Skip to main content

Clay mineralogy of an Eocene fluvial-lacustrine sequence in Xining Basin, Northwest China, and its paleoclimatic implications

Abstract

The Eocene was marked by significant cooling during which the global climate was transformed from greenhouse to icehouse conditions. Notable coeval events were the India-Asia collision and the retreat of the Paratethys Sea in Asia. The Eocene section of the long and continuous sedimentary succession of the Xining Basin in Northwest China is characterized by red mudstones with intercalated gypsum and muddy-gypsiferous layers. In this study, we conducted a semi-quantitative analysis of the mineralogy of bulk samples and the clay fraction using X-ray diffraction, with the aim of characterizing the Eocene climatic evolution of the northeastern margin of the Tibetan Plateau and inland Asia. We used a new pretreatment method to address the problem of extracting sufficient clay particles from the gypsum and gypsiferous layers. The bulk mineralogy is dominated by quartz, feldspar, calcite, gypsum and dolomite; and the clay mineralogy is dominated by illite, chlorite, and smectite (including irregular mixed-layer illite-smectite (I/S)). The variations of the clay mineral assemblages indicate the occurrence of alternations between warm humid conditions and hot dry conditions, with relatively high humidity during ~52–50, ~41.5–39 and ~35–34 Ma. Comparison of the results with the timing of Tibetan Plateau uplift, transgressions and regressions of the Paratethys Sea, and the marine oxygen isotope record suggest that the Eocene climatic evolution of the study region was driven fundamentally by global climate change.

This is a preview of subscription content, access via your institution.

References

  • Abels H A, Dupont-Nivet G, Xiao G, Bosboom R, Krijgsman W. 2011. Step-wise change of Asian interior climate preceding the Eocene-Oligocene transition (EOT). Palaeogeogr Palaeoclimatol Palaeoecol, 299: 399–412

    Article  Google Scholar 

  • An Z S, Kutzbach J E, Prell S C. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 411: 62–66

    Article  Google Scholar 

  • Bains S, Corfield R M, Norris R D. 1999. Mechanisms of climate warming at the end of the Paleocene. Science, 285: 724–727

    Article  Google Scholar 

  • Beck R A, Burbank D W, Sercombe W J, Riley G W, Barndt J K, Berry J R, Afzal J, Khan A M, Jurgen H, Metje J, Cheema A, Shafique N A, Lawrence R D, Khan M A. 1995. Stratigraphic evidence for an early collision between northwest India and Asia. Nature, 373: 55–58

    Article  Google Scholar 

  • Bohaty S M, Zachos J C, Florindo F, Delaney M L. 2009. Coupled greenhouse warming and deep-sea acidification in the middle Eocene. Paleoceanography, 24: 1–16

    Article  Google Scholar 

  • Bosboom R E, Abels H A, Hoorn C, van den Berg B C J, Guo Z J, Dupont-Nivet G. 2014a. Aridification in continental Asia after the Middle Eocene climatic optimum (MECO). Earth Planet Sci Lett, 389: 34–42

    Article  Google Scholar 

  • Bosboom R E, Dupont-Nivet G, Houben A J P, Brinkhuis H, Villa G, Mandic O, Stoica M, Zachariasse W J, Guo Z J, Li C X, Krijgsman W. 2011. Late Eocene sea retreat from the Tarim basin (west China) and concomitant Asian paleoenvironmental change. Palaeogeogr Palaeoclimatol Palaeoecol, 299: 385–398

    Article  Google Scholar 

  • Bosboom R, Dupont-Nivet G, Grothe A, Brinkhuis H, Villa G, Mandic O, Stoica M, Kouwenhoven T, Huang W, Yang W, Guo Z J. 2014b. Timing, cause and impact of the late Eocene stepwise sea retreat from the Tarim Basin (west China). Palaeogeogr Palaeoclimatol Palaeoecol, 403: 101–118

