Zhang X, Wang T, Hao J. 2017. Increasing Ammonia Concentrations Reduce the Effectiveness of Particle Pollution Control Achieved via SO2 and NOx Emissions Reduction in East China. Environ Sci Technol Lett, 4: 221–227CrossRefGoogle Scholar
  14. Geng G, Zhang Q, Martin R V, Lin J, Huo H, Zheng B, Wang S, He K. 2017a. Impact of spatial proxies on the representation of bottom-up emission inventories: A satellite-based analysis. Atmos Chem Phys, 17: 4131–4145CrossRefGoogle Scholar
  15. Geng G, Zhang Q, Tong D, Li M, Zheng Y, Wang S, He K. 2017b. Chemical composition of ambient PM2.5 over China and relationship to precursor emissions during 2005–2012. Atmos Chem Phys, 17: 9187–9203CrossRefGoogle Scholar
  16. Grantz D A, Garner J H B, Johnson D W. 2003. Ecological effects of particulate matter. Environ Int, 29: 213–239CrossRefGoogle Scholar
  17. Guenther A B, Jiang X, Heald C L, Sakulyanontvittaya T, Duhl T, Emmons L K, Wang X. 2012. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geosci Model Dev, 5: 1471–1492CrossRefGoogle Scholar
  18. Hand J L, Schichtel B A, Malm W C, Pitchford M L. 2012. Particulate sulfate ion concentration and SO2 emission trends in the United States from the early 1990s through 2010. Atmos Chem Phys, 12: 10353–10365CrossRefGoogle Scholar
  19. Hu J, Chen J, Ying Q, Zhang H. 2016. One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system. Atmos Chem Phys, 16: 10333–10350CrossRefGoogle Scholar
  20. Hueglin C, Gehrig R, Baltensperger U, Gysel M, Monn C, Vonmont H. 2005. Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmos Environ, 39: 637–651CrossRefGoogle Scholar
  21. Li M, Liu H, Geng G, Hong C, Liu F, Song Y, Tong D, Zheng B, Cui H, Man H, Zhang Q, He K. 2017a. Anthropogenic emission inventories in China: A review. Natl Sci Rev, 4: 834–866CrossRefGoogle Scholar
  22. Li M, Zhang Q, Kurokawa J, Woo J H, He K, Lu Z, Ohara T, Song Y, Streets D G, Carmichael G R, Cheng Y, Hong C, Huo H, Jiang X, Kang S, Liu F, Su H, Zheng B. 2017b. MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos Chem Phys, 17: 935–963CrossRefGoogle Scholar
  23. Li M, Zhang Q, Streets D G, He K B, Cheng Y F, Emmons L K, Huo H, Kang S C, Lu Z, Shao M, Su H, Yu X, Zhang Y. 2014. Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms. Atmos Chem Phys, 14: 5617–5638CrossRefGoogle Scholar
  24. Liu F, Zhang Q, Tong D, Zheng B, Li M, Huo H, He K B. 2015. High-resolution inventory of technologies, activities, and emissions of coalfired power plants in China from 1990 to 2010. Atmos Chem Phys, 15: 13299–13317CrossRefGoogle Scholar
  25. Liu L, Zhang X, Xu W, Liu X, Li Y, Lu X, Zhang Y, Zhang W. 2017. Temporal characteristics of atmospheric ammonia and nitrogen dioxide over China based on emission data, satellite observations and atmospheric transport modeling since 1980. Atmos Chem Phys, 17: 9365–9378CrossRefGoogle Scholar
  26. Liu X H, Zhang Y, Cheng S H, Xing J, Zhang Q, Streets D G, Jang C, Wang W X, Hao J M. 2010. Understanding of regional air pollution over China using CMAQ, part I performance evaluation and seasonal variation. Atmos Environ, 44: 2415–2426CrossRefGoogle Scholar
  27. Masri S, Kang C M, Koutrakis P. 2015. Composition and sources of fine and coarse particles collected during 2002–2010 in Boston, MA. J Air Waste Manage Assoc, 65: 287–297CrossRefGoogle Scholar
  28. Park R S, Lee S, Shin S K, Song C H. 2014. Contribution of ammonium nitrate to aerosol optical depth and direct radiative forcing by aerosols over East Asia. Atmos Chem Phys, 14: 2185–2201CrossRefGoogle Scholar
