Carboniferous integrative stratigraphy and timescale of China

Abstract

The Carboniferous period lasted about 60 Myr, from ~358.9 Ma to ~298.9 Ma. According to the International Commission on Stratigraphy, the Carboniferous System is subdivided into two subsystems, i.e., Mississippian and Pennsylvanian, including 6 series and 7 stages. The Global Stratotype Sections and Points (GSSPs) of three stages have been ratified, the Tournaisian, Visean, and Bashkirian stages. The GSSPs of the remaining four stages (i.e., the Serpukhovian, Moscovian, Kasimovian, and Gzhelian) have not been ratified so far. This paper outlines Carboniferous stratigraphic subdivision and correlation on the basis of detailed biostratigraphy mainly from South China, and summarizes the Carboniferous chronostratigraphic framework of China. High-resolution biostratigraphic study reveals 37 conodont zones, 24 foraminiferal (including fusulinid) zones, 13 ammonoid zones, 10 brachiopod zones, and 10 rugose coral zones in the Carboniferous of China. The biostratigraphic framework based on these biozones warrants the precise correlation of regional stratigraphy of China (including 2 subsystems, 4 series, and 8 stages) to that of the other regions globally. Meanwhile, the Carboniferous chemo-, sequence-, cyclo-, and event-stratigraphy of China have been intensively studied and can also be correlated worldwide. Future studies on the Carboniferous in China should focus on (1) the correlation between shallow- and deep-water facies and between marine and continental facies, (2) high-resolution astronomical cyclostratigraphy, and (3) paleoenvironment and paleoclimate analysis based on geochemical proxies such as strontium and oxygen isotopes, as well as stomatal indices of fossil plants.

This is a preview of subscription content, log in to check access.

References

  1. Alekseev A S, Goreva N V, Isakova T N, Makhlina M Kh. 2004. Biostratigraphy of the Carboniferous in the Moscow Syneclise, Russia. Newsl Carb Stratigr, 22: 28–35

    Google Scholar 

  2. Alekseev A S, Kononova L I, Nikishin A M. 1996. The Devonian and Carboniferous of the Moscow Syneclise (Russian Platform): Stratigraphy and sea-level changes. Tectonophysics, 268: 149–168

    Google Scholar 

  3. Aretz M, Chevalier E. 2007. After the collapse of stromatoporid-coral reefs-the Famennian and Dinantian reefs of Belgium: Much more than Waulsortian mounds. In: Álvaro J J, Aretz M, Boulvain F, Munnecke A, Vachard D, Vennin E, eds. Palaeozoic Reefs and Bioaccumulations: Climatic and Evolutionary Controls. Geol Soc Spec Publ, 275: 163–188

    Google Scholar 

  4. Aretz M, Poty E, Devuyst F X, Hance L, Hou H. 2012. Late Tournaisian Waulsortian-like carbonate mud banks from South China (Longdianshan Hill, central Guangxi): Preliminary investigations. Geol J, 47: 450–461

    Google Scholar 

  5. Aretz M, Webb G E. 2007. Western European and eastern Australian Mississippian shallow-water reefs: a comparison. In: Wong T E, ed. Proceedings of the XVth International Congress on Carboniferous and Permian Stratigraphy. Utrecht, the Netherlands, 10–16 August 2003. Den Haag: Royal Netherlands Academy of Arts and Sciences. 433–442

    Google Scholar 

  6. Barrick J E, Lambert L L, Heckel P H, Darwin R B. 2004. Pennsylvanian conodont zonation for Midcontinent North America. Rev Espan Micropaleontol, 36: 231–250

    Google Scholar 

  7. Barrick J E, Lambert L L, Heckel P H, Rosscoe S J, Boardman D R. 2013. Midcontinent Pennsylvanian conodont zonation. Stratigraphy, 10: 55–72

    Google Scholar 

  8. Barskov I S. 1984. Upper Carboniferous and Permian (Asselian) conodont zonation and zonal scale and problems of its perfection. In: Menner V V, Grigorieva A D, eds. Upper Carboniferous of the USSR. Proceedings of the Interdepartmental Stratigraphic Committee of the USSR, 13: 102–107

    Google Scholar 

  9. Batt L S, Montañez I P, Isaacson P, Pope M C, Butts S H, Abplanalp J. 2007. Multi-carbonate component reconstruction of mid-carboniferous (Chesterian) seawater δ13C. Palaeogeogr Palaeoclimatol Palaeoecol, 256: 298–318

    Google Scholar 

  10. Berner R A. 1990. Atmospheric carbon dioxide levels over Phanerozoic Time. Science, 249: 1382–1386

    Google Scholar 

  11. Berner R A. 1997. The rise of plants and their effect on weathering and atmospheric CO2. Science, 276: 544–546

    Google Scholar 

  12. Brand U, Tazawa J I, Sano H, Azmy K, Lee X, 2009. Is mid-late Paleozoic ocean-water chemistry coupled with epeiric seawater isotope records? Geology, 37: 823–826