    Article  Google Scholar 

  • Bougeois L, Dupont-Nivet G, de Rafélis M, Tindall J C, Proust J N, Reichart G J, de Nooijer L J, Guo Z, Ormukov C. 2018. Asian monsoons and aridification response to Paleogene sea retreat and Neogene westerly shielding indicated by seasonality in Paratethys oysters. Earth Planet Sci Lett, 485: 99–110

    Article  Google Scholar 

  • Burtman V S. 2000. Cenozoic crustal shortening between the Pamir and Tien Shan and a reconstruction of the Pamir-Tien Shan transition zone for the Cretaceous and Palaeogene. Tectonophysics, 319: 69–92

    Article  Google Scholar 

  • Cai F, Ding L, Yue Y. 2011. Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: Implications for timing of India-Asia collision. Earth Planet Sci Lett, 305: 195–206

    Article  Google Scholar 

  • Caves J K, Winnick M J, Graham S A, Sjostrom D J, Mulch A, Chamberlain C P. 2015. Role of the westerlies in Central Asia climate over the Cenozoic. Earth Planet Sci Lett, 428: 33–43

    Article  Google Scholar 

  • Chamley H. 1989. Clay Sedimentology. New York: Spring-Verlag Berlin Heidelberg

    Book  Google Scholar 

  • Chen C F. 2009. Cenozoic pollen records and Palaoenvironmental evolution in Xining Basin, Northeastern Tibetan Plateau. Masteral Dissertation. China: Lanzhou University

    Google Scholar 

  • Dai S, Fang X M, Dupont-Niver G, Song C H, Gao J P, Krijgsman W, Langereis C, Zhang W L. 2006. Magnetostratigraphy of Cenozoic sediments from the Xining Basin: Tectonic implications for the northeastern Tibetan Plateau. J Geophys Res, 111: B11102

    Article  Google Scholar 

  • Deng Y P, Hong H L, Yin k, Xu Y M, Du J, Zhang K X. 2010. Clay mineralogy and its palaeoclimatic indicator of the Late Paleocene to Early Oligocene Sediments in Yongdeng Lanzhou Basin (in Chinese with English abstract). Geoscience, 24: 793–800

    Google Scholar 

  • Ding L, Kapp P, Wan X. 2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics, 24: TC3001

    Article  Google Scholar 

  • Ding Z L, Xiong S F, Sun J M, Yang S L, Gu Z Y, Liu T S. 1999. Pedostratigraphy and paleomagnetism of a ~7.0 Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution. Palaeogeogr Palaeoclimatol Palaeoecol, 152: 49–66

    Article  Google Scholar 

  • Dupont-Nivet G, Hoorn C, Konert M. 2008. Tibetan uplift prior to the Eocene-Oligocene climate transition: Evidence from pollen analysis of the Xining Basin. Geology, 36: 987–990

    Article  Google Scholar 

  • Dupont-Nivet G, Krijgsman W, Langereis C G, Abels H A, Dai S, Fang X. 2007. Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition. Nature, 445: 635–638

    Article  Google Scholar 

  • Edgar K M, Wilson P A, Sexton P F, Gibbs S J, Roberts A P, Norris R D. 2010. New biostratigraphic, magnetostratigraphic and isotopic insights into the Middle Eocene climatic optimum in low latitudes. Palaeogeogr Palaeoclimatol Palaeoecol, 297: 670–682

    Article  Google Scholar 

  • Eldrett J S, Greenwood D R, Harding I C, Huber M. 2009. Increased seasonality through the Eocene to Oligocene transition in northern high latitudes. Nature, 459: 969–973

    Article  Google Scholar 

  • Fang X M, Zan J B, Appel E, Lu Y, Song C H, Dai S, Tuo S B. 2015. An Eocene-Miocene continuous high resolution rock magnetic record from the sediments in the Xining Basin, NW China: Indication for Cenozoic persistent drying driven by global cooling and Tibetan Plateau uplift. Geophys J Int, 201: 78–89

