Skip to main content
Log in

Characteristics of particle fluxes in the Prydz Bay polynya, Eastern Antarctica

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The settling of particulate carbon in seawater is a key component of the ocean carbon cycle. We deployed a set of sediment trap in the polynya of Prydz Bay from December 2010 to December 2011 to investigate the seasonal variations in particle fluxes. There was a clear seasonal variation in the particle fluxes, with maximum and minimum fluxes recorded during the summer and winter, respectively. The average total flux over the sampling period was 193.58 mg m−2 d−1, and the average fluxes of organic carbon (Corg), inorganic carbon (Cinorg), and biogenic silica (Sibio) were 721.78, 28.67, and 2382.80 μmol m−2 d−1, respectively. Sibio was the main contributor to the total mass flux, and strongly correlated with Corg. The high Sibio/Corg molar ratios (>1) suggest that Corg was transported to deep sea in association with Sibio. By comparing remote sensing data of sea ice and chlorophyll in the upper water column, we found that the dynamics of carbon fluxes were closely related to changes in sea ice. Algae in sea ice may have a key role in biological pump processes in early summer. Apart from the ice algae bloom period, variations in carbon fluxes generally corresponded with phytoplankton blooms in the upper water. The ballast effect controlled the particle settling velocity and the efficiency of the biological pump. Sea ice rafts initiated the first particle export event and enhanced the particle settling efficiency during melting period. As diatoms might become less dominant in the ice-free area, sea ice loss may cause the efficiency of the biological pump efficiency to decrease over the long term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alldredge A L, Gotschalk C C. 1989. Direct observations of the mass flocculation of diatom blooms: Characteristics, settling velocities and formation of diatom aggregates. Deep Sea Res Part A-Oceanogr Res Pap, 36: 159–171

    Article  Google Scholar 

  • Armstrong R A, Peterson M L, Lee C, Wakeham S G. 2009. Settling velocity spectra and the ballast ratio hypothesis. Deep-Sea Res Part IITop Stud Oceanogr, 56: 1470–1478

    Article  Google Scholar 

  • Arrigo K R. 2014. Sea ice ecosystems. Annu Rev Mar Sci, 6: 439–467

    Article  Google Scholar 

  • Arrigo K R. 1997. Primary production in Antarctic sea ice. Science, 276: 394–397

    Article  Google Scholar 

  • Arrigo K R, van Dijken G L. 2003. Phytoplankton dynamics within 37 Antarctic coastal polynya systems. J Geophys Res, 108: 3271

    Article  Google Scholar 

  • Arrigo K R, Robinson D H, Worthen D L, Dunbar R B, Ditullio G R, Vanwoert M, Lizotte M P. 1999. Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science, 283: 365–367

    Article  Google Scholar 

  • Arrigo K R, Thomas D N. 2004. Large scale importance of sea ice biology in the Southern Ocean. Antarct Sci, 16: 471–486

    Article  Google Scholar 

  • Arrigo K R, van Dijken G L, Bushinsky S. 2008. Primary production in the Southern Ocean, 1997–2006. J Geophys Res, 113: C08004

    Article  Google Scholar 

  • Blain S, Tréguer P, Belviso S, Bucciarelli E, Denis M, Desabre S, Fiala M, Martin Jézéquel V, Le Fèvre J, Mayzaud P, Marty J C, Razouls S. 2001. A biogeochemical study of the island mass effect in the context of the iron hypothesis: Kerguelen Islands, Southern Ocean. Deep-Sea Res Part I-Oceanogr Res Pap, 48: 163–187

    Article  Google Scholar 

  • Boyd P W, Ellwood M J. 2010. The biogeochemical cycle of iron in the ocean. Nat Geosci, 3: 675–682

    Article  Google Scholar 

  • Brzezinski M A. 1985. The Si:C:N ratio of marine diatoms: Interspecific variability and the effect of some environmental variables. J Phycol, 21: 347–357

    Article  Google Scholar 

  • Brzezinski M A, Nelson D M. 1989. Seasonal changes in the silicon cycle within a Gulf Stream warm-core ring. Deep Sea Res Part A-Oceanogr Res Pap, 36: 1009–1030

    Article  Google Scholar 

  • Collier R, Dymond J, Honjo S, Manganini S, Francois R, Dunbar R. 2000. The vertical flux of biogenic and lithogenic material in the Ross Sea: Moored sediment trap observations 1996–1998. Deep-Sea Res Part IITop Stud Oceanogr, 47: 3491–3520

