Continental drift, plateau uplift, and the evolutions of monsoon and arid regions in Asia, Africa, and Australia during the Cenozoic

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Monsoon and arid regions in the Asia-Africa-Australia (A-A-A) realm occupy more than 60% of the total area of these continents. Geological evidence showed that significant changes occurred to the A-A-A environments of the monsoon and arid regions, the land-ocean configuration in the Eastern Hemisphere, and the topography of the Tibetan Plateau (TP) in the Cenozoic. Motivated by this background, numerical experiments for 5 typical geological periods during the Cenozoic were conducted using a coupled ocean-atmosphere general circulation model to systemically explore the formations and evolutionary histories of the Cenozoic A-A-A monsoon and arid regions under the influences of continental drift and plateau uplift. Results of the numerical experiments indicate that the timings and causes of the formations of monsoon and arid regions in the A-A-A realm were very different. The northern and southern African monsoons existed during the mid-Paleocene, while the South Asian monsoon appeared in the Eocene after the Indian Subcontinent moved into the tropical Northern Hemisphere. In contrast, the East Asian monsoon and northern Australian monsoon were established much later in the Miocene. The establishment of the tropical monsoons in northern and southern Africa, South Asia, and Australia were determined by both the continental drift and seasonal migration of the Inter-Tropical Convergence Zone (ITCZ), while the position and height of the TP were the key factor for the establishment of the East Asian monsoon. The presence of the subtropical arid regions in northern and southern Africa, Asia, and Australia depended on the positions of the continents and the control of the planetary scale subtropical high pressure zones, while the arid regions in the Arabian Peninsula and West Asia were closely related to the retreat of the Paratethys Sea. The formation of the mid-latitude arid region in the Asian interior, on the other hand, was the consequence of the uplift of the TP. These results from this study provide insight to the important roles played by the earth’s tectonic boundary conditions in the formations and evolutions of regional climates during geological times.

This is a preview of subscription content, log in to check access.

References

  1. Alaei Kakhki N, Aliabadian M, Schweizer M. 2016. Out of Africa: Biogeographic history of the open-habitat chats (Aves, Muscicapidae: Saxicolinae) across arid areas of the old world. Zool Scr, 45: 237–251

    Article  Google Scholar 

  2. An Z, Kutzbach J E, Prell W L, Porter S C. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 411: 62–66

    Article  Google Scholar 

  3. An Z. 2000. The history and variability of the East Asian paleomonsoon climate. Quat Sci Rev, 19: 171–187

    Article  Google Scholar 

  4. Beerling D J, Royer D L. 2011. Convergent Cenozoic CO2 history. Nat Geosci, 4: 418–420

    Article  Google Scholar 

  5. Berry G, Reeder M J. 2014. Objective identification of the intertropical convergence zone: Climatology and trends from the ERA-Interim. J Clim, 27: 1894–1909

    Article  Google Scholar 

  6. Besse J, Courtillot V, Pozzi J P, Westphal M, Zhou Y X. 1984. Palaeomagnetic estimates of crustal shortening in the Himalayan thrusts and Zangbo suture. Nature, 311: 621–626

    Article  Google Scholar 

  7. Bobe R. 2006. The evolution of arid ecosystems in eastern Africa. J Arid Environ, 66: 564–584

    Article  Google Scholar 

  8. Bosboom R, Dupont-Nivet G, Grothe A, Brinkhuis H, Villa G, Mandic O, Stoica M, Huang W, Yang W, Guo Z, Krijgsman W. 2014. Linking Tarim Basin sea retreat (west China) and Asian aridification in the late Eocene. Basin Res, 26: 621–640

    Article  Google Scholar 

  9. Bowler J M, Wyrwoll K H, Lu Y. 2001. Variations of the northwest Australian summer monsoon over the last 300,000 years: The paleohydrological record of the Gregory (Mulan) Lakes System. Quat Int, 83–85: 63–80

