Skip to main content
Log in

Theoretical models and experimental determination methods for equations of state of silicate melts: A review

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Silicate melts are very active in the interior of the Earth and other terrestrial planets, and are important carriers for the transport of material and energy. The determination of the equation of state (EOS) for silicate melts and the acquisition of a precise quantitative relationship between molar volume (or density) and temperature, pressure, and composition is essential for simulating the generation, migration, and eruption processes of magmas and the evolution of the magma ocean stage during the early formation of the Earth and other terrestrial planets, for calculating and modeling the phase equilibria involving silicate melts, and for revealing the variation of the microstructure of silicate melts with pressure. However, it is experimentally challenging to determine the volumetric properties of silicate melts and the accumulated density data at high pressure are still very limited due to a series of problems such as: the high liquidus temperature of silicate rocks; proneness for silicate melts to react with sample capsules to change the melt composition; and proneness for melts to flow and leak during the high pressure and high temperature experiments. In recent years, there is rapid progress in the high pressure and high temperature experimental techniques, in terms of not only the extension of temperature and pressure ranges but also the improvement on the accuracy of measurements, and the emergence of new methods for in-situ measurements. Here, we review the widely-used theoretical models of ambient-pressure and high-pressure EOS for silicate melts, and illustrate some problems that need to be solved urgently: (1) the room pressure EOS for iron- and titanium-bearing silicate melts needs to be improved; (2) the partial molar properties of the H2O and CO2 components in silicate melts containing volatile components may vary markedly with the melt composition, which need to be addressed in high-pressure EOS; (3) how the formulation and applicable range of EOS correspond to changes in melt structure and compression mechanism requires further study. We highlight the basic principle and applicable range of various methods for determining the EOS for silicate melts, and compare the advantages and disadvantages of doublebob Archimedes method, fusion curve analysis, shock compression experiments, sink-float method, X-ray absorption, X-ray diffraction and ultrasonic interferometry. Future trends in this field are to develop experimental techniques for in situ measurements on melt density or sound velocity at high temperature and high pressure and to accumulate more experimental data, and on the other hand, to improve the theoretical models of the EOS for silicate melts by a combination of research on the microstructure and compression mechanisms of silicate melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agee C B. 1998. Crystal-liquid density inversions in terrestrial and lunar magmas. Phys Earth Planet Inter, 107: 63–74

    Google Scholar 

  • Agee C B. 2008. Static compression of hydrous silicate melt and the effect of water on planetary differentiation. Earth Planet Sci Lett, 265: 641–654

    Google Scholar 

  • Agee C B, Walker D. 1988. Static compression and olivine flotation in ultrabasic silicate liquid. J Geophys Res, 93: 3437–3449

    Google Scholar 

  • Agee C B, Walker D. 1993. Olivine flotation in mantle melt. Earth Planet Sci Lett, 114: 315–324

    Google Scholar 

  • Ahart M, Karandikar A, Gramsch S, Boehler R, Hemley R J. 2014. High PT Brillouin scattering study of H2O melting to 26 GPa. High Pressure Res, 34: 327–336

    Google Scholar 

  • Ahrens T J. 1993. Equation of state. In: Asay J R, Shahinpoor M, eds. High-Pressure Shock Compression of Solids. New York: Springer-Verlag. 75–113

    Google Scholar 

  • Ai Y H, Lange R. 2004a. An ultrasonic frequency sweep interferometer for liquids at high temperature: 1. Acoustic model. J Geophys Res, 109: 12203

    Google Scholar 

  • Ai Y H, Lange R. 2004b. An ultrasonic frequency sweep interferometer for liquids at high temperature: 2. Mechanical assembly, signal processing, and application. J Geophys Res, 109: B12204

    Google Scholar 

  • Ai Y, Lange R A. 2008. New acoustic velocity measurements on CaOMgO-Al2O3-SiO2 liquids: Reevaluation of the volume and compressibility of CaMgSi2O6-CaAl2Si2O8 liquids to 25 GPa. J Geophys Res, 113: 04203

    Google Scholar 

  • Álvarez-Murga M, Perrillat J P, Le Godec Y, Bergame F, Philippe J, King A, Guignot N, Mezouar M, Hodeau J L. 2017. Development of synchrotron X-ray micro-tomography under extreme conditions of pressure and temperature. J Synchrotron Radiat, 24: 240–247

    Google Scholar 

  • Angel R J. 2000. Equations of state. Rev Mineral Geochem, 41: 35–59

    Google Scholar 

  • Angel R J, Gonzalez-Platas J, Alvaro M. 2014. EosFit7c and a Fortran module (library) for equation of state calculations. Z Krist-Cryst Mater, 229: 405–419

    Google Scholar 

  • Asimow P D. 2012. Shock compression of preheated silicate liquids: Apparent universality of increasing Grüneisen parameter upon compression. In: Elert M L, Buttler W T, Borg J P, Jordan J L, Vogler T J, eds. AIP Conference Proceedings. Melville: American Institute of Physics. 1426: 887–890

    Google Scholar 

  • Asimow P D, Ahrens T J. 2010. Shock compression of liquid silicates to 125 GPa: The anorthite-diopside join. J Geophys Res, 115: B10209

    Google Scholar 

  • Ayrinhac S, Gauthier M, Le Marchand G, Morand M, Bergame F, Decremps F. 2015. Thermodynamic properties of liquid gallium from picosecond acoustic velocity measurements. J Phys-Condens Matter, 27: 275103