  29. Pope C A, Dockery D W. 2006. Health effects of fine particulate air pollution: Lines that connect. J Air Waste Manage Assoc, 56: 709–742CrossRefGoogle Scholar
  30. Putaud J P, Raes F, Van Dingenen R, Brüggemann E, Facchini M C, Decesari S, Fuzzi S, Gehrig R, Hüglin C, Laj P, Lorbeer G, Maenhaut W, Mihalopoulos N, Müller K, Querol X, Rodriguez S, Schneider J, Spindler G, Brink H, Tørseth K, Wiedensohler A. 2004. A European aerosol phenomenology—2: Chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos Environ, 38: 2579–2595CrossRefGoogle Scholar
  31. Rose A N, McKee J J, Urban M L, Bright E A. 2018. LandScan 2017. Oak Ridge: Oak Ridge National LaboratoryGoogle Scholar
  32. Snider G, Weagle C L, Martin R V, van Donkelaar A, Conrad K, Cunningham D, Gordon C, Zwicker M, Akoshile C, Artaxo P, Anh N X, Brook J, Dong J, Garland R M, Greenwald R, Griffith D, He K, Holben B N, Kahn R, Koren I, Lagrosas N, Lestari P, Ma Z, Vanderlei Martins J, Quel E J, Rudich Y, Salam A, Tripathi S N, Yu C, Zhang Q, Zhang Y, Brauer M, Cohen A, Gibson M D, Liu Y. 2015. SPARTAN: A global network to evaluate and enhance satellite-based estimates of groundlevel particulate matter for global health applications. Atmos Meas Tech, 8: 505–521CrossRefGoogle Scholar
  33. Snider G, Weagle C L, Murdymootoo K K, Ring A, Ritchie Y, Stone E, Walsh A, Akoshile C, Anh N X, Balasubramanian R, Brook J, Qonitan F D, Dong J, Griffith D, He K, Holben B N, Kahn R, Lagrosas N, Lestari P, Ma Z, Misra A, Norford L K, Quel E J, Salam A, Schichtel B, Segev L, Tripathi S, Wang C, Yu C, Zhang Q, Zhang Y, Brauer M, Cohen A, Gibson M D, Liu Y, Vanderlei Martins J, Rudich Y, Martin R V. 2016. Variation in global chemical composition of PM2.5: Emerging results from SPARTAN. Atmos Chem Phys, 16: 9629–9653CrossRefGoogle Scholar
  34. Tong D, Zhang Q, Liu F, Geng G, Zheng Y, Xue T, Hong C, Wu R, Qin Y, Zhao H, Yan L, He K. 2018. Current emissions and future mitigation pathways of coal-fired power plants in China from 2010 to 2030. Environ Sci Technol, 52: 12905–12914CrossRefGoogle Scholar
  35. Wang Y, Zhang Q, Jiang J, Zhou W, Wang B, He K, Duan F, Zhang Q, Philip S, Xie Y. 2014. Enhanced sulfate formation during China’s severe winter haze episode in January 2013 missing from current models. J Geophys Res-Atmos, 119: 10,425–10,440CrossRefGoogle Scholar
  36. West J J, Cohen A, Dentener F, Brunekreef B, Zhu T, Armstrong B, Bell M L, Brauer M, Carmichael G, Costa D L, Dockery D W, Kleeman M, Krzyzanowski M, Künzli N, Liousse C, Lung S C C, Martin R V, Pöschl U, Pope Iii C A, Roberts J M, Russell A G, Wiedinmyer C. 2016. What we breathe impacts our health: Improving understanding of the link between air pollution and health. Environ Sci Technol, 50: 4895–4904CrossRefGoogle Scholar
  37. Xiao Q, Chang H H, Geng G, Liu Y. 2018. An ensemble machine-learning model to predict historical PM2.5 concentrations in China from satellite data. Environ Sci Technol, 52: 13260–13269CrossRefGoogle Scholar
  38. Xiao Q, Wang Y, Chang H H, Meng X, Geng G, Lyapustin A, Liu Y. 2017. Full-coverage high-resolution daily PM2.5 estimation using MAIAC AOD in the Yangtze River Delta of China. Remote Sens Environ, 199: 437–446CrossRefGoogle Scholar
  39. Xing J, Ding D, Wang S, Zhao B, Jang C, Wu W, Zhang F, Zhu Y, Hao J. 2018. Quantification of the enhanced effectiveness of NOx control from simultaneous reductions of VOC and NH3 for reducing air pollution in the Beijing-Tianjin-Hebei region, China. Atmos Chem Phys, 18: 7799–7814CrossRefGoogle Scholar