    Article  Google Scholar 

  • Guo Z T, Ruddiman W F, Hao Q Z, Wu H B, Qiao Y S, Zhu R X, Peng S Z, Wei J J, Yuan B Y, Liu T S. 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416: 159–163

    Article  Google Scholar 

  • Guo Z T, Sun B, Zhang Z S, Peng S Z, Xiao G Q, Ge J Y, Hao Q Z, Qiao Y S, Liang M Y, Liu J F, Yin Q Z, Wei J J. 2008. A major reorganization of Asian climate regime by the early Miocene. Clim Past, 4: 153–174

    Article  Google Scholar 

  • Gylesjö S, Arnold E. 2006. Clay mineralogy of a red clay-loess sequence from Lingtai, the Chinese Loess Plateau. Glob Planet Change, 51: 181–194

    Article  Google Scholar 

  • Hetzel R, Dunkl I, Haider V, Strobl M, von Eynatten H, Ding L, Frei D. 2011. Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift. Geology, 39: 983–986

    Article  Google Scholar 

  • Hong H L, Zhang K X, Li Z H. 2010. Climatic and tectonic uplift evolution since ~7 Ma in Gyirong basin, southwestern Tibet plateau: Clay mineral evidence. Int J Earth Sci-Geol Rundsch, 99: 1305–1315

    Article  Google Scholar 

  • Hoorn C, Straathof J, Abels H A, Xu Y, Utescher T, Dupont-Nivet G. 2012. A late Eocene palynological record of climate change and Tibetan Plateau uplift (Xining Basin, China). Palaeogeogr Palaeoclimatol Palaeoecol, 344-345: 16–38

    Article  Google Scholar 

  • Hren M T, Sheldon N D, Grimes S T, Collinson M E, Hooker J J, Bugler M, Lohmann K C. 2013. Terrestrial cooling in Northern Europe during the Eocene-Oligocene transition. Proc Natl Acad Sci USA, 110: 7562–7567

    Article  Google Scholar 

  • Hu B, Zhang C X, Guo Z T. 2016. A new method of clay mineral extraction from gypsum layer and its application in paleoclimate reconstruction (in Chinese with English abstract). Quat Sci, 34: 926–934

    Google Scholar 

  • Kent-Corson M L, Ritts B D, Zhuang G, Bovet P M, Graham S A, Page Chamberlain C. 2009. Stable isotopic constraints on the tectonic, topographic, and climatic evolution of the northern margin of the Tibetan Plateau. Earth Planet Sci Lett, 282: 158–166

    Article  Google Scholar 

  • Kraatz B P, Geisler J H. 2010. Eocene-Oligocene transition in Central Asia and its effects on mammalian evolution. Geology, 38: 111–114

    Article  Google Scholar 

  • Lear C H, Bailey T R, Pearson P N, Coxall H K, Rosenthal Y. 2008. Cooling and ice growth across the Eocene-Oligocene transition. Geology, 36: 251–254

    Article  Google Scholar 

  • Lear C H, Elderfield H, Wilson P A. 2000. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science, 287: 269–272

    Article  Google Scholar 

  • Lippert P C, van Hinsbergen D J J, Dupont-Nivet G. 2014. Early Cretaceous to present latitude of the central proto-Tibetan Plateau: A paleomagnetic synthesis with implications for Cenozoic tectonics, paleogeography, and climate of Asia. Geol Soc Am Spec Pap, 507: 1–23

    Google Scholar 

  • Liu T S, Guo Z T. 1997. Geological environment in China and global change. In: An Z S, ed. Selected Works of Liu Tungsheng. Beijing: Science Press. 192–202

    Google Scholar 

  • Liu T S. 1985. Loess and Environment (in Chinese). Beijing: Science Press

    Google Scholar 

  • Long L Q, Fang X M, Miao Y F, Bai Y, Wang Y L. 2011. Northern Tibetan Plateau cooling and aridification linked to Cenozoic global cooling: Evidence from n-alkane distributions of Paleogene sedimentary sequences in the Xining Basin. Chin Sci Bull, 56: 1221–1231