    Article  Google Scholar 

  10. Caley T, Malaizé B, Revel M, Ducassou E, Wainer K, Ibrahim M, Shoeaib D, Migeon S, Marieu V. 2011. Orbital timing of the Indian, East Asian and African boreal monsoons and the concept of a ‘global monsoon’. Quat Sci Rev, 30: 3705–3715

    Article  Google Scholar 

  11. Carrapa B, Huntington K W, Clementz M, Quade J, Bywater-Reyes S, Schoenbohm L M, Canavan R R. 2014. Uplift of the Central Andes of NW Argentina associated with upper crustal shortening, revealed by multiproxy isotopic analyses. Tectonics, 33: 1039–1054

    Article  Google Scholar 

  12. Caves J K, Moragne D Y, Ibarra D E, Bayshashov B U, Gao Y, Jones M M, Zhamangara A, Arzhannikova A V, Arzhannikov S G, Chamberlain C P. 2016. The Neogene de-greening of Central Asia. Geology, 44: 887–890

    Article  Google Scholar 

  13. Chatterjee S, Goswami A, Scotese C R. 2013. The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Res, 23: 238–267

    Article  Google Scholar 

  14. Chiang J C H, Bitz C M. 2005. Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Clim Dyn, 25: 477–496

    Article  Google Scholar 

  15. Colin C, Siani G, Liu Z, Blamart D, Skonieczny C, Zhao Y, Bory A, Frank N, Duchamp-Alphonse S, Thil F, Richter T, Kissel C, Gargani J. 2014. Late Miocene to early Pliocene climate variability off NW Africa (ODP Site 659). Palaeogeogr Palaeoclimatol Palaeoecol, 401: 81–95

    Article  Google Scholar 

  16. DeCelles P G, Quade J, Kapp P, Fan M, Dettman D L, Ding L. 2007. High and dry in central Tibet during the Late Oligocene. Earth Planet Sci Lett, 253: 389–401

    Article  Google Scholar 

  17. deMenocal P B. 1995. Plio-pleistocene African climate. Science, 270: 53–59

    Article  Google Scholar 

  18. Dettman D L, Fang X, Garzione C N, Li J. 2003. Uplift-driven climate change at 12 Ma: A long δ 18O record from the NE margin of the Tibetan plateau. Earth Planet Sci Lett, 214: 267–277

    Article  Google Scholar 

  19. Ding L, Xu Q, Yue Y, Wang H, Cai F, Li S. 2014. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene—Eocene Linzhou Basin. Earth Planet Sci Lett, 392: 250–264

    Article  Google Scholar 

  20. Ding Z, Rutter N, Jingtai H, Tungsheng L. 1992. A coupled environmental system formed at about 2.5 Ma in East Asia. Palaeogeogr Palaeoclimatol Palaeoecol, 94: 223–242

    Article  Google Scholar 

  21. Fan M, Carrapa B. 2014. Late Cretaceous-early Eocene Laramide uplift, exhumation, and basin subsidence in Wyoming: Crustal responses to flat slab subduction. Tectonics, 33: 509–529

    Article  Google Scholar 

  22. Fang X, Zan J, Appel E, Lu Y, Song C, Dai S, Tuo S. 2015. An Eocene—Miocene continuous rock magnetic record from the sediments in the Xining Basin, NW China: Indication for Cenozoic persistent drying driven by global cooling and Tibetan Plateau uplift. Geophys J Int, 201: 78–89

    Article  Google Scholar 

  23. Fujioka T, Chappell J. 2010. History of Australian aridity: chronology in the evolution of arid landscapes. Geol Soc London Spec Publ, 346: 121–139

    Article  Google Scholar 

  24. Gadgil S. 2003. The Indian Monsoon and its variability. Annu Rev Earth Planet Sci, 31: 429–467

    Article  Google Scholar 

  25. Gadgil S. 2018. The monsoon system: Land-sea breeze or the ITCZ? J Earth Syst Sci, 127: 1

    Article  Google Scholar 

  26. Guo Z T, Ruddiman W F, Hao Q Z, Wu H B, Qiao Y S, Zhu R X, Peng S Z, Wei J J, Yuan B Y, Liu T S. 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416: 159–163

