Skip to main content
Log in

Diffusion of helium in FCT zircon

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

To gain a better quantitative understanding of zircon (U-Th)/He ages and evaluate the applicability of zircon (U-Th)/ He dating, the diffusion characteristics, He diffusion kinetics, helium partial retention zone (HePRZ), closure temperature, and (U-Th)/He ages were investigated using high-precision laboratory step heating experiments based on the thermally activated diffusion process. The ln(D/a2) in Fish Canyon Tuff (FCT) zircons determined from laboratory step heating experiments was negatively correlated with reciprocal temperature, as expected for thermally activated volume diffusion. The zircon activation energies ranged from 144 to 184 kJ mol−1 with a mean of 169±12 kJ mol−1. The closure temperatures ranged from 144 to 216°C (a cooling rate of 10°C Ma−1 and an effective grain radius of 38–60 μm) with an average of 176±18°C. The calculated closure temperature increased with increasing cooling rate, yielding an average zircon He closure temperature of ~136°C at a slow cooling rate of 0.1°C Ma−1, whereas the closure value was ~199°C at a cooling rate of 100°C Ma−1. The closure temperature increased with the equivalent spherical radius assuming a constant cooling rate. The He ages from FCT zircons were negligibly affected by grain size because of the rapid cooling. He preserved in the zircon was sensitive to temperature and holding time, and the temperature range for zircon HePRZ gradually decreased with increasing holding time. The (U-Th)/He ages from 26 FCT zircons yielded an algorithmic mean of 28.3±0.3 Ma (S.E.) and a geometric mean of 28.4±0.3 Ma (S.E.), consistent with the ages of 28.4±1.9 Ma reported by other laboratories. The FCT zircons were characterized by rapid cooling, young (U-Th)/He ages with good reproducibility, and low alpha doses. Weak correlations between the He ages and effective uranium (eU) concentrations from the FCT zircons indicated radiation damage did not significantly affect He diffusivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boyce J W, Hodges K V, Olszewski W J, Jercinovic M J. 2013. He diffusion in monazite: Implications for (U–Th)/He thermochronometry. Geochem Geophys Geosyst, 6: Q12004

    Google Scholar 

  • Brandon M T, Roden–Tice M K, Garver J I. 1998. Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Moun–tains, Northwest Washington State. Geol Soc Am Bull, 110: 985–1009

    Article  Google Scholar 

  • Carpéna J, Mailhé D. 1987. Fission–track dating calibration of the fish canyon tuff standard in French reactors. Chem Geol–Isotope Geosci Sect, 66: 53–59

    Article  Google Scholar 

  • Carslaw H J, Jaeger J C. 1959. Conduction of Heat in Solids. 2nd ed. London: Oxford University Press. 510

    Google Scholar 

  • Chang J, Qiu N S. 2012. Closure temperature of (U–Th)/He system in apatite obtained from natural drillhole samples in the Tarim basin and its geological significance. Chin Sci Bull, 57: 3482–3490

    Article  Google Scholar 

  • Cherniak D J, Watson E B, Thomas J B. 2009. Diffusion of helium in zircon and apatite. Chem Geol, 268: 155–166

    Article  Google Scholar 

  • Danišík M, Shane P, Schmitt A K, Hogg A, Santos G M, Storm S, Evans N J, Keith Fifield L, Lindsay J M. 2012. Re–anchoring the late Pleistocene tephrochronology of New Zealand based on concordant radiocarbon ages and combined 238U/230Th disequilibrium and (U–Th)/He zircon ages. Earth Planet Sci Lett, 349–350: 240–250

    Article  Google Scholar 

  • Dazé A, Lee J K W, Villeneuve M. 2003. An intercalibration study of the Fish Canyon sanidine and biotite 40Ar/39Ar standards and some comments on the age of the Fish Canyon Tuff. Chem Geol, 199: 111–127

    Article  Google Scholar 

  • Dobson K J, Stuart F M, Dempster T J. 2008. U and Th zonation in Fish Canyon Tuff zircons: Implications for a zircon (U–Th)/He standard. Geochim Cosmochim Acta, 72: 4745–4755

    Article  Google Scholar 

  • Dobson K J. 2006. The zircon (U–Th)/He thermochronometer: Development and application of thermochronometers in igneous provinces. Doctoral Dissertation. Glasgow: University of Glasgow

    Google Scholar 

  • Dodson M H. 1973. Closure temperature in cooling geochronological and petrological systems. Contr Mineral Petrol, 40: 259–274