    Google Scholar 

  13. Bruckschen P, Bruhn F, Veizer J, Buhl D. 1995. isotopic evolution of Lower Carboniferous seawater: Dinantian of western Europe. Sediment Geol, 100: 63–81

    Google Scholar 

  14. Bruckschen P, Oesmann S, Veizer J. 1999. Isotope stratigraphy of the European Carboniferous: Proxy signals for ocean chemistry, climate and tectonics. Chem Geol, 161: 127–163

    Google Scholar 

  15. Buggisch W, Joachimski M M, Sevastopulo G, Morrow J R. 2008. Mississippian δ13Ccarb and conodont apatite δ18O records — Their relation to the Late Palaeozoic Glaciation. Palaeogeogr Palaeoclimatol Palaeoecol, 268: 273–292

    Google Scholar 

  16. Buggisch W, Wang X, Alekseev A S, Joachimski M M. 2011. Carboniferous-Permian carbon isotope stratigraphy of successions from China (Yangtze platform), USA (Kansas) and Russia (Moscow Basin and Urals). Palaeogeogr Palaeoclimatol Palaeoecol, 301: 18–38

    Google Scholar 

  17. Caplan M L, Bustin R M. 1999. Devonian-Carboniferous Hangenberg mass extinction event, widespread organic-rich mudrock and anoxia: Causes and consequences. Palaeogeogr Palaeoclimatol Palaeoecol, 148: 187–207

    Google Scholar 

  18. Chao Y T. 1927. Productidae of China (part 1). Palaeontol Sin Ser B, 5: 1–244

    Google Scholar 

  19. Chao Y T. 1928. Productidae of China (part 2). Palaeontol Sin Ser B, 5: 1–100

    Google Scholar 

  20. Chao Y T. 1929. Carboniferous and Permian spiriferids of China. Palaeont Sin Ser B, 11: 1–133

    Google Scholar 

  21. Chen B, Joachimski M M, Wang X, Shen S, Qi Y, Qie W. 2016. Ice volume and paleoclimate history of the Late Paleozoic Ice Age from conodont apatite oxygen isotopes from Naqing (Guizhou, China). Palaeogeogr Palaeoclimatol Palaeoecol, 448: 151–161

    Google Scholar 

  22. Chen J, Montañez I P, Qi Y, Shen S, Wang X. 2018. Strontium and carbon isotopic evidence for decoupling of pCO2 from continental weathering at the apex of the late Paleozoic glaciation. Geology, 46: 395–398

    Google Scholar 

  23. Chen J, Montañez I P, Qi Y, Wang X, Wang Q, Lin W. 2016. Coupled sedimentary and δ13C records of late Mississippian platform-to-slope successions from South China: Insight into δ13C chemostratigraphy. Palaeogeogr Palaeoclimatol Palaeoecol, 448: 162–178

    Google Scholar 

  24. Chen S. 1934a. Fusulinidae of the Huanglung and Maping limestones, Kwangsi. Mem Nat Res Ins Geol, 14: 33–54

    Google Scholar 

  25. Chen S. 1934b. Fusulinidae of South China, Part 1. Palaeont Sin Ser B, 4: 1–185

    Google Scholar 

  26. Cohen K M, Finney S C, Gibbard P L, Fan J X. 2013. The ICS International Chronostratigraphic Chart. Episodes, 36: 199–204

    Google Scholar 

  27. Collinson C, Rexroad C B, Thompson T L. 1971. Conodont Zonation of the North American Mississippian. Geol Soc Am Mem, 127: 358–394

    Google Scholar 

  28. Danshin, B M. 1947. Geological Structure and Minerals of Moscow and its Environs (in Russian). Moscow: Moscow Society of Naturalist Press. 308

    Google Scholar 

  29. Davydov V I, Crowley J L, Schmitz M D, Poletaev V I. 2010. Highprecision U-Pb zircon age calibration of the global Carboniferous time scale and Milankovitch band cyclicity in the Donets Basin, eastern Ukraine. Geochem Geophys Geosyst, 11: Q0AA04–22

    Google Scholar 

  30. Devuyst F-X, Hance L, Hou H F, Wu X H, Tian S G, Coen M, Sevastopulo G. 2003. A proposed global stratotype section and point for the base of the Visean Stage (Carboniferous): The Pengchong section, Guangxi, South China. Episodes, 26: 105–115

    Google Scholar 

  31. Eros J M, Montañez I P, Osleger D A, Davydov V I, Nemyrovska T I, Poletaev V I, Zhykalyak M V. 2012. Sequence stratigraphy and onlap history of the Donets Basin, Ukraine: Insight into Carboniferous icehouse dynamics. Palaeogeogr Palaeoclimatol Palaeoecol, 313–314: 1–25

    Google Scholar 

  32. Fan J S, Rigby J K. 1994. Upper carboniferous phylloid algal mounds in South Guizhou, China. Brigham Young Univ Geol Stud, 40: 17–24

    Google Scholar 

  33. Fielding C R, Frank T D, Birgenheier L P, Rygel M C, Jones A T, Roberts J. 2008. Stratigraphic imprint of the Late Palaeozoic Ice Age in eastern Australia: A record of alternating glacial and nonglacial climate regime. J Geol Soc, 165: 129–140