    Article  Google Scholar 

  27. Guo Z T, Sun B, Zhang Z S, Peng S Z, Xiao G Q, Ge J Y, Hao Q Z, Qiao Y S, Liang M Y, Liu J F, Yin Q Z, Wei J J. 2008. A major reorganization of Asian climate by the early Miocene. Clim Past, 4: 153–174

    Article  Google Scholar 

  28. Guo Z. 2017. Loess Plateau attests to the onsets of monsoon and deserts (in Chinese). Sci Sin Terrae, 47: 421–437

    Article  Google Scholar 

  29. Gupta A K, Yuvaraja A, Prakasam M, Clemens S C, Velu A. 2015. Evolution of the South Asian monsoon wind system since the late Middle Miocene. Palaeogeogr Palaeoclimatol Palaeoecol, 438: 160–167

    Article  Google Scholar 

  30. Gurnis M, Turner M, Zahirovic S, DiCaprio L, Spasojevic S, Müller R D, Boyden J, Seton M, Manea V C, Bower D J. 2012. Plate tectonic reconstructions with continuously closing plates. Comput Geosci, 38: 35–42

    Article  Google Scholar 

  31. Hall R. 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. J Asian Earth Sci, 20: 353–431

    Article  Google Scholar 

  32. Herold N, Seton M, Müller R D, You Y, Huber M. 2008. Middle Miocene tectonic boundary conditions for use in climate models. Geochem Geophys Geosyst, 9: Q10009

    Article  Google Scholar 

  33. Huber M, Goldner A. 2012. Eocene monsoons. J Asian Earth Sci, 44: 3–23

    Article  Google Scholar 

  34. Jones C, Gregory J, Thorpe R, Cox P, Murphy J, Sexton D, Valdes P. 2005. Systematic optimisation and climate simulation of FAMOUS, a fast version of HadCM3. Clim Dyn, 25: 189–204

    Article  Google Scholar 

  35. Kroon D, Steens T N F, Troelstra S R. 1991. Onset of monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foraminifers. Proc Ocean Drill Prog Sci Res, 117: 257–263

    Google Scholar 

  36. Kutzbach J E, Prell W L, Ruddiman W F. 1993. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. J Geol, 101: 177–190

    Article  Google Scholar 

  37. Läderach A, Raible C C. 2013. Lower-tropospheric humidity: climatology, trends and the relation to the ITCZ. Tellus Ser A-Dyn Meteorol Oceanogr, 65: 20413

    Article  Google Scholar 

  38. Li J X, Yue L P, Roberts A P, Hirt A M, Pan F, Guo L, Xu Y, Xi R G, Guo L, Qiang X K, Gai C C, Jiang Z X, Sun Z M, Liu Q S. 2018a. Global cooling and enhanced Eocene Asian mid-latitude interior aridity. Nat Commun, 9: 3026

    Article  Google Scholar 

  39. Li X, Zhang R, Zhang Z, Yan Q. 2018b. What enhanced the aridity in Eocene Asian inland: Global cooling or early Tibetan Plateau uplift? Palaeogeogr Palaeoclimatol Palaeoecol, 510: 6–14

    Article  Google Scholar 

  40. Licht A, van Cappelle M, Abels H A, Ladant J B, Trabucho-Alexandre J, France-Lanord C, Donnadieu Y, Vandenberghe J, Rigaudier T, Lécuyer C, Terry Jr D, Adriaens R, Boura A, Guo Z, Soe A N, Quade J, Dupont-Nivet G, Jaeger J J. 2014. Asian monsoons in a late Eocene greenhouse world. Nature, 513: 501–506

    Article  Google Scholar 

  41. Linder H P. 2017. East African Cenozoic vegetation history. Evol Anthropol, 26: 300–312

    Article  Google Scholar 

  42. Liu X D, Dong B W. 2013. Influence of the Tibetan Plateau uplift on the Asian monsoon-arid environment evolution. Chin Sci Bull, 58: 4277–4291