    Article  Google Scholar 

  • Druschke P, Hanson A D, Wells M L, Rasbury T, Stockli D F, Gehrels G. 2009. Synconvergent surface–breaking normal faults of Late Cretaceous age within the Sevier hinterland, east–central Nevada. Geology, 37: 447–450

    Article  Google Scholar 

  • Farley K A. 2000. Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite. J Geophys Res, 105: 2903–2914

    Article  Google Scholar 

  • Farley K A, Kohn B P, Pillans B. 2002. The effects of secular disequilibrium on (U–Th)/He systematics and dating of Quaternary volcanic zircon and apatite. Earth Planet Sci Lett, 201: 117–125

    Article  Google Scholar 

  • Farley K A, Reiners P W, Nenow V. 1999. An apparatus for high–precision helium diffusion measurements from minerals. Anal Chem, 71: 2059–2061

    Article  Google Scholar 

  • Farley K A, Wolf R A, Silver L T. 1996. The effects of long alpha–stopping distances on (U–Th)/He ages. Geochim Cosmochim Acta, 60: 4223–4229

    Article  Google Scholar 

  • Fechtig H, Kalbitzer S. 1966. The diffusion of argon in potassium–bearing solids. In: Schaeffer O A, Zahringer J, eds. Potassium Argon Dating. Berlin: Springer. 68–107

    Google Scholar 

  • Flowers R M, Ketcham R A, Shuster D L, Farley K A. 2009. Apatite (UTh)/He thermochronometry using a radiation damage accumulation and annealing model. Geochim Cosmochim Acta, 73: 2347–2365

    Article  Google Scholar 

  • Flowers R M, Shuster D L, Wernicke B P, Farley K A. 2007. Radiation damage control on apatite (U–Th)/He dates from the Grand Canyon region, Colorado Plateau. Geology, 35: 447–450

    Article  Google Scholar 

  • Gautheron C, Tassan–Got L, Barbarand J, Pagel M. 2009. Effect of alphadamage annealing on apatite (U–Th)/He thermochronology. Chem Geol, 266: 157–170

    Article  Google Scholar 

  • Gleadow A, Harrison M, Kohn B, Lugo–Zazueta R, Phillips D. 2015. The Fish Canyon Tuff: A new look at an old low–temperature thermochronology standard. Earth Planet Sci Lett, 424: 95–108

    Article  Google Scholar 

  • Green P F, Duddy I R. 2006. Interpretation of apatite (U–Th)/He ages and fission track ages from cratons. Earth Planet Sci Lett, 244: 541–547

    Article  Google Scholar 

  • Guenthner W R, Reiners P W, Drake H, Tillberg M. 2017. Zircon, titanite, and apatite (U–Th)/He ages and age–eU correlations from the Fennoscandian Shield, southern Sweden. Tectonics, 36: 1254–1274

    Article  Google Scholar 

  • Guenthner W R, Reiners P W, Ketcham R A, Nasdala L, Giester G. 2013. Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon (U–Th)/He thermochronology. Am J Sci, 313: 145–198

    Article  Google Scholar 

  • House M A, Farley K A, Kohn B P. 1999. An empirical test of helium diffusion in apatite: Borehole data from the Otway basin, Australia. Earth Planet Sci Lett, 170: 463–474

    Article  Google Scholar 

  • House M A, Farley K A, Stockli D. 2000. Helium chronometry of apatite and titanite using Nd–Yag laser heating. Earth Planet Sci Lett, 183: 365–368

    Article  Google Scholar 

  • Hurford A J, Hammerschmidt K. 1985. and K/Ar dating of the bishop and fish canyon tuffs: Calibration ages for fission–track dating standards. Chem Geol–Isotope Geosci Sect, 58: 23–32

    Google Scholar 

  • Hurley P M. 1952. Alpha ionization damage as a cause of low helium ratios. Trans AGU, 33: 174–183

    Article  Google Scholar 

  • Jourdan F, Renne P R. 2007. Age calibration of the Fish Canyon sanidine 40Ar/39Ar dating standard using primary K–Ar standards. Geochim Cosmochim Acta, 71: 387–402

    Article  Google Scholar 

  • Johnson J E, Flowers R M, Baird G B, Mahan K H. 2017. “Inverted” zircon and apatite (U–Th)/He dates from the Front Range, Colorado: Highdamage zircon as a low–temperature (<50?) thermochronometer. Earth Planet Sci Lett, 466: 80–90

    Google Scholar 

  • Lagerwall T, Zimen K E. 1963. The kinetics of rare gas diffusion in solids (Rare–gas diffusion in solids 10): Bericht des Hahn–Meitner–Instituts fur Kernchemie. Berlin, HMI–B 25: 3