    Article  Google Scholar 

  • de Baar H, Gerringa L, Laan P, Timmermans K. 2008. Efficiency of carbon removal per added iron in ocean iron fertilization. Mar Ecol Prog Ser, 364: 269–282

    Article  Google Scholar 

  • de Jong J, Schoemann V, Lannuzel D, Croot P, de Baar H, Tison J L. 2012. Natural iron fertilization of the Atlantic sector of the Southern Ocean by continental shelf sources of the Antarctic Peninsula. J Geophys Res, 117: G01029

    Google Scholar 

  • Duce R A, Tindale N W. 1991. Atmospheric transport of iron and its deposition in the ocean. Limnol Oceanogr, 36: 1715–1726

    Article  Google Scholar 

  • Ducklow H, Steinberg D, Buesseler K. 2001. Upper ocean carbon export and the biological pump. Oceanography, 14: 50–58

    Article  Google Scholar 

  • Ducklow H W, Wilson S E, Post A F, Stammerjohn S E, Erickson M, Lee S H, Lowry K E, Sherrell R M, Yager P L. 2015. Particle flux on the continental shelf in the Amundsen Sea Polynya and Western Antarctic Peninsula. Elem Sci Anth, 3: 000046

    Article  Google Scholar 

  • Ducklow H W, Erickson M, Kelly J, Montes-Hugo M, Ribic C A, Smith R C, Stammerjohn S E, Karl D M. 2008. Particle export from the upper ocean over the continental shelf of the west Antarctic Peninsula: A long-term record, 1992–2007. Deep-Sea Res Part II-Top Stud Oceanogr, 55: 2118–2131

    Article  Google Scholar 

  • Elrod V A, Berelson W M, Coale K H, Johnson K S. 2004. The flux of iron from continental shelf sediments: A missing source for global budgets. Geophys Res Lett, 31: L12307

    Article  Google Scholar 

  • Eveleth R, Cassar N, Sherrell R M, Ducklow H, Meredith M P, Venables H J, Lin Y, Li Z. 2017. Ice melt influence on summertime net community production along the Western Antarctic Peninsula. Deep-Sea Res Part II-Top Stud Oceanogr, 139: 89–102

    Article  Google Scholar 

  • Fischer G, Karakas G. 2009. Sinking rates and ballast composition of particles in the Atlantic Ocean: Implications for the organic carbon fluxes to the deep ocean. Biogeosciences, 6: 85–102

    Article  Google Scholar 

  • Gibson J A E, Trull T, Nichols P D, Summons R E, McMinn A. 1999. Sedimentation of 13C-rich organic matter from Antarctic sea-ice algae: A potential indicator of past sea-ice extent. Geology, 27: 331–334

    Article  Google Scholar 

  • Hassler C S, Schoemann V. 2009. Bioavailability of organically bound Fe to model phytoplankton of the Southern Ocean. Biogeosciences, 6: 2281–2296

    Article  Google Scholar 

  • He J H, Ma H, Chen L Q, Xiang B Q, Zeng X Z, Yin M D, Zeng W. 2008. The investigation on particulate organic carbon fluxes with disequilibria between thorium-234 and uranium-238 in the Prydz Bay, the Southern Ocean. Acta Oceanol Sin, 27: 21–29

    Google Scholar 

  • Honjo S. 2004. Particle export and the biological pump in the Southern Ocean. Antarct Sci, 16: 501–516

    Article  Google Scholar 

  • Honjo S, Francois R, Manganini S, Dymond J, Collier R. 2000. Particle fluxes to the interior of the Southern Ocean in the Western Pacific sector along 170°W. Deep-Sea Res Part II-Top Stud Oceanogr, 47: 3521–3548

    Article  Google Scholar 

  • Honjo S, Manganini S J, Krishfield R A, Francois R. 2008. Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: A synthesis of global sediment trap programs since 1983. Prog Oceanography, 76: 217–285

    Article  Google Scholar 

  • IPCC. 2013. Climate change 2013. In: Stocker T F, Qin D, Plattner G K, et al. eds. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press

  • Iversen M H, Ploug H. 2010. Ballast minerals and the sinking carbon flux in the ocean: Carbon-specific respiration rates and sinking velocity of marine snow aggregates. Biogeosciences, 7: 2613–2624

    Article  Google Scholar 

  • Jennings J C, Gordon L I, Nelson D M. 1984. Nutrient depletion indicates high primary productivity in the Weddell Sea. Nature, 309: 51–54