    Article  Google Scholar 

  • Miao Y F, Fang X M, Song Z C, Wu F L, Han W X, Dai S, Song C H. 2008. Late Eocene pollen records and palaeoenvironmental changes in northern Tibetan Plateau. Sci China Ser D-Earth Sci, 51: 1089–1098

    Article  Google Scholar 

  • Miao Y, Wu F, Chang H, Fang X, Deng T, Sun J, Jin C. 2016. A Late-Eocene palynological record from the Hoh Xil Basin, northern Tibetan Plateau, and its implications for stratigraphic age, paleoclimate and paleoelevation. Gondwana Res, 31: 241–252

    Article  Google Scholar 

  • Moore D M, Reynolds J. 1989. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. New York: Oxford University Press

    Google Scholar 

  • Najman Y, Appel E, Boudagher-Fadel M, Bown P, Carter A, Garzanti E, Godin L, Han J, Liebke U, Oliver G, Parrish R, Vezzoli G. 2010. Timing of India-Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints. J Geophys Res, 115: B12416

    Article  Google Scholar 

  • Patzelt A, Li H, Wang J, Appel E. 1996. Palaeomagnetism of Cretaceous to Tertiary sediments from southern Tibet: Evidence for the extent of the northern margin of India prior to the collision with Eurasia. Tectonophysics, 259: 259–284

    Article  Google Scholar 

  • Pearson P N, Foster G L, Wade B S. 2009. Atmospheric carbon dioxide through the Eocene-Oligocene climate transition. Nature, 461: 1110–1113

    Article  Google Scholar 

  • Pei J L, Sun Z M, Wang X S, Zhao Y, Ge X H, Guo X Z, Li H B, Si J L. 2009. Evidence for Tibetan plateau uplift in Qaidam basin before Eocene-Oligocene boundary and its climatic implications. J Earth Sci, 20: 430–437

    Article  Google Scholar 

  • Petschick R. 2000. MacDiff 4.2.2: A software of calculating concentration of minerals for XRD data. Online: http://servermac.geologie.un-frankfurt.de/Rainer.html

    Google Scholar 

  • Prell W L, Kutzbach J E. 1992. Sensitivity of the indian monsoon to forcing parameters and implications for its evolution. Nature, 360: 647–652

    Article  Google Scholar 

  • Qiang X, An Z, Song Y, Chang H, Sun Y, Liu W, Ao H, Dong J, Fu C, Wu F, Lu F, Cai Y, Zhou W, Cao J, Xu X, Ai L. 2011. New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25 Ma ago. Sci China Earth Sci, 54: 136–144

    Article  Google Scholar 

  • Qinghai Bureau of Geology and Mineral Resources. 1985. Geologic Maps of the Duoba, Gaodian, Tianjiazai, and Xining Regions, 4 Sheets, with Regional Geologic Report (1:50000 Scale). Beijing: Geol Publ House. 199

  • Robert C, Kennett J P. 1994. Antarctic subtropical humid episode at the Paleocene-Eocene boundary: Clay-mineral evidence. Geology, 22: 211–214

    Article  Google Scholar 

  • Rohrmann A, Kapp P, Carrapa B, Reiners P W, Guynn J, Ding L, Heizler M. 2012. Thermochronologic evidence for plateau formation in central Tibet by 45 Ma. Geology, 40: 187–190

    Article  Google Scholar 

  • Rowley D B. 1996. Age of initiation of collision between India and Asia: A review of stratigraphic data. Earth Planet Sci Lett, 145: 1–13

    Article  Google Scholar 

  • Rowley D B, Currie B S. 2006. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 439: 677–681

    Article  Google Scholar 

  • Ruddiman W F, Kutzbach J E. 1989. Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American West. J Geophys Res, 94: 18409