    Google Scholar 

  • Bajgain S, Ghosh D B, Karki B B. 2015. Structure and density of basaltic melts at mantle conditions from first-principles simulations. Nat Commun, 6: 8578

    Google Scholar 

  • Bassett W A. 2009. Diamond anvil cell, 50th birthday. High Pressure Res, 29: 163–186

    Google Scholar 

  • Boslough M B, Asay J R. 1993. Basic principles of shock compression. In: Asay J R, Shahinpoor M, eds. High-Pressure Shock Compression of Solids. New York: Springer-Verlag. 7–42

    Google Scholar 

  • Carlson R W, Garnero E, Harrison T M, Li J, Manga M, McDonough W F, Mukhopadhyay S, Romanowicz B, Rubie D, Williams Q, Zhong S. 2014. How did early Earth become our modern world? Annu Rev Earth Planet Sci, 42: 151–178

    Google Scholar 

  • Chantel J, Manthilake G, Andrault D, Novella D, Yu T, Wang Y. 2016. Experimental evidence supports mantle partial melting in the asthenosphere. Sci Adv, 2: e1600246

    Google Scholar 

  • Chen G Q, Ahrens T J. 1998. Radio frequency heating coils for shock wave experiments. In: Wentzcovitch R M, Hemley R J, Nellis W J, Yu P Y, eds. High-Pressure Materials Research. Materials Research Society Symposium Proceedings. Warrendale: Materials Research Society. 499: 63–71

    Google Scholar 

  • Chen G Q, Ahrens T J, Stolper E M. 2002. Shock-wave equation of state of molten and solid fayalite. Phys Earth Planet Inter, 134: 35–52

    Google Scholar 

  • Chevrel M O, Giordano D, Potuzak M, Courtial P, Dingwell D B. 2013. Physical properties of CaAl2Si2O8-CaMgSi2O6-FeO-Fe2O3 melts: Analogues for extra-terrestrial basalt. Chem Geol, 346: 93–105

    Google Scholar 

  • Circone S, Agee C B. 1996. Compressibility of molten high-Ti mare glass: Evidence for crystal-liquid density inversions in the lunar mantle. Geochim Cosmochim Acta, 60: 2709–2720

    Google Scholar 

  • Cochain B, Sanloup C, Leroy C, Kono Y. 2017. Viscosity of mafic magmas at high pressures. Geophys Res Lett, 44: 818–826

    Google Scholar 

  • Courtial P, Dingwell D B. 1999. Densities of melts in the CaO-MgO-Al2O3-SiO2 system. Am Miner, 84: 465–476

    Google Scholar 

  • Courtial P. 2005. High-temperature density of lanthanide-bearing Na-silicate melts: Partial molar volumes for Ce2O3, Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Tb2O3, Dy2O3, Ho2O3, Er2O3, Tm2O3, and Yb2O3. Am Miner, 90: 1597–1605

    Google Scholar 

  • Crépisson C, Morard G, Bureau H, Prouteau G, Morizet Y, Petitgirard S, Sanloup C. 2014. Magmas trapped at the continental lithosphere-asthenosphere boundary. Earth Planet Sci Lett, 393: 105–112

    Google Scholar 

  • Decremps F, Belliard L, Couzinet B, Vincent S, Munsch P, Le Marchand G, Perrin B. 2009. Liquid mercury sound velocity measurements under high pressure and high temperature by picosecond acoustics in a diamond anvils cell. Rev Sci Instrum, 80: 073902

    Google Scholar 

  • Dubrovinsky L, Dubrovinskaia N, Prakapenka V B, Abakumov A M. 2012. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar. Nat Commun, 3: 1163

    Google Scholar 

  • Duncan M S, Agee C B. 2011. The partial molar volume of carbon dioxide in peridotite partial melt at high pressure. Earth Planet Sci Lett, 312: 429–436

    Google Scholar 

  • Dziewonski A M, Anderson D L. 1981. Preliminary reference earth model. Phys Earth Planet Inter, 25: 297–356

    Google Scholar 

  • Eggert J H, Weck G, Loubeyre P, Mezouar M. 2002. Quantitative structure factor and density measurements of high-pressure fluids in diamond anvil cells by X-ray diffraction: Argon and water. Phys Rev B, 65: 174105

    Google Scholar 

  • Elkins-Tanton L T. 2012. Magma oceans in the inner solar system. Annu Rev Earth Planet Sci, 40: 113–139

    Google Scholar 

  • Fortov V E, Lomonosov I V. 2010. Shock waves and equations of state of matter. Shock Waves, 20: 53–71

    Google Scholar 

  • Funakoshi K, Nozawa A. 2012. Development of a method for measuring the density of liquid sulfur at high pressures using the falling-sphere technique. Rev Sci Instrum, 83: 103908

    Google Scholar 

  • Funamori N, Sato T. 2010. Density contrast between silicate melts and crystals in the deep mantle: An integrated view based on static-compression data. Earth Planet Sci Lett, 295: 435–440

    Google Scholar 

  • Ghiorso M S. 2004a. An equation of state for silicate melts. I. Formulation of a general model. Am J Sci, 304: 637–678

    Google Scholar 

  • Ghiorso M S. 2004b. An equation of state for silicate melts. III. Analysis of stoichiometric liquids at elevated pressure: Shock compression data, molecular dynamics simulations and mineral fusion curves. Am J Sci, 304: 752–810