    Article  Google Scholar 

  • Jickells T D, An Z S, Andersen K K, Baker A R, Bergametti G, Brooks N, Cao J J, Boyd P W, Duce R A, Hunter K A, Kawahata H, Kubilay N, laRoche J, Liss P S, Mahowald N, Prospero J M, Ridgwell A J, Tegen I, Torres R. 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 308: 67–71

    Article  Google Scholar 

  • Kaartokallio H. 2004. Food web components, and physical and chemical properties of Baltic Sea ice. Mar Ecol Prog Ser, 273: 49–63

    Article  Google Scholar 

  • Kanna N, Nishioka J. 2016. Bio-availability of iron derived from subarctic first-year sea ice. Mar Chem, 186: 189–197

    Article  Google Scholar 

  • Kim D, Kim D Y, Kim Y J, Kang Y C, Shim J. 2003. Downward fluxes of biogenic material in Bransfield Strait, Antarctica. Antarct Sci, 16: 227–237

    Article  Google Scholar 

  • Kim M, Hwang J, Kim H J, Kim D, Yang E J, Ducklow H W, Hyoung S L, Lee S H, Park J, Lee S H. 2015. Sinking particle flux in the sea ice zone of the Amundsen Shelf, Antarctica. Deep-Sea Res Part I-Oceanogr Res Pap, 101: 110–117

    Article  Google Scholar 

  • Klaas C, Archer D E. 2002. Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio. Glob Biogeochem Cycle, 16: 63-1–63-14

    Article  Google Scholar 

  • Lam P J, Bishop J K B. 2008. The continental margin is a key source of iron to the HNLC North Pacific Ocean. Geophys Res Lett, 35: L07608

    Article  Google Scholar 

  • Lannuzel D, Schoemann V, de Jong J, Chou L, Delille B, Becquevort S, Tison J L. 2008. Iron study during a time series in the western Weddell pack ice. Mar Chem, 108: 85–95

    Article  Google Scholar 

  • Lannuzel D, Schoemann V, de Jong J, Tison J L, Chou L. 2007. Distribution and biogeochemical behaviour of iron in the East Antarctic sea ice. Mar Chem, 106: 18–32

    Article  Google Scholar 

  • Lannuzel D, van der Merwe P C, Townsend A T, Bowie A R. 2014. Size fractionation of iron, manganese and aluminium in Antarctic fast ice reveals a lithogenic origin and low iron solubility. Mar Chem, 161: 47–56

    Article  Google Scholar 

  • Lee S H, Hwang J, Ducklow H W, Hahm D, Lee S H, Kim D, Hyun J H, Park J, Ha H K, Kim T W, Yang E J, Shin H C. 2017. Evidence of minimal carbon sequestration in the productive Amundsen Sea polynya. Geophys Res Lett, 44: 7892–7899

    Article  Google Scholar 

  • Lizotte M P. 2001. The contributions of sea ice algae to Antarctic marine primary production. Am Zool, 41: 57–73

    Google Scholar 

  • Long M C, Thomas L N, Dunbar R B. 2012. Control of phytoplankton bloom inception in the Ross Sea, Antarctica, by Ekman restratification. Glob Biogeochem Cycle, 26: GB1006

    Article  Google Scholar 

  • Ma H, Zeng Z, He J, Han Z, Lin W, Chen L, Cheng J, Zeng S. 2014. 234Thderived particulate organic carbon export in the Prydz Bay, Antarctica. J Radioanal Nucl Chem, 299: 621–630

    Article  Google Scholar 

  • Maiti K, Charette M A, Buesseler K O, Kahru M. 2013. An inverse relationship between production and export efficiency in the Southern Ocean. Geophys Res Lett, 40: 1557–1561

    Article  Google Scholar 

  • Malinverno E, Maffioli P, Gariboldi K. 2016. Latitudinal distribution of extant fossilizable phytoplankton in the Southern Ocean: Planktonic provinces, hydrographic fronts and palaeoecological perspectives. Mar Micropaleontology, 123: 41–58

    Article  Google Scholar 

  • Martin J H. 1990. Glacial-interglacial CO2 change: The Iron Hypothesis. Paleoceanography, 5: 1–13

    Article  Google Scholar 

  • Martin J H, Fitzwater S E, Gordon R M. 1990. Iron deficiency limits phytoplankton growth in Antarctic waters. Glob Biogeochem Cycle, 4: 5–12