    Article  Google Scholar 

  • Sayem A S M, Guo Z, Wu H, Zhang C, Yang F, Xiao G, He Z. 2018. Sedimentary and geochemical evidence of Eocene climate change in the Xining Basin, northeastern Tibetan Plateau. Sci China Earth Sci, 61: 1292–1305

    Article  Google Scholar 

  • Shi N. 1996. Development of spruce and fir in North China during the Pliocene and the Early Plestocene: Palaeoclimatic implication. Quat Sci, 4: 319–328

    Google Scholar 

  • Singer A. 1984. The paleoclimatic interpretation of clay minerals in sediments— A review. Earth-Sci Rev, 21: 251–293

    Article  Google Scholar 

  • Song B W, Zhang K X, Lu J F, Wang C W, Xu Y D. 2013. The middle Eocene to early Miocene integrated sedimentary record in the Qaidam Basin and its implications for paleoclimate and early Tibetan Plateau uplift. Can J Earth Sci, 50: 183–196

    Article  Google Scholar 

  • Sun X J, Wang P X. 2005. How old is the Asian monsoon system?—Palaeobotanical records from China. Palaeogeogr Palaeoclimatol Palaeoecol, 222: 181–222

    Article  Google Scholar 

  • Tang T, Xue Y, Yu C. 1992. Characteristics and Sedimentary Environments of the Late Cretaceous to Early Tertiary Marine Strata in the Western Tarim, China. Beijin: Science Press

    Google Scholar 

  • Velde B. 1995. Origin and Mineralogy of Clays. Paris: Springer-Verlag Berlin and Heidelberg. 207–210

    Book  Google Scholar 

  • Vonhof H B, Smit J, Brinkhuis H, Montanari A, Nederbragt A J. 2000. Global cooling accelerated by early late Eocene impacts? Geology, 28: 687

    Article  Google Scholar 

  • Wang C S, Li X H, Hu X, Jansa L F. 2002. Latest marine horizon north of Qomolangma (Mt Everest): Implications for closure of Tethys seaway and collision tectonics. Terra Nova, 14: 114–120

    Article  Google Scholar 

  • Wang C S, Zhao X X, Liu Z F, Lippert P C, Graham S A, Coe R S, Yi H S, Zhu L D, Liu S, Li Y L. 2008. Constraints on the early uplift history of the Tibetan Plateau. Proc Natl Acad Sci USA, 105: 4987–4992

    Article  Google Scholar 

  • Wang C W, Hong H L, Li Z H, Yin K, Xie J, Liang G J, Song B W, Song E P, Zhang K X. 2013. The Eocene-Oligocene climate transition in the Tarim Basin, Northwest China: Evidence from clay mineralogy. Appl Clay Sci, 74: 10–19

    Article  Google Scholar 

  • Wang C W, Hong H L, Song B W, Yin K, Li Z H, Zhang K X, Ji J L. 2011. The early-Eocene climate optimum (EECO) event in the Qaidam basin, northwest China: Clay evidence. Clay miner, 46: 649–661

    Article  Google Scholar 

  • Xiao G Q. 2009. Magnetostratigraphy and Sedimentary Evolution of the Late Eocene–early Miocene Deposits in the Xining Basin, Northwestern China. Doctoral Dissertation. China: Institute of Earth Environment, Graduate School, CAS

    Google Scholar 

  • Xiao G Q, Abels H A, Yao Z Q, Dupont-Nivet G, Hilgen F J. 2010. Asian aridification linked to the first step of the Eocene-Oligocene climate Transition (EOT) in obliquity-dominated terrestrial records (Xining Basin, China). Clim Past, 6: 501–513

    Article  Google Scholar 

  • Xu Q, Ding L, Zhang L, Cai F, Lai Q, Yang D, Liu-Zeng J. 2013. Paleo-gene high elevations in the Qiangtang Terrane, central Tibetan Plateau. Earth Planet Sci Lett, 362: 31–42