    Google Scholar 

  • Ghiorso M S. 2004c. An equation of state for silicate melts. IV. Calibration of a multicomponent mixing model to 40 GPa. Am J Sci, 304: 811–838

    Google Scholar 

  • Ghiorso M S, Kress V C. 2004. An equation of state for silicate melts. II. Calibration of volumetric properties at 105 Pa. Am J Sci, 304: 679–751

    Google Scholar 

  • Ghosh S, Ohtani E, Litasov K, Suzuki A, Sakamaki T. 2007. Stability of carbonated magmas at the base of the Earth’s upper mantle. Geophys Res Lett, 34: L22312

    Google Scholar 

  • Gonzalez-Platas J, Alvaro M, Nestola F, Angel R. 2016. EosFit7-GUI: A new graphical user interface for equation of state calculations, analyses and teaching. J Appl Crystlogr, 49: 1377–1382

    Google Scholar 

  • Guo X. 2013. Density and compressibility of FeO-bearing silicate melt: Relevance to magma behavior in the Earth. Doctoral Dissertation. Ann Arbor: University of Michigan

    Google Scholar 

  • Guo X, Lange R A, Ai Y. 2013. The density and compressibility of CaOFeO-SiO2 liquids at one bar: Evidence for four-coordinated Fe2+ in the CaFeO2 component. Geochim Cosmochim Acta, 120: 206–219

    Google Scholar 

  • Guo X, Lange R A, Ai Y. 2014. Density and sound speed measurements on model basalt (An-Di-Hd) liquids at one bar: New constraints on the partial molar volume and compressibility of the FeO component. Earth Planet Sci Lett, 388: 283–292

    Google Scholar 

  • Harvey J P, Asimow P D. 2015. Current limitations of molecular dynamic simulations as probes of thermo-physical behavior of silicate melts. Am Miner, 100: 1866–1882

    Google Scholar 

  • Hong X, Shen G, Prakapenka V B, Rivers M L, Sutton S R. 2007. Density measurements of noncrystalline materials at high pressure with diamond anvil cell. Rev Sci Instrum, 78: 103905

    Google Scholar 

  • Huang F, Wu Z, Huang S, Wu F. 2014. First-principles calculations of equilibrium silicon isotope fractionation among mantle minerals. Geochim Cosmochim Acta, 140: 509–520

    Google Scholar 

  • Jacobsen S D, Reichmann H J, Kantor A, Spetzler H A. 2005. A gigahertz ultrasonic interferometer for the diamond anvil cell and high-pressure elasticity of some iron-oxide minerals. In: Chen J, Wang Y, Duffy T S, Shen G, Dobrzhinetskaya L F, eds. Advances in High-Pressure Technology for Geophysical Applications. Amsterdam: Elsevier. 25–48

    Google Scholar 

  • Jacobsen S D, Spetzler H, Reichmann H J, Smyth J R. 2004. Shear waves in the diamond-anvil cell reveal pressure-induced instability in (Mg, Fe)O. Proc Natl Acad Sci USA, 101: 5867–5871

    Google Scholar 

  • Jacobsen S D, Spetzler H A, Reichmann H J, Smyth J R, Mackwell S J, Angel R J, Bassett W A. 2002. Gigahertz ultrasonic interferometry at high P and T: New tools for obtaining a thermodynamic equation of state. J Phys-Condens Matter, 14: 11525–11530

    Google Scholar 

  • Jing Z, Karato S. 2008. Compositional effect on the pressure derivatives of bulk modulus of silicate melts. Earth Planet Sci Lett, 272: 429–436

    Google Scholar 

  • Jing Z, Karato S. 2009. The density of volatile bearing melts in the Earth’s deep mantle: The role of chemical composition. Chem Geol, 262: 100–107

    Google Scholar 

  • Jing Z, Karato S. 2011. A new approach to the equation of state of silicate melts: An application of the theory of hard sphere mixtures. Geochim Cosmochim Acta, 75: 6780–6802

    Google Scholar 

  • Jing Z, Karato S. 2012. Effect of H2O on the density of silicate melts at high pressures: Static experiments and the application of a modified hard-sphere model of equation of state. Geochim Cosmochim Acta, 85: 357–372

    Google Scholar 

  • Jing Z, Wang Y, Kono Y, Yu T, Sakamaki T, Park C, Rivers M L, Sutton S R, Shen G. 2014. Sound velocity of Fe-S liquids at high pressure: Implications for the Moon’s molten outer core. Earth Planet Sci Lett, 396: 78–87

    Google Scholar 

  • Jones A P, Genge M, Carmody L. 2013. Carbonate melts and carbonatites. Rev Mineral Geochem, 75: 289–322

    Google Scholar 

  • Kanzaki M, Kurita K, Fujii T, Kato T, Shimomura O, Akimoto S. 1987. A new technique to measure the viscosity and density of silicate melts at high pressure. In: Manghnani M H, Syono Y, eds. High-Pressure Research in Mineral Physics. Tokyo: Terrapub. 195–200

    Google Scholar 

  • Karki B B. 2010. First-principles molecular dynamics simulations of silicate melts: Structural and dynamical properties. Rev Mineral Geochem, 71: 355–389

    Google Scholar 

  • Karki B B. 2015. First-principles computation of mantle materials in crystalline and amorphous phases. Phys Earth Planet Inter, 240: 43–69