    Article  Google Scholar 

  • Measures C I, Brown M T, Selph K E, Apprill A, Zhou M, Hatta M, Hiscock W T. 2013. The influence of shelf processes in delivering dissolved iron to the HNLC waters of the Drake Passage, Antarctica. Deep-Sea Res Part II-Top Stud Oceanogr, 90: 77–88

    Article  Google Scholar 

  • Mikaloff-Fletcher S E. 2015. An increasing carbon sink? Science, 349: 1165

    Article  Google Scholar 

  • Mitchell B G, Brody E A, Holm-Hansen O, McClain C, Bishop J. 1991. Light limitation of phytoplankton biomass and macronutrient utilization in the Southern Ocean. Limnol Oceanogr, 36: 1662–1677

    Article  Google Scholar 

  • Monien D, Monien P, Brünjes R, Widmer T, Kappenberg A, Silva Busso A A, Schnetger B, Brumsack H J. 2017. Meltwater as a source of potentially bioavailable iron to Antarctica waters. Antarct Sci, 29: 277–291

    Article  Google Scholar 

  • Nelson D M, Anderson R F, Barber R T, Brzezinski M A, Buesseler K O, Chase Z, Collier R W, Dickson M L, François R, Hiscock M R, Honjo S, Marra J, Martin W R, Sambrotto R N, Sayles F L, Sigmon D E. 2002. Vertical budgets for organic carbon and biogenic silica in the Pacific sector of the Southern Ocean, 1996–1998. Deep-Sea Res Part II-Top Stud Oceanogr, 49: 1645–1674

    Article  Google Scholar 

  • Passow U, Alldredge A L. 1995. Aggregation of a diatom bloom in a mesocosm: The role of transparent exopolymer particles (TEP). Deep-Sea Res Part II-Top Stud Oceanogr, 42: 99–109

    Article  Google Scholar 

  • Passow U, de La Rocha C L. 2006. Accumulation of mineral ballast on organic aggregates. Glob Biogeochem Cycle, 20: GB1013

    Article  Google Scholar 

  • Passow U, Shipe R F, Murray A, Pak D K, Brzezinski M A, Alldredge A L. 2001. The origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter. Cont Shelf Res, 21: 327–346

    Article  Google Scholar 

  • Pilskaln C H, Manganini S J, Trull T W, Armand L, Howard W, Asper V L, Massom R. 2004. Geochemical particle fluxes in the Southern Indian Ocean seasonal ice zone: Prydz Bay region, East Antarctica. Deep-Sea Res Part I-Oceanogr Res Pap, 51: 307–332

    Article  Google Scholar 

  • Quéguiner B, Tréguer P, Peeken I, Scharek R. 1997. Biogeochemical dynamics and the silicon cycle in the Atlantic sector of the Southern Ocean during austral spring 1992. Deep-Sea Res Part II-Top Stud Oceanogr, 44: 69–89

    Article  Google Scholar 

  • Rigual-Hernández A S, Trull T W, Bray S G, Armand L K. 2016. The fate of diatom valves in the Subantarctic and Polar Frontal Zones of the Southern Ocean: Sediment trap versus surface sediment assemblages. Palaeogeogr Palaeoclimatol PalaeoEcol, 457: 129–143

    Article  Google Scholar 

  • Rigual-Hernández A S, Trull T W, Bray S G, Cortina A, Armand L K. 2015. Latitudinal and temporal distributions of diatom populations in the pelagic waters of the Subantarctic and Polar Frontal zones of the Southern Ocean and their role in the biological pump. Biogeosciences, 12: 5309–5337

    Article  Google Scholar 

  • Saenz B T, Arrigo K R. 2014. Annual primary production in Antarctic sea ice during 2005–2006 from a sea ice state estimate. J Geophys Res-Oceans, 119: 3645–3678

    Article  Google Scholar 

  • Sarthou G, Timmermans K R, Blain S, Tréguer P. 2005. Growth physiology and fate of diatoms in the ocean: A review. J Sea Res, 53: 25–42

    Article  Google Scholar 

  • Schlitzer R. 2015. Ocean Data View. https://doi.org/odv.awi.de

    Google Scholar 

  • Sedwick P N, Ditullio G R, Mackey D J. 2000. Iron and manganese in the Ross Sea, Antarctica: Seasonal iron limitation in Antarctic shelf waters. J Geophys Res, 105: 11321–11336