    Google Scholar 

  • Lanphere M A, Baadsgaard H. 2001. Precise K–Ar, 40Ar–39Ar, Rb–Sr and UPb mineral ages from the 27.5 Ma Fish Canyon Tuff reference standard. Chem Geol, 175: 653–671

    Article  Google Scholar 

  • Lippolt H J, Leitz M, Wernicke R S, Hagedorn B. 1994. (Uranium+thorium)/helium dating of apatite: Experience with samples from different geochemical environments. Chem Geol, 112: 179–191

    Google Scholar 

  • McInnes B I A, Evans N J, McDonald B J, Kinny P D, Jakimowicz J. 2009. Zircon U–Th–Pb–He double dating of the Merlin kimberlite field, Northern Territory, Australia. Lithos, 112: 592–599

    Article  Google Scholar 

  • Meesters A G C A, Dunai T J. 2002. Solving the production–diffusion equation for finite diffusion domains of various shapes. Chem Geol, 186: 333–344

    Article  Google Scholar 

  • Naeser C W, Zimmermann R A, Cebula G T. 1981. Fission–track dating of apatite and zircon: An interlaboratory comparison. Nucl Tracks, 5: 65–72

    Article  Google Scholar 

  • Nasdala L, Hanchar J M, Kronz A, Whitehouse M J. 2004. Long–term stability of alpha particle damage in natural zircon. Chem Geol, 220: 83–103

    Article  Google Scholar 

  • Nasdala L, Wenzel M, Vavra G, Irmer G, Wenzel T, Kober B. 2001. Metamictisation of natural zircon: Accumulation versus thermal annealing of radioactivity–induced damage. Contrib Mineral Petrol, 141: 125–144

    Article  Google Scholar 

  • Orme D A, Guenthner W R, Laskowski A K, Reiners P W. 2016. Longterm tectonothermal history of Laramide basement from zircon—He age–eU correlations. Earth Planet Sci Lett, 453: 119–130

    Article  Google Scholar 

  • Qiu N S, Wang J Y, Mei Q H, Jiang G, Tao C. 2010. Constraints of (U–Th)/He ages on early Paleozoic tectonothermal evolution of the Tarim Basin, China. Sci China Earth Sci, 53: 964–976

    Article  Google Scholar 

  • Reich M, Ewing R C, Ehlers T A, Becker U. 2007. Low–temperature anisotropic diffusion of helium in zircon: Implications for zircon (U–Th)/He thermochronometry. Geochim Cosmochim Acta, 71: 3119–3130

    Article  Google Scholar 

  • Reiners P W. 2005. Zircon (U–Th)/He thermochronometry. Rev Mineral Geochem, 58: 151–179

    Article  Google Scholar 

  • Reiners P W, Farley K A. 2001. Influence of crystal size on apatite (U–Th)/He thermochronology: An example from the Bighorn Mountains, Wyoming. Earth Planet Sci Lett, 188: 413–420

    Article  Google Scholar 

  • Reiners P W, Farley K A, Hickes H J. 2002. He diffusion and (U–Th)/He thermochronometry of zircon: Initial results from Fish Canyon Tuff and Gold Butte. Tectonophysics, 349: 297–308

    Article  Google Scholar 

  • Reiners P W, Spell T L, Nicolescu S, Zanetti K A. 2004. Zircon (U–Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating. Geochim Cosmochim Acta, 68: 1857–1887

    Article  Google Scholar 

  • Renne P R, Deino A L, Walter R C, Turrin B D, Swisher III C C, Becker T A, Curtis G H, Sharp W D, Jaouni A R. 1994. Intercalibration of astronomical and radioisotopic time. Geology, 22: 783–786

    Article  Google Scholar 

  • Saadoune I, de Leeuw N H. 2009. A computer simulation study of the accommodation and diffusion of He in uranium–and plutonium–doped zircon (ZrSiO4). Geochim Cosmochim Acta, 73: 3880–3893

    Article  Google Scholar 

  • Saadoune I, Purton J A, de Leeuw N H. 2009. He incorporation and diffusion pathways in pure and defective zircon ZrSiO4: A density functional theory study. Chem Geol, 258: 182–196

    Article  Google Scholar 

  • Schmitt A K, Stockli D F, Hausback B P. 2006. Eruption and magma crystallization ages of Las Tres Vírgenes (Baja California) constrained by combined 230Th/238U and (U–Th)/He dating of zircon. J Volcanol Geotherm Res, 158: 281–295