    Article  Google Scholar 

  43. Liu X, Dong B, Yin Z Y, Smith R S, Guo Q. 2017. Continental drift and plateau uplift control origination and evolution of Asian and Australian monsoons. Sci Rep, 7: 40344

    Article  Google Scholar 

  44. Liu X, Guo Q, Guo Z, Yin Z Y, Dong B, Smith R. 2015a. Where were the monsoon regions and arid zones in Asia prior to the Tibetan Plateau uplift? Nat Sci Rev, 2: 403–416

    Article  Google Scholar 

  45. Liu X, Sun H, Miao Y, Dong B, Yin Z Y. 2015b. Impacts of uplift of northern Tibetan Plateau and formation of Asian inland deserts on regional climate and environment. Quat Sci Rev, 116: 1–14

    Article  Google Scholar 

  46. Liu X, Yin Z Y. 2002. Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol, 183: 223–245

    Article  Google Scholar 

  47. Liu X, Sun H, Miao Y, Dong B, Yin Z Y. 2015b. Impacts of uplift of northern Tibetan Plateau and formation of Asian inland deserts on regional climate and environment. Quat Sci Rev, 116: 1–14

    Article  Google Scholar 

  48. Liu X, Yin Z Y. 2002. Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol, 183: 223–245

    Article  Google Scholar 

  49. Marin J, Donnellan S C, Hedges S B, Doughty P, Hutchinson M N, Cruaud C, Vidal N. 2013. Tracing the history and biogeography of the Australian blindsnake radiation. J Biogeogr, 40: 928–937

    Article  Google Scholar 

  50. Martin H A. 2006. Cenozoic climatic change and the development of the arid vegetation in Australia. J Arid Environ, 66: 533–563

    Article  Google Scholar 

  51. McIlveen R. 2010. Fundamentals of Weather and Climate. 2nd ed. New York: Oxford University Press. 527–534

    Google Scholar 

  52. Miller H B D, Vasconcelos P M, Eiler J M, Farley K A. 2017. A Cenozoic terrestrial paleoclimate record from He dating and stable isotope geochemistry of goethites from Western Australia. Geology, 45: 895–898

    Article  Google Scholar 

  53. Molnar P, Stock J M. 2009. Slowing of India’s convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics, 28: TC3001

    Article  Google Scholar 

  54. Nicholson S E. 2009. A revised picture of the structure of the “monsoon” and land ITCZ over West Africa. Clim Dyn, 32: 1155–1171

    Article  Google Scholar 

  55. Peel M C, Finlayson B L, McMahon T A. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci, 11: 1633–1644

    Article  Google Scholar 

  56. Polissar P J, Freeman K H, Rowley D B, McInerney F A, Currie B S. 2009. Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers. Earth Planet Sci Lett, 287: 64–76

    Article  Google Scholar 

  57. Popov S V, Shcherba I G, Ilyina L B, Nevesskaya L A, Paramonova N P, Khondkarian S O, Magyar I. 2006. Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeogr Palaeoclimatol Palaeoecol, 238: 91–106

    Article  Google Scholar 

  58. Quade J, Cerling T E, Bowman J R. 1989. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature, 342: 163–166

    Article  Google Scholar 

  59. Quan C, Liu Y S C, Utescher T. 2012. Eocene monsoon prevalence over China: A paleobotanical perspective. Palaeogeogr Palaeoclimatol Palaeoecol, 365–366: 302–311

    Article  Google Scholar 

  60. Ramstein G, Fluteau F, Besse J, Joussaume S. 1997. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years. Nature, 386: 788–795

    Article  Google Scholar 

  61. Rea D K, Snoeckx H, Joseph L H. 1998. Late Cenozoic Eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere. Paleoceanography, 13: 215–224

    Article  Google Scholar 

  62. Rix M G, Cooper S J B, Meusemann K, Klopfstein S, Harrison S E, Harvey M S, Austin A D. 2017. Post-Eocene climate change across continental Australia and the diversification of Australasian spiny trapdoor spiders (Idiopidae: Arbanitinae). Mol Phylogenet Evol, 109: 302–320