    Article  Google Scholar 

  • Sedwick P N, Marsay C M, Sohst B M, Aguilar-Islas A M, Lohan M C, Long M C, Arrigo K R, Dunbar R B, Saito M A, Smith W O, Ditullio G R. 2011. Early season depletion of dissolved iron in the Ross Sea polynya: Implications for iron dynamics on the Antarctic continental shelf. J Geophys Res, 116: C12019

    Article  Google Scholar 

  • Sigman D M, Hain M P, Haug G H. 2010. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature, 466: 47–55

    Article  Google Scholar 

  • Sigmon D E, Nelson D M, Brzezinski M A. 2002. The Si cycle in the Pacific sector of the Southern Ocean: Seasonal diatom production in the surface layer and export to the deep sea. Deep-Sea Res Part II-Top Stud Oceanogr, 49: 1747–1763

    Article  Google Scholar 

  • Smetacek V, Klaas C, Strass V H, Assmy P, Montresor M, Cisewski B, Savoye N, Webb A, d’Ovidio F, Arrieta J M, Bathmann U, Bellerby R, Berg G M, Croot P, Gonzalez S, Henjes J, Herndl G J, Hoffmann L J, Leach H, Losch M, Mills M M, Neill C, Peeken I, Röttgers R, Sachs O, Sauter E, Schmidt M M, Schwarz J, Terbrüggen A, Wolf-Gladrow D. 2012. Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature, 487: 313–319

    Article  Google Scholar 

  • Smetacek V, Scharek R, Nöthig E M. 1990. Seasonal and regional variation in the pelagial and its relationship to the life history cycle of krill. In: Kerry K R, Hempel G, eds. Antarctic Ecosystems: Ecological Change and Conservation. Berlin, Heidelberg: Springer. 103–114

    Chapter  Google Scholar 

  • Smith C R, Mincks S, DeMaster D J. 2008. The FOODBANCS project: Introduction and sinking fluxes of organic carbon, chlorophyll-a and phytodetritus on the western Antarctic Peninsula continental shelf. Deep-Sea Res Part II-Top Stud Oceanogr, 55: 2404–2414

    Article  Google Scholar 

  • Smith N R, Zhaoqian D, Kerry K R, Wright S. 1984. Water masses and circulation in the region of Prydz Bay, Antarctica. Deep Sea Res Part AOceanogr Res Pap, 31: 1121–1147

    Article  Google Scholar 

  • Smith Jr W O, Ainley D G, Arrigo K R, Dinniman M S. 2014. The oceanography and ecology of the Ross Sea. Annu Rev Mar Sci, 6: 469–487

    Article  Google Scholar 

  • Smith Jr W O, Dunbar R B. 1998. The relationship between new production and vertical flux on the Ross Sea continental shelf. J Mar Syst, 17: 445–457

    Article  Google Scholar 

  • Smith Jr W O, Marra J, Hiscock M R, Barber R T. 2000. The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea, Antarctica. Deep-Sea Res Part II-Top Stud Oceanogr, 47: 3119–3140

    Article  Google Scholar 

  • Smith Jr W O, Nelson D M. 1986. Importance of ice edge phytoplankton production in the Southern Ocean. Bioscience, 36: 251–257

    Article  Google Scholar 

  • Smith W O, Nelson D M. 1985. Phytoplankton bloom produced by a receding ice edge in the Ross Sea: Spatial coherence with the density field. Science, 227: 163–166

    Article  Google Scholar 

  • Smith Jr W O, Shields A R, Dreyer J C, Peloquin J A, Asper V. 2011. Interannual variability in vertical export in the Ross Sea: Magnitude, composition, and environmental correlates. Deep-Sea Res Part IOceanogr Res Pap, 58: 147–159

    Article  Google Scholar 

  • Sullivan C W, Arrigo K R, McClain C R, Comiso J C, Firestone J. 1993. Distributions of phytoplankton blooms in the Southern Ocean. Science, 262: 1832–1837

    Article  Google Scholar 

  • Sun J, Liu D, Ning X, Liu C. 2003. Phytoplankton in the Prydz Bay and the adjacent Indian sector of the Southern Ocean during the austral summer 2001/2002. Oceanol Limnol Sin, 34: 519–532

    Google Scholar 

  • Sun W P, Han Z B, Hu C Y, Pan J M. 2016. Source composition and seasonal variation of particulate trace element fluxes in Prydz Bay, East Antarctica. Chemosphere, 147: 318–327

    Article  Google Scholar 

  • Sun W P, Han Z B, Hu C Y, Pan J M. 2013. Particulate barium flux and its relationship with export production on the continental shelf of Prydz Bay, east Antarctica. Mar Chem, 157: 86–92