    Google Scholar 

  • Katayama Y, Tsuji K, Chen J Q, Koyama N, Kikegawa T, Yaoita K, Shimomura O. 1993. Density of liquid tellurium under high pressure. J Non-Cryst Solids, 156–158: 687–690

    Google Scholar 

  • Katayama Y, Tsuji K, Kanda H, Nosaka H, Yaoita K, Kikegawa T, Shimomura O. 1996. Density of liquid tellurium under pressure. J Non-Cryst Solids, 205–207: 451–454

    Google Scholar 

  • Katayama Y, Tsuji K, Shimomura O, Kikegawa T, Mezouar M, Martinez-Garcia D, Besson J M, Häusermann D, Hanfland M. 1998. Density measurements of liquid under high pressure and high temperature. J Synchrotron Radiat, 5: 1023–1025

    Google Scholar 

  • Knoche R, Luth R W. 1996. Density measurements on melts at high pressure using the sink/float method: Limitations and possibilities. Chem Geol, 128: 229–243

    Google Scholar 

  • Kono Y, Kenney-Benson C, Shibazaki Y, Park C, Shen G, Wang Y. 2015. High-pressure viscosity of liquid Fe and FeS revisited by falling sphere viscometry using ultrafast X-ray imaging. Phys Earth Planet Inter, 241: 57–64

    Google Scholar 

  • Kono Y, Park C, Kenney-Benson C, Shen G, Wang Y. 2014. Toward comprehensive studies of liquids at high pressures and high temperatures: Combined structure, elastic wave velocity, and viscosity measurements in the Paris-Edinburgh cell. Phys Earth Planet Inter, 228: 269–280

    Google Scholar 

  • Kuwabara S, Terasaki H, Nishida K, Shimoyama Y, Takubo Y, Higo Y, Shibazaki Y, Urakawa S, Uesugi K, Takeuchi A, Kondo T. 2016. Sound velocity and elastic properties of Fe-Ni and Fe-Ni-C liquids at high pressure. Phys Chem Miner, 43: 229–236

    Google Scholar 

  • Lange R A. 1994. The effect of H2O, CO2 and F on the density and viscosity of silicate melts. Rev Mineral, 30: 331–369

    Google Scholar 

  • Lange R A. 1996. Temperature independent thermal expansivities of sodium aluminosilicate melts between 713 and 1835 K. Geochim Cosmochim Acta, 60: 4989–4996

    Google Scholar 

  • Lange R A. 1997. A revised model for the density and thermal expansivity of K2O-Na2O-CaO-MgO-Al2O3-SiO2 liquids from 700 to 1900 K: Extension to crustal magmatic temperatures. Contrib Mineral Petrol, 130: 1–11

    Google Scholar 

  • Lange R A. 2003. The fusion curve of albite revisited and the compressibility of NaAlSi3O8 liquid with pressure. Am Miner, 88: 109–120

    Google Scholar 

  • Lange R A. 2007. The density and compressibility of KAlSi3O8 liquid to 6.5 GPa. Am Miner, 92: 114–123

    Google Scholar 

  • Lange R A, Carmichael I S E. 1987. Densities of Na2O-K2O-CaO-MgOFeO-Fe2O3-Al2O3-TiO2-SiO2 liquids: New measurements and derived partial molar properties. Geochim Cosmochim Acta, 51: 2931–2946

    Google Scholar 

  • Lange R A, Carmichael I S E. 1990. Thermodynamic properties of silicate liquids with emphasis on density, thermal-expansion and compressibility. Rev Mineral, 24: 25–64

    Google Scholar 

  • Lesher, C E, Spera, F J. 2015. Chapter 5–thermodynamic and transport properties of silicate melts and magma. In: Sigurdsson H, ed. The Encyclopedia of Volcanoes, 113–141

    Google Scholar 

  • Li B, Kung J, Liebermann R C. 2004. Modern techniques in measuring elasticity of Earth materials at high pressure and high temperature using ultrasonic interferometry in conjunction with synchrotron X-radiation in multi-anvil apparatus. Phys Earth Planet Inter, 143: 559–574

    Google Scholar 

  • Li B, Liebermann R C. 2007. Indoor seismology by probing the Earth’s interior by using sound velocity measurements at high pressures and temperatures. Proc Natl Acad Sci USA, 104: 9145–9150

    Google Scholar 

  • Li B, Liebermann R C. 2014. Study of the Earth’s interior using measurements of sound velocities in minerals by ultrasonic interferometry. Phys Earth Planet Inter, 233: 135–153

    Google Scholar 

  • Li B, Liu W. 2010. Advanced elasticity and density measurements on melts at mantle pressures using ultrasonic interferometry and synchrotron Xradiation. AGU Fall Meeting, abstract #MR44A-02

    Google Scholar 

  • Liebermann R C. 2011. Multi-anvil, high pressure apparatus: A half-century of development and progress. High Pressure Res, 31: 493–532

    Google Scholar 

  • Liu L, Bi Y, Xu J A. 2016. Latest developments in experimental research on structural and physical properties of liquids under extreme conditions (in Chinese). Chin J High Pressure Phys, 30: 7–19

    Google Scholar 

  • Liu Q, Lange R A. 2001. The partial molar volume and thermal expansivity of TiO2 in alkali silicate melts: Systematic variation with Ti coordination. Geochim Cosmochim Acta, 65: 2379–2393