    Article  Google Scholar 

  63. Rodwell M J, Hoskins B J. 1996. Monsoons and the dynamics of deserts. Q J R Meteorol Soc, 122: 1385–1404

    Article  Google Scholar 

  64. Rowley D B, Currie B S. 2006. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 439: 677–681

    Article  Google Scholar 

  65. Scotese C R. 2004. A continental drift flipbook. J Geol, 112: 729–741

    Article  Google Scholar 

  66. Searle M P, Windley B F, Coward M P, Cooper D J W, Rex A J, Rex D, Tingdong L, Xuchang X, Jan M Q, Thakur V C, Kumar S. 1987. The closing of Tethys and the tectonics of the Himalaya. Geol Soc Am Bull, 98: 678–701

    Article  Google Scholar 

  67. Senut B, Pickford M, Ségalen L. 2009. Neogene desertification of Africa. C R Geosci, 341: 591–602

    Article  Google Scholar 

  68. Shi Z, Liu X, An Z, Yi B, Yang P, Mahowald N. 2011. Simulated variations of eolian dust from inner Asian deserts at the mid-Pliocene, last glacial maximum, and present day: Contributions from the regional tectonic uplift and global climate change. Clim Dyn, 37: 2289–2301

    Article  Google Scholar 

  69. Shukla A, Mehrotra R C, Spicer R A, Spicer T E V, Kumar M. 2014. Cool equatorial terrestrial temperatures and the South Asian monsoon in the Early Eocene: Evidence from the Gurha Mine, Rajasthan, India. Palaeogeogr Palaeoclimatol Palaeoecol, 412: 187–198

    Article  Google Scholar 

  70. Smith R S, Gregory J M, Osprey A. 2008. A description of the FAMOUS (version XDBUA) climate model and control run. Geosci Model Dev, 1: 53–68

    Article  Google Scholar 

  71. Smith R S, Gregory J. 2012. The last glacial cycle: Transient simulations with an AOGCM. Clim Dyn, 38: 1545–1559

    Article  Google Scholar 

  72. Spicer R, Yang J, Herman A, Kodrul T, Aleksandrova G, Maslova N, Spicer T, Ding L, Xu Q, Shukla A, Srivastava G, Mehrotra R, Liu X Y, Jin J H. 2017. Paleogene monsoons across India and South China: Drivers of biotic change. Gondwana Res, 49: 350–363

    Article  Google Scholar 

  73. Sun J, Windley B F. 2015. Onset of aridification by 34 Ma across the Eocene-Oligocene transition in Central Asia. Geology, 43: 1015–1018

    Article  Google Scholar 

  74. Sun J, Gong Z, Tian Z, Jia Y, Windley B. 2015. Late Miocene stepwise aridification in the Asian interior and the interplay between tectonics and climate. Palaeogeogr Palaeoclimatol Palaeoecol, 421: 48–59

    Article  Google Scholar 

  75. Sun X, Wang P. 2005. How old is the Asian monsoon system?—Palaeobotanical records from China. Palaeogeogr Palaeoclimatol Palaeoecol, 222: 181–222

    Article  Google Scholar 

  76. Sun Y, An Z. 2002. History and variability of Asian interior aridity recorded by eolian flux in the Chinese Loess Plateau during the past 7 Ma. Sci China Ser D-Earth Sci, 45: 420–429

    Article  Google Scholar 

  77. Veranso-Libalah M C, Kadereit G, Stone R D, Couvreur T L P. 2018. Multiple shifts to open habitats in Melastomateae (Melastomataceae) congruent with the increase of African Neogene climatic aridity. J Biogeogr, 45: 1420–1431

    Article  Google Scholar 

  78. Wang B, Ding Q. 2006. Changes in global monsoon precipitation over the past 56 years. Geophys Res Lett, 33: L06711

    Google Scholar 

  79. Wang B, Liu J, Kim H J, Webster P J, Yim S Y. 2012. Recent change of the global monsoon precipitation (1979–2008). Clim Dyn, 39: 1123–1135