    Article  Google Scholar 

  • Yi Z, Huang B, Chen J, Chen L, Wang H. 2011. Paleomagnetism of early Paleogene marine sediments in southern Tibet, China: Implications to onset of the India-Asia collision and size of Greater India. Earth Planet Sci Lett, 9: 153–165

    Google Scholar 

  • Yue L, Heller F, Qiu Z, Zhang L, Xie G, Qiu Z, Zhang Y. 2001. Magnetostratigraphy and pavleo-environmental record of Tertiary deposits of Lanzhou Basin. Chin Sci Bull, 46: 770–773

    Article  Google Scholar 

  • Zachos J C, Dickens G R, Zeebe R E. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451: 279–283

    Article  Google Scholar 

  • Zachos J C, Röhl U, Schellenberg S A, Sluijs A, Hodell D A, Kelly D C, Thomas E, Nicolo M, Raffi I, Lourens L J, McCarren H, Kroon D. 2005. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science, 308: 1611–1615

    Article  Google Scholar 

  • Zachos J C, Wara M W, Bohaty S, Delaney M L, Petrizzo M R, Brill A, Bralower T J, Premoli-Silva I. 2003. A transient rise in tropical sea surface temperature during the Paleocene-Eocene thermal maximum. Science, 302: 1551–1554

    Article  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292: 686–693

    Article  Google Scholar 

  • Zanazzi A, Kohn M J, MacFadden B J, Terry D O. 2007. Large temperature drop across the Eocene–Oligocene transition in central North America. Nature, 445: 639–642

    Article  Google Scholar 

  • Zhang C X, Guo Z T. 2014. Clay mineral changes across the Eocene-Oligocene transition in the sedimentary sequence at Xining occurred prior to global cooling. Palaeogeogr Palaeoclimatol Palaeoecol, 411: 18–29

    Article  Google Scholar 

  • Zhang C X, Xiao G Q, Guo Z T, Wu H B, Hao Q Z. 2015. Evidence of late early Miocene aridification intensification in the Xining Basin caused by the northeastern Tibetan Plateau uplift. Glob Planet Change, 128: 31–46

    Article  Google Scholar 

  • Zhang J, Wang Y N, Zhang B H, Zhang Y P. 2016. Tectonics of the Xining Basin in NW China and its implications for the evolution of the NE Qinghai-Tibetan Plateau. Basin Res, 28: 159–182

    Article  Google Scholar 

  • Zhang Y, Kong S C, Yan S, Yang Z J, Ni J. The variation of forest line in the north slope of Tian Shan Mountain in the Holocene and its palaeoenvironment feature. Chin Sci Bull, 2006, 51: 1450–1458

    Google Scholar 

  • Zhang Z S, Flatøy F, Wang H J, Bethke I, Bentsen M, Guo Z T. 2012. Early Eocene Asian climate dominated by desert and steppe with limited monsoons. J Asian Earth Sci, 44: 24–35

    Article  Google Scholar 

  • Zhu B, Kidd W S F, Rowley D B, Currie B S, Shafique N. 2005. Age of initiation of the India-Asia collision in the East-Central Himalaya. J Geol, 113: 265–285

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Pei Li, Dr. Yating Lin, Xiangbing Ren and Shuya Zhu for their help with field work. We also thank Dr. Abu Sayem, Dr. Wenling An and Dr. Xinbo Gao for their valuable suggestions during this study. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41722206, 41430531, 41690114 & 41374072), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB26000000) and the International Cooperation Program of the Chinese Academy of Sciences (Grant No. 131C11KYSB20160061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxia Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, B., Zhang, C., Wu, H. et al. Clay mineralogy of an Eocene fluvial-lacustrine sequence in Xining Basin, Northwest China, and its paleoclimatic implications. Sci. China Earth Sci. 62, 571–584 (2019). https://doi.org/10.1007/s11430-018-9282-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-018-9282-8

Keywords

  • Eocene
  • Xining Basin
  • Clay minerals
  • Paleoclimate