    Google Scholar 

  • Liu Q, Lange R A. 2006. The partial molar volume of Fe2O3 in alkali silicate melts: Evidence for an average Fe3+ coordination number near five. Am Miner, 91: 385–393

    Google Scholar 

  • Liu Q, Lange R A, Ai Y. 2007a. Acoustic velocity measurements on Na2OTiO2-SiO2 liquids: Evidence for a highly compressible TiO2 component related to five-coordinated Ti. Geochim Cosmochim Acta, 71: 4314–4326

    Google Scholar 

  • Liu Q, Tenner T J, Lange R A. 2007b. Do carbonate liquids become denser than silicate liquids at pressure? Constraints from the fusion curve of K2CO3 to 3.2 GPa. Contrib Mineral Petrol, 153: 55–66

    Google Scholar 

  • Malfait W J, Sanchez-Valle C, Ardia P, Medard E, Lerch P. 2011. Amorphous materials: Properties, structure, and durability: Compositional dependent compressibility of dissolved water in silicate glasses. Am Miner, 96: 1402–1409

    Google Scholar 

  • Malfait W J, Seifert R, Petitgirard S, Mezouar M, Sanchez-Valle C. 2014a. The density of andesitic melts and the compressibility of dissolved water in silicate melts at crustal and upper mantle conditions. Earth Planet Sci Lett, 393: 31–38

    Google Scholar 

  • Malfait W J, Seifert R, Petitgirard S, Perrillat J P, Mezouar M, Ota T, Nakamura E, Lerch P, Sanchez-Valle C. 2014b. Supervolcano eruptions driven by melt buoyancy in large silicic magma chambers. Nat Geosci, 7: 122–125

    Google Scholar 

  • Matsukage K N, Jing Z, Karato S I. 2005. Density of hydrous silicate melt at the conditions of Earth’s deep upper mantle. Nature, 438: 488–491

    Google Scholar 

  • Miller G H, Ahrens T J, Stolper E M. 1988. The equation of state of molybdenum at 1400°C. J Appl Phys, 63: 4469–4475

    Google Scholar 

  • Miller G H, Stolper E M, Ahrens T J. 1991. The equation of state of a molten komatiite: 1. Shock wave compression to 36 GPa. J Geophys Res, 96: 11831–11848

    Google Scholar 

  • Morard G, Garbarino G, Antonangeli D, Andrault D, Guignot N, Siebert J, Roberge M, Boulard E, Lincot A, Denoeud A, Petitgirard S. 2014. Density measurements and structural properties of liquid and amorphous metals under high pressure. High Pressure Res, 34: 9–21

    Google Scholar 

  • Mueller H J, Roetzler K, Schilling F R, Lathe C, Wehber M. 2010. Techniques for measuring the elastic wave velocities of melts and partial molten systems under high pressure conditions. J Phys Chem Solids, 71: 1108–1117

    Google Scholar 

  • Nakajima Y, Imada S, Hirose K, Komabayashi T, Ozawa H, Tateno S, Tsutsui S, Kuwayama Y, Baron A Q R. 2015. Carbon-depleted outer core revealed by sound velocity measurements of liquid iron-carbon alloy. Nat Commun, 6: 8942

    Google Scholar 

  • Ni H. 2013. Advances and application in physicochemical properties of silicate melts. Chin Sci Bull, 58: 865–890

    Google Scholar 

  • Ni H, Zhang L, Guo X. 2016. Water and partial melting of Earth’s mantle. Sci China Earth Sci, 59: 720–730

    Google Scholar 

  • Nishida K, Kono Y, Terasaki H, Takahashi S, Ishii M, Shimoyama Y, Higo Y, Funakoshi K, Irifune T, Ohtani E. 2013. Sound velocity measurements in liquid Fe-S at high pressure: Implications for Earth’s and lunar cores. Earth Planet Sci Lett, 362: 182–186

    Google Scholar 

  • Nishida K, Suzuki A, Terasaki H, Shibazaki Y, Higo Y, Kuwabara S, Shimoyama Y, Sakurai M, Ushioda M, Takahashi E, Kikegawa T, Wakabayashi D, Funamori N. 2016. Towards a consensus on the pressure and composition dependence of sound velocity in the liquid Fe-S system. Phys Earth Planet Inter, 257: 230–239

    Google Scholar 

  • Ochs F A, Lange R A. 1997. The partial molar volume, thermal expansivity, and compressibility of H2O in NaAlSi3O8 liquid: New measurements and an internally consistent model. Contrib Mineral Petrol, 129: 155–165

    Google Scholar 

  • Ochs F A, Lange R A. 1999. The density of hydrous magmatic liquids. Science, 283: 1314–1317

    Google Scholar 

  • Ohira I, Murakami M, Kohara S, Ohara K, Ohtani E. 2016. Ultrahighpressure acoustic wave velocities of SiO2-Al2O3 glasses up to 200 GPa. Prog Earth Planet Sci, 3: 18

    Google Scholar 

  • Ohtani E. 2009. Melting relations and the equation of state of magmas at high pressure: Application to geodynamics. Chem Geol, 265: 279–288

    Google Scholar 

  • Ohtani E, Maeda M. 2001. Density of basaltic melt at high pressure and stability of the melt at the base of the lower mantle. Earth Planet Sci Lett, 193: 69–75