    Article  Google Scholar 

  80. Wang C, Dai J, Zhao X, Li Y, Graham S A, He D, Ran B, Meng J. 2014. Outward-growth of the Tibetan Plateau during the Cenozoic: A review. Tectonophysics, 621: 1–43

    Article  Google Scholar 

  81. Wang P X. 2009. Global monsoon in a geological perspective. Chin Sci Bull, 54: 1113–1136

    Google Scholar 

  82. Webster P J. 1987. The elementary monsoon. In: Fein J S, Stephens P L, eds. Monsoons. New York: John Wiley. 3–32

    Google Scholar 

  83. Webster P J. 2004. The elementary Hadley circulation. In: Diaz H F, Bradley R S, eds. Present, Past and Future. Dordrecht: Springer. 9–60

    Google Scholar 

  84. Wei H H, Meng Q R, Ding L, Li Z Y. 2013. Tertiary evolution of the western Tarim basin, northwest China: A tectono-sedimentary response to northward indentation of the Pamir salient. Tectonics, 32: 558–575

    Article  Google Scholar 

  85. Williams M. 2015. Interactions between fluvial and eolian geomorphic systems and processes: Examples from the Sahara and Australia. Catena, 134: 4–13

    Article  Google Scholar 

  86. Wu G, Liu Y, He B, Bao Q, Duan A, Jin F F. 2012. Thermal controls on the Asian summer monsoon. Sci Rep, 2: 404

    Article  Google Scholar 

  87. Wu G X, Liu Y, Zhu X, Li W, Ren R, Duan A, Liang X. 2009. Multi-scale forcing and the formation of subtropical desert and monsoon. Ann Geophys, 27: 3631–3644

    Article  Google Scholar 

  88. Wyrwoll K H, Miller G H. 2001. Initiation of the Australian summer monsoon 14,000 years ago. Quat Int, 83–85: 119–128

    Article  Google Scholar 

  89. Xie P, Arkin P A. 1996. Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J Clim, 9: 840–858

    Article  Google Scholar 

  90. Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292: 686–693

    Article  Google Scholar 

  91. Žagar N, Skok G, Tribbia J. 2011. Climatology of the ITCZ derived from ERA Interim reanalyses. J Geophys Res, 116: D15103

    Article  Google Scholar 

  92. Zhang Z, Flatøy F, Wang H, Bethke I, Bentsen M, Guo Z. 2012. Early Eocene Asian climate dominated by desert and steppe with limited monsoons. J Asian Earth Sci, 44: 24–35

    Article  Google Scholar 

  93. Zhang Z, Ramstein G, Schuster M, Li C, Contoux C, Yan Q. 2014. Aridification of the Sahara desert caused by Tethys Sea shrinkage during the Late Miocene. Nature, 513: 401–404

    Article  Google Scholar 

  94. Zhao S Q. 1983. A new scheme for comprehensive geographical regionalization in China. Acta Geogr Sin, 38: 1–10

    Google Scholar 

  95. Zhuang G, Pagani M, Zhang Y G. 2017. Monsoonal upwelling in the western Arabian Sea since the middle Miocene. Geology, 45: 655–658

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the anonymous reviewers who provided valuable comments and suggestions that helped revision of the manuscript. This work was jointly supported by the National Natural Science Foundation of China (Grant Nos. 41690115 & 41572150) and the Strategic Priority Research Program (A) of Chinese Academy of Sciences (Grant No. XDA20070103). B Dong and R S Smith were supported by the U.K. National Centre for Atmospheric Science-Climate (NCAS-Climate) at the University of Reading. Z Y Yin was in part supported by the University of San Diego (FRG # 2017-18).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Dong, B., Yin, Z. et al. Continental drift, plateau uplift, and the evolutions of monsoon and arid regions in Asia, Africa, and Australia during the Cenozoic. Sci. China Earth Sci. 62, 1053–1075 (2019). https://doi.org/10.1007/s11430-018-9337-8

Download citation

Keywords

  • Cenozoic
  • Monsoon region
  • Arid region
  • Continental drift
  • Tibetan Plateau uplift
  • Climate simulation