  40. Xing J, Mathur R, Pleim J, Hogrefe C, Gan C M, Wong D C, Wei C, Gilliam R, Pouliot G. 2015. Observations and modeling of air quality trends over 1990–2010 across the Northern Hemisphere: China, the United States and Europe. Atmos Chem Phys, 15: 2723–2747CrossRefGoogle Scholar
  41. Xue T, Zheng Y, Geng G, Zheng B, Jiang X, Zhang Q, He K. 2017. Fusing observational, satellite remote sensing and air quality model simulated data to estimate spatiotemporal variations of PM2.5 exposure in China. Remote Sens, 9: 221CrossRefGoogle Scholar
  42. Zhang L, Liu L, Zhao Y, Gong S, Zhang X, Henze D K, Capps S L, Fu T M, Zhang Q, Wang Y. 2015. Source attribution of particulate matter pollution over North China with the adjoint method. Environ Res Lett, 10: 084011CrossRefGoogle Scholar
  43. Zhang Q, Streets D G, Carmichael G R, He K B, Huo H, Kannari A, Klimont Z, Park I S, Reddy S, Fu J S, Chen D, Duan L, Lei Y, Wang L T, Yao Z L. 2009. Asian emissions in 2006 for the NASA INTEX-B mission. Atmos Chem Phys, 9: 5131–5153CrossRefGoogle Scholar
  44. Zhang X, Zhang Q, Hong C, Zheng Y, Geng G, Tong D, Zhang Y, Zhang X. 2018. Enhancement of PM2.5 Concentrations by Aerosol-Meteorology Interactions Over China. J Geophys Res Atmos, 123: 1179-1194CrossRefGoogle Scholar
  45. Zhang X Y, Wang Y Q, Niu T, Zhang X C, Gong S L, Zhang Y M, Sun J Y. 2012. Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos Chem Phys, 12: 779–799CrossRefGoogle Scholar
  46. Zhao Y, Nielsen C P, Lei Y, McElroy M B, Hao J. 2011. Quantifying the uncertainties of a bottom-up emission inventory of anthropogenic atmospheric pollutants in China. Atmos Chem Phys, 11: 2295–2308CrossRefGoogle Scholar
  47. Zheng B, Huo H, Zhang Q, Yao Z L, Wang X T, Yang X F, Liu H, He K B. 2014. High-resolution mapping of vehicle emissions in China in 2008. Atmos Chem Phys, 14: 9787–9805CrossRefGoogle Scholar
  48. Zheng B, Tong D, Li M, Liu F, Hong C, Geng G, Li H, Li X, Peng L, Qi J, Yan L, Zhang Y, Zhao H, Zheng Y, He K, Zhang Q. 2018. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos Chem Phys, 18: 14095–14111CrossRefGoogle Scholar
  49. Zheng B, Zhang Q, Zhang Y, He K B, Wang K, Zheng G J, Duan F K, Ma Y L, Kimoto T. 2015. Heterogeneous chemistry: A mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China. Atmos Chem Phys, 15: 2031–2049CrossRefGoogle Scholar
  50. Zheng G J, Duan F K, Su H, Ma Y L, Cheng Y, Zheng B, Zhang Q, Huang T, Kimoto T, Chang D, Pöschl U, Cheng Y F, He K B. 2015. Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions. Atmos Chem Phys, 15: 2969–2983CrossRefGoogle Scholar
  51. Zheng Y, Xue T, Zhang Q, Geng G, Tong D, Li X, He K. 2017. Air quality improvements and health benefits from China’s clean air action since 2013. Environ Res Lett, 12: 114020CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Guannan Geng
    • 1
  • Qingyang Xiao
    • 1
  • Yixuan Zheng
    • 2
  • Dan Tong
    • 2
    • 3
  • Yuxuan Zhang
    • 2
  • Xiaoye Zhang
    • 4
  • Qiang Zhang
    • 2
  • Kebin He
    • 3
    Email author
  • Yang Liu
    • 1
    Email author
  1. 1.Department of Environmental Health, Rollins School of Public HealthEmory UniversityAtlantaUSA
  2. 2.Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System ScienceTsinghua UniversityBeijingChina
  3. 3.State Key Joint Laboratory of Environment Simulation and Pollution Control, School of EnvironmentTsinghua UniversityBeijingChina
  4. 4.Key Laboratory for Atmospheric ChemistryChinese Academy of Meteorological Sciences, CMABeijingChina

Personalised recommendations