    Google Scholar 

  • Ohtani E, Suzuki A, Ando R, Urakawa S, Funakoshi K, Katayama Y. 2005. Viscosity and density measurements of melts and glasses at high pressure and temperature by using the multi-anvil apparatus and synchrotron X-ray radiation. In: Chen J, Wang Y, Duffy T S, Shen G, Dobrzhinetskaya L F, eds. Advances in High-Pressure Technology for Geophysical Applications. Amsterdam: Elsevier. 195–209

    Google Scholar 

  • Ohtani E, Suzuki A, Kato T. 1993. Flotation of olivine in the peridotite melt at high pressure. Proc Jpn Acad Ser B-Phys Biol Sci, 69: 23–28

    Google Scholar 

  • Petitgirard S. 2017. Density and structural changes of silicate glasses under high pressure. High Pressure Res, 37: 200–213

    Google Scholar 

  • Petitgirard S, Malfait W J, Sinmyo R, Kupenko I, Hennet L, Harries D, Dane T, Burghammer M, Rubie D C. 2015. Fate of MgSiO3 melts at core-mantle boundary conditions. Proc Natl Acad Sci USA, 112: 14186–14190

    Google Scholar 

  • Poirier J. 2000. Introduction to the Physics of the Earth’s Interior. 2nd ed. Cambridge: Cambridge University Press. 312

  • Reichmann H J, Jacobsen S D, Ballaran T B. 2013. Elasticity of franklinite and trends for transition-metal oxide spinels. Am Miner, 98: 601–608

    Google Scholar 

  • Rigden S M, Ahrens T J, Stolper E M. 1984. Densities of liquid silicates at high pressures. Science, 226: 1071–1074

    Google Scholar 

  • Rigden S M, Ahrens T J, Stolper E M. 1988. Shock compression of molten silicate: Results for a model basaltic composition. J Geophys Res, 93: 367–382

    Google Scholar 

  • Rigden S M, Ahrens T J, Stolper E M. 1989. High-pressure equation of state of molten anorthite and diopside. J Geophys Res, 94: 9508–9522

    Google Scholar 

  • Rivers M L, Carmichael I S E. 1987. Ultrasonic studies of silicate melts. J Geophys Res, 92: 9247–9270

    Google Scholar 

  • Rowan L R. 1993. I. Equation of state of molten mid-ocean ridge basalt II. Structure of Kilauea volcano, Hawaii. Doctoral Dissertation. Pasadena: California Institute of Technology

    Google Scholar 

  • Sakamaki T, Ohtani E, Urakawa S, Suzuki A, Katayama Y. 2009. Measurement of hydrous peridotite magma density at high pressure using the X-ray absorption method. Earth Planet Sci Lett, 287: 293–297

    Google Scholar 

  • Sakamaki T, Ohtani E, Urakawa S, Suzuki A, Katayama Y. 2010a. Density of dry peridotite magma at high pressure using an X-ray absorption method. Am Miner, 95: 144–147

    Google Scholar 

  • Sakamaki T, Ohtani E, Urakawa S, Suzuki A, Katayama Y, Zhao D. 2010b. Density of high-Ti basalt magma at high pressure and origin of heterogeneities in the lunar mantle. Earth Planet Sci Lett, 299: 285–289

    Google Scholar 

  • Sakamaki T, Ohtani E, Urakawa S, Terasaki H, Katayama Y. 2011. Density of carbonated peridotite magma at high pressure using an X-ray absorption method. Am Miner, 96: 553–557

    Google Scholar 

  • Sakamaki T, Suzuki A, Ohtani E. 2006. Stability of hydrous melt at the base of the Earth’s upper mantle. Nature, 439: 192–194

    Google Scholar 

  • Sakamaki T, Suzuki A, Ohtani E, Terasaki H, Urakawa S, Katayama Y, Funakoshi K I, Wang Y, Hernlund J W, Ballmer M D. 2013. Ponded melt at the boundary between the lithosphere and asthenosphere. Nat Geosci, 6: 1041–1044

    Google Scholar 

  • Sanloup C. 2016. Density of magmas at depth. Chem Geol, 429: 51–59

    Google Scholar 

  • Sanloup C, Drewitt J W E, Crépisson C, Kono Y, Park C, McCammon C, Hennet L, Brassamin S, Bytchkov A. 2013a. Structure and density of molten fayalite at high pressure. Geochim Cosmochim Acta, 118: 118–128

    Google Scholar 

  • Sanloup C, Drewitt J W E, Konôpková Z, Dalladay-Simpson P, Morton D M, Rai N, van Westrenen W, Morgenroth W. 2013b. Structural change in molten basalt at deep mantle conditions. Nature, 503: 104–107

    Google Scholar 

  • Sato T, Funamori N. 2008. Sixfold-coordinated amorphous polymorph of SiO2 under high pressure. Phys Rev Lett, 101: 255502

    Google Scholar 

  • Schmandt B, Jacobsen S D, Becker T W, Liu Z, Dueker K G. 2014. Dehydration melting at the top of the lower mantle. Science, 344: 1265–1268

    Google Scholar 

  • Schmerr N. 2012. The Gutenberg discontinuity: Melt at the lithosphereasthenosphere boundary. Science, 335: 1480–1483

    Google Scholar 

  • Secco R A, Manghnani M H, Liu T C. 1991a. The bulk modulus-attenuation-viscosity systematics of diopside-anorthite melts. Geophys Res Lett, 18: 93–96