    Article  Google Scholar 

  • Schmitz M D, Bowring S A. 2001. U–Pb zircon and titanite systematics of the Fish Canyon Tuff: An assessment of high–precision U–Pb geochronology and its application to young volcanic rocks. Geochim Cosmochim Acta, 65: 2571–2587

    Article  Google Scholar 

  • Shuster D L, Farley K A. 2009. The influence of artificial radiation damage and thermal annealing on helium diffusion kinetics in apatite. Geochim Cosmochim Acta, 73: 183–196

    Article  Google Scholar 

  • Shuster D L, Flowers R M, Farley K A. 2006. The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth Planet Sci Lett, 249: 148–161

    Article  Google Scholar 

  • Stockli D F. 2005. Application of low–temperature thermochronometry to extensional tectonic settings. Rev Mineral Geochem, 58: 411–448

    Article  Google Scholar 

  • Sun J B, Chen W, Yu S, Shen Z, Tian Y T. 2017. Study on Zircon (U–Th)/He Dating Technique (in Chinese). Acta Petrol Sin, 33: 1947–1956

    Google Scholar 

  • Tagami T, Farley K A, Stockli D F. 2003. (U–Th)/He geochronology of single zircon grains of known Tertiary eruption age. Earth Planet Sci Lett, 207: 57–67

    Article  Google Scholar 

  • Vermeesch P. 2010. HelioPlot, and the treatment of overdispersed (U–Th–Sm)/He data. Chem Geol, 271: 108–111

    Article  Google Scholar 

  • Warnock A C, Zeitler P K, Wolf R A, Bergman S C. 1997. An evaluation of low–temperature apatite U–Th/He thermochronometry. Geochim Cosmochim Acta, 61: 5371–5377

    Article  Google Scholar 

  • Wolf R A, Farley K A, Silver L T. 1996. Helium diffusion and lowtemperature thermochronometry of apatite. Geochim Cosmochim Acta, 60: 4231–4240

    Article  Google Scholar 

  • Wolf R A, Farley K A, Kass D M. 1998. Modeling of the temperature sensitivity of the apatite (U–Th)/He thermochronometer. Chem Geol, 148: 105–114

    Article  Google Scholar 

  • Wolfe M R, Stockli D F. 2010. Zircon (U–Th)/He thermochronometry in the KTB drill hole, Germany, and its implications for bulk He diffusion kinetics in zircon. Earth Planet Sci Lett, 295: 69–82

    Article  Google Scholar 

  • Yu S, Chen W, Evans N J, McInnes B I A, Yin J, Sun J, Li J, Zhang B. 2014. Cenozoic uplift, exhumation and deformation in the north Kuqa Depression, China as constrained by (U–Th)/He thermochronometry. Tectonophysics, 630: 166–182

    Article  Google Scholar 

  • Yu S, Chen W, Lv X X, Evans N, McInnes B, Yin J Y, Sun J B, Li J. 2014. (U–Th)/He thermochronometry constraints on the Mesozoic–Cenozoic tectono–thermal evolution of Kuqa basin–a case study of well TZ2 (in Chinese). Chin J Geophys, 57: 62–74

    Google Scholar 

  • Yu S, Chen W, Zhang B, Sun J B, Li C, Yuan X, Shen Z, Yang L, Ma X. 2016. Mesozoic and Cenozoic uplift and exhumation history of the Kekesu section in the Center Tianshan: Constrained from (U–Th)/He thermochronometry (in Chinese). Chin J Geophys, 59: 2922–2936

    Google Scholar 

  • Zeitler P K, Herczeg A L, McDougall I, Honda M. 1987. U–Th–He dating of apatite: A potential thermochronometer. Geochim Cosmochim Acta, 51: 2865–2868

    Article  Google Scholar 

  • Zhou Z Y, Reiners P W, Xu C H, Liao Z T, Yang F L. 2002. Zircon (U–Th)/He thermochronological constraints on Cretaceous thermal extension of Dabieshan orogen. Prog Nat Sci, 12: 763–766

    Google Scholar 

Download references

Acknowledgements

We appreciate two anonymous reviewers for constructive comments. This paper was financially supported by National Natural Science Foundation of China (Grant Nos. 41503058, 41473053, 41503057), Chinese Ministry of Land and Resources (Grant No. 201511064-2), National Key R & D Program of China (Grant No. 2017YFC0601300), China Geological Survey (Grant No. DD20160123-02), and Basic Science and Technology Research Fundings of the Institute of Geology, CAGS (Grant No. J1625).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Chen, W., Sun, J. et al. Diffusion of helium in FCT zircon. Sci. China Earth Sci. 62, 719–732 (2019). https://doi.org/10.1007/s11430-017-9283-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9283-3

Keywords

Navigation