    Article  Google Scholar 

  • Tagliabue A, Bopp L, Aumont O. 2009. Evaluating the importance of atmospheric and sedimentary iron sources to Southern Ocean biogeochemistry. Geophys Res Lett, 36: L13601

    Article  Google Scholar 

  • Taylor F, McMinn A, Franklin D. 1997. Distribution of diatoms in surface sediments of Prydz Bay, Antarctica. Mar Micropaleontology, 32: 209–229

    Article  Google Scholar 

  • Taylor M H, Losch M, Bracher A. 2013. On the drivers of phytoplankton blooms in the Antarctic marginal ice zone: A modeling approach. J Geophys Res-Oceans, 118: 63–75

    Article  Google Scholar 

  • Trull T W, Bray S G, Manganini S J, Honjo S, François R. 2001. Moored sediment trap measurements of carbon export in the Subantarctic and Polar Frontal zones of the Southern Ocean, south of Australia. J Geophys Res, 106: 31489–31509

    Article  Google Scholar 

  • Tucker M J, Burton H R. 1990. Seasonal and spatial variations in the zooplankton community of an eastern Antarctic coastal location. Polar Biol, 10: 571–579

    Article  Google Scholar 

  • Volkman J K, Farrington J W, Gagosian R B. 1987. Marine and terrigenous lipids in coastal sediments from the Peru upwelling region at 15°S: Sterols and triterpene alcohols. Org Geochem, 11: 463–477

    Article  Google Scholar 

  • Wefer G, Fischer G. 1991. Annual primary production and export flux in the Southern Ocean from sediment trap data. Mar Chem, 35: 597–613

    Article  Google Scholar 

  • Weston K, Jickells T D, Carson D S, Clarke A, Meredith M P, Brandon M A, Wallace M I, Ussher S J, Hendry K R. 2013. Primary production export flux in Marguerite Bay (Antarctic Peninsula): Linking upper water-column production to sediment trap flux. Deep-Sea Res Part IOceanogr Res Pap, 75: 52–66

    Article  Google Scholar 

  • Wilson D L, Smith Jr. W O, Nelson D M. 1986. Phytoplankton bloom dynamics of the western Ross Sea ice edge—I. Primary productivity and species-specific production. Deep Sea Res Part A-Oceanogr Res Pap, 33: 1375–1387

    Article  Google Scholar 

  • Wilson J D, Barker S, Ridgwell A. 2012. Assessment of the spatial variability in particulate organic matter and mineral sinking fluxes in the ocean interior: Implications for the ballast hypothesis. Glob Biogeochem Cycle, 26: GB4011

    Article  Google Scholar 

  • Wilson S E, Swalethorp R, Kjellerup S, Wolverton M A, Ducklow H W, Yager P L. 2015. Meso- and macro-zooplankton community structure of the Amundsen Sea Polynya, Antarctica (Summer 2010–2011). Elem Sci Anth, 3: 000033

    Article  Google Scholar 

  • Yang G, Li C, Sun S, Zhang C, He Q. 2013. Feeding of dominant zooplankton in Prydz Bay, Antarctica, during austral spring/summer: Food availability and species responses. Polar Biol, 36: 1701–1707

    Article  Google Scholar 

  • Zhang R, Zheng M, Chen M, Ma Q, Cao J, Qiu Y. 2014. An isotopic perspective on the correlation of surface ocean carbon dynamics and sea ice melting in Prydz Bay (Antarctica) during austral summer. Deep-Sea Res Part I-Oceanogr Res Pap, 83: 24–33

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the help of the R/V Xuelong in the field work, as well as the valuable advices from Dr. Walker Smith and Dr. Tom Trull. This study was supported by the National Natural Science Foundation of China (Grant Nos. 41406219, 41576186 & 41506223), the Scientific Research Fund of the Second Institute of Oceanography, SOA (Grant No. JT1405), the Chinese Polar Environment Comprehensive Investigation & Assessment Programs (Grant No. CHINARE 01–04, 04-01), the Chinese Arctic and Antarctic Administration Foundation (Grant No. 20150302) and the Scientific Research Project of Marine Public Welfare Industry of China (Grant No. 201405031-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianming Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Hu, C., Sun, W. et al. Characteristics of particle fluxes in the Prydz Bay polynya, Eastern Antarctica. Sci. China Earth Sci. 62, 657–670 (2019). https://doi.org/10.1007/s11430-018-9285-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-018-9285-6

Keywords

Navigation