    Google Scholar 

  • Secco R A, Manghnani M H, Liu T. 1991b. Velocities and compressibilities of komatiitic melts. Geophys Res Lett, 18: 1397–1400

    Google Scholar 

  • Seifert R, Malfait W J, Lerch P, Sanchez-Valle C. 2013a. Partial molar volume and compressibility of dissolved CO2 in glasses with magmatic compositions. Chem Geol, 358: 119–130

    Google Scholar 

  • Seifert R, Malfait W J, Petitgirard S, Sanchez-Valle C. 2013b. Density of phonolitic magmas and time scales of crystal fractionation in magma chambers. Earth Planet Sci Lett, 381: 12–20

    Google Scholar 

  • Shen G, Mao H K. 2017. High-pressure studies with X-rays using diamond anvil cells. Rep Prog Phys, 80: 016101

    Google Scholar 

  • Shen G, Sata N, Newville M, Rivers M L, Sutton S R. 2002. Molar volumes of molten indium at high pressures measured in a diamond anvil cell. Appl Phys Lett, 81: 1411–1413

    Google Scholar 

  • Shen G, Wang Y. 2014. High-pressure apparatus integrated with synchrotron radiation. Rev Mineral Geochem, 78: 745–777

    Google Scholar 

  • Shimoyama Y, Terasaki H, Urakawa S, Takubo Y, Kuwabara S, Kishimoto S, Watanuki T, Machida A, Katayama Y, Kondo T. 2016. Thermoelastic properties of liquid Fe-C revealed by sound velocity and density measurements at high pressure. J Geophys Res-Solid Earth, 121: 7984–7995

    Google Scholar 

  • Smith J R, Agee C B. 1997. Compressibility of molten “green glass” and crystal-liquid density crossovers in low-Ti lunar magma. Geochim Cosmochim Acta, 61: 2139–2145

    Google Scholar 

  • Stixrude L, de Koker N, Sun N, Mookherjee M, Karki B B. 2009. Thermodynamics of silicate liquids in the deep Earth. Earth Planet Sci Lett, 278: 226–232

    Google Scholar 

  • Stolper E, Hager B H, Walker D, Hays J F. 1981. Melt segregation from partially molten source regions: The importance of melt density and source region size. J Geophys Res, 86: 6261–6271

    Google Scholar 

  • Suzuki A, Ohtani E. 2003. Density of peridotite melts at high pressure. Phys Chem Miner, 30: 449–456

    Google Scholar 

  • Suzuki A, Ohtani E, Kato T. 1995. Flotation of diamond in mantle melt at high pressure. Science, 269: 216–218

    Google Scholar 

  • Suzuki A, Ohtani E, Kato T. 1998. Density and thermal expansion of a peridotite melt at high pressure. Phys Earth Planet Inter, 107: 53–61

    Google Scholar 

  • Suzuki A, Ohtani E, Terasaki H, Sakamaki T, Nishida K, Funakoshi K. 2007. In situ buoyancy test for the density measurement of basaltic liquid at high pressure and high temperature. AGU Fall Meeting, abstracts #MR13B-1258

    Google Scholar 

  • Tauzin B, Debayle E, Wittlinger G. 2010. Seismic evidence for a global low-velocity layer within the Earth’s upper mantle. Nat Geosci, 3: 718–721

    Google Scholar 

  • Tenner T J, Lange R A, Downs R T. 2007. The albite fusion curve reexamined: New experiments and the high-pressure density and compressibility of high albite and NaAlSi3O8 liquid. Am Miner, 92: 1573–1585

    Google Scholar 

  • Thibodeau E, Gheribi A E, Jung I H. 2016a. A structural molar volume model for oxide melts part I: Li2O-Na2O-K2O-MgO-CaO-MnO-PbOAl2O3-SiO2 melts—Binary systems. Metall Mater Trans B, 47: 1147–1164

    Google Scholar 

  • Thibodeau E, Gheribi A E, Jung I H. 2016b. A structural molar volume model for oxide melts part II: Li2O-Na2O-K2O-MgO-CaO-MnO-PbOAl2O3-SiO2 melts—Ternary and multicomponent systems. Metall Mater Trans B, 47: 1165–1186

    Google Scholar 

  • Thibodeau E, Gheribi A E, Jung I H. 2016c. A structural molar volume model for oxide melts part III: Fe oxide-containing melts. Metall Mater Trans B, 47: 1187–1202

    Google Scholar 

  • Thomas C W, Asimow P D. 2013a. Preheated shock experiments in the molten CaAl2Si2O8-CaFeSi2O6-CaMgSi2O6 ternary: A test for linear mixing of liquid volumes at high pressure and temperature. J Geophys Res-Solid Earth, 118: 3354–3365

    Google Scholar 

  • Thomas C W, Asimow P D. 2013b. Direct shock compression experiments on premolten forsterite and progress toward a consistent high-pressure equation of state for CaO-MgO-Al2O3-SiO2-FeO liquids. J Geophys Res-Solid Earth, 118: 5738–5752

    Google Scholar 

  • Thomas C W, Liu Q, Agee C B, Asimow P D, Lange R A. 2012. Multitechnique equation of state for Fe2SiO4 melt and the density of Febearing silicate melts from 0 to 161 GPa. J Geophys Res, 117: 10206

    Google Scholar 

  • Ueki K, Iwamori H. 2016. Density and seismic velocity of hydrous melts under crustal and upper mantle conditions. Geochem Geophys Geosyst, 17: 1799–1814

    Google Scholar 

  • Urakawa S, Sakamaki T, Ohtani E. 2006. Anomalous compression of basaltic magma: Implication to pressure-induced structural change in silicate melt. Spring-8 Res Front. 113–114

    Google Scholar 

  • van Kan Parker M, Agee C B, Duncan M S, van Westrenen W. 2011. Compressibility of molten Apollo 17 orange glass and implications for density crossovers in the lunar mantle. Geochim Cosmochim Acta, 75: 1161–1172

    Google Scholar 

  • van Kan Parker M, Sanloup C, Sator N, Guillot B, Tronche E J, Perrillat J P, Mezouar M, Rai N, van Westrenen W. 2012. Neutral buoyancy of titanium-rich melts in the deep lunar interior. Nat Geosci, 5: 186–189

    Google Scholar 

  • van Kan Parker M, Sanloup C, Tronche E J, Perrillat J P, Mezouar M, Rai N, van Westrenen W. 2010. Calibration of a diamond capsule cell assembly for in situ determination of liquid properties in the Paris-Edinburgh press. High Pressure Res, 30: 332–341

    Google Scholar 

  • Vander Kaaden K E, Agee C B, McCubbin F M. 2015. Density and compressibility of the molten lunar picritic glasses: Implications for the roles of Ti and Fe in the structures of silicate melts. Geochim Cosmochim Acta, 149: 1–20

    Google Scholar 

  • Wakabayashi D, Funamori N. 2013. Equation of state of silicate melts with densified intermediate-range order at the pressure condition of the Earth’s deep upper mantle. Phys Chem Miner, 40: 299–307

    Google Scholar 

  • Wakabayashi D, Funamori N, Sato T, Sekine T. 2014. Equation of state for silicate melts: A comparison between static and shock compression. Geophys Res Lett, 41: 50–54

    Google Scholar 

  • Wang Y. 2010. Large volume presses for high-pressure studies using synchrotron radiation. In: Boldyreva E, Dera P, eds. High-Pressure Crystallography. NATO Science for Peace and Security Series B: Physics and Biophysics. Dordrecht: Springer. 81–96

    Google Scholar 

  • Wang Y, Rivers M, Sutton S, Nishiyama N, Uchida T, Sanehira T. 2009. The large-volume high-pressure facility at GSECARS: A “Swiss-armyknife” approach to synchrotron-based experimental studies. Phys Earth Planet Inter, 174: 270–281

    Google Scholar 

  • Wang Y, Shen G. 2014. High-pressure experimental studies on geo-liquids using synchrotron radiation at the Advanced Photon Source. J Earth Sci, 25: 939–958

    Google Scholar 

  • Wang Y B. 2006. Combining the large-volume press with synchrotron radiation: Applications to in-situ studies of Earth materials under high pressure and temperature. Earth Sci Front, 13: 1–36

    Google Scholar 

  • Williams Q, Garnero E J. 1996. Seismic evidence for partial melt at the base of Earth’s mantle. Science, 273: 1528–1530

    Google Scholar 

  • Wolf A S, Asimow P D, Stevenson D J. 2015. Coordinated Hard Sphere Mixture (CHaSM): A simplified model for oxide and silicate melts at mantle pressures and temperatures. Geochim Cosmochim Acta, 163: 40–58

    Google Scholar 

  • Yamazaki D, Ito E, Yoshino T, Tsujino N, Yoneda A, Guo X, Xu F, Higo Y, Funakoshi K. 2014. Over 1Mbar generation in the Kawai-type multianvil apparatus and its application to compression of (Mg0.92Fe0.08)SiO3 perovskite and stishovite. Phys Earth Planet Inter, 228: 262–267

    Google Scholar 

  • Yasuda A, Fujii T, Kurita K. 1994. Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa: Implications for the behavior of subducted oceanic crust in the mantle, J Geophys Res, 99: 9401–9414

    Google Scholar 

  • Yu T, Wang Y, Rivers M L. 2016. Imaging in 3D under pressure: A decade of high-pressure X-ray microtomography development at GSECARS. Prog Earth Planet Sci, 3: 17

    Google Scholar 

  • Zhang X, Liu Y G, Song W, Wang Z G, Xie H S. 2013. Research progress on ultrasonic velocity measurement of liquid materials under high pressure. Chin J High Pressure Phys, 27: 239–244

    Google Scholar 

  • Zinin P V, Prakapenka V B, Burgess K, Odake S, Chigarev N, Sharma S K. 2016. Combined laser ultrasonics, laser heating, and Raman scattering in diamond anvil cell system. Rev Sci Instrum, 87: 123908

    Google Scholar 

Download references

Acknowledgements

Constructive comments made by Yongfei Zheng, the chief editor, two anonymous reviewers, and Haoran Ma from School of Earth and Space Sciences, Peking University, which greatly improved the quality of this manuscript, are highly appreciated. This work was supported by the National Natural Science Foundation of China (Grant Nos. 40972028, 41520104004, and 41672036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, J., Liu, Q. Theoretical models and experimental determination methods for equations of state of silicate melts: A review. Sci. China Earth Sci. 62, 751–770 (2019). https://doi.org/10.1007/s11430-017-9325-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9325-3

Keywords

Navigation