    Google Scholar 

  34. Gong E P, Samankassou E, Guan C Q, Zhang Y L, Sun B L. 2007. Paleoecology of Pennsylvanian phylloid algal buildups in south Guizhou, China. Facies, 54: 615–623

    Google Scholar 

  35. Gong E P, Zhang Y L, Guan C Q. 2012. The Carboniferous reefs in China. J Palaeogeogr, 1: 27–42

    Google Scholar 

  36. Goreva N, Alekseev A, Isakova T, Kossovaya O. 2009. Biostratigraphical analysis of the Moscovian-Kasimovian transition at the neostratotype of Kasimovian Stage (Afanasievo section, Moscow Basin, Russia). Palaeoworld, 18: 102–113

    Google Scholar 

  37. Goreva N V, Alekseev A S. 2010. Upper carboniferous conodont zones of Russia and their global correlation. Stratigr Geol Correl, 18: 593–606

    Google Scholar 

  38. Grabau A W. 1936. Fauna of the Maping Limestone of Kwangsi and Kweichow. Palaeont Sin Ser B, 8: 1–441

    Google Scholar 

  39. Grossman E L, Yancey T E, Jones T E, Bruckschen P, Chuvashov B, Mazzullo S J, Mii H. 2008. Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes. Palaeogeogr Palaeoclimatol Palaeoecol, 268: 222–233

    Google Scholar 

  40. Hance L, Hou H F, Vachard D. 2011. Upper Famennian to Visean Foraminifers and Some Carbonate Microproblematica from South China-Hunan, Guangxi and Guizhou. Beijing: Geological Publishing House. 359

    Google Scholar 

  41. Hance L, Poty E, Devuyst F X. 2006a. Tournaisian. In: Dejonghe L, ed. Current status of chronostratigraphic units named from Belgium and adjacent areas. Geol Belg, 9: 47–53

    Google Scholar 

  42. Hance L, Poty E, Devuyst F X. 2006b. Visean. In: Dejonghe L, ed. Current status of chronostratigraphic units named from Belgium and adjacent areas. Geol Belg, 9: 55–62

    Google Scholar 

  43. Heckel P H, Alekseev A S, Barrick J E, Boardman D R, Goreva N V, Isakova T N, Nemyrovska T I, Ueno K, Villa E, Work D M. 2008. Choice of conodont Idiognathodus simulator (sensu stricto) as the event marker for the base of the global Gzhelian Stage (Upper Pennsylvanian Series, Carboniferous System). Episodes, 31: 319–325

    Google Scholar 

  44. Heckel P H. 2001. New proposal for series and stage subdivision of Carboniferous System. Newsl Carb Stratigr, 19: 12–14

    Google Scholar 

  45. Heckel P H. 2008. Pennsylvanian cyclothems in Midcontinent North America as far-field effects of waxing and waning of Gondwana ice sheets. In: Fielding C R, Frank T D, Isbell J L, eds. Resolving the Late Paleozoic Ice Age in Time and Space. Geol Soc Am Boulder Spec Publ, 441: 275–289

    Google Scholar 

  46. Henderson C M, Wardlaw B R, Vladimir I D, Schmitz M D, Schiappa T A, Tierney K E, Shen S Z, 2012. Proposal for base-Kungurian GSSP. Permophiles, 56: 8–21

    Google Scholar 

  47. Hou H F, Wang Z J, Wu X H, Yang S P. 1982. The Carboniferous system of China. In: Chinese Academy of Geological Sciences, ed. Stratigraphy in China (1): Introduction (in Chinese with English abstract). Beijing: Geological Publishing House. 187–218

    Google Scholar 

  48. Hou H F, Wu X H, Zhou H L, Hance L, Devuyst F X, Sevastopulo G. 2013. The GSSP for Visean stage (Mississippian Subsystem, Carboniferous System). In: Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, ed. Global Standard Stratotype-sections and Points in China (In Chinese). Hangzhou: Hangzhou University Press. 215–239

    Google Scholar 

  49. Hou H F, Zhou H L, Liu J B. 2011. Microbial sediments occurring after the end-Devonian extinction event on the Hunan Platform (in Chinese with English abstract). Acta Geol Sin, 85: 145–156

    Google Scholar 

  50. Hounslow M W, Davydov V I, Klootwijk C T, Turner P. 2004. Magnetostratigraphy of the Carboniferous: A review and future prospects. Newsl Carb Stratigr 22: 35–41

    Google Scholar 

  51. Hu K Y. 2016. Early-Middle Pennsylvanian conodonts of South China and their global correlation. Doctoral Dissertation. Beijing: The University of Chinese Academy of Sciences. 1–289

    Google Scholar 

  52. Hu K Y, Qi Y P, Wang Q L, Nemyrovska T I, Chen J T. 2017. Early Pennsylvanian conodonts from the Luokun section of Luodian, Guizhou, South China. Palaeoworld, 26: 64–82

    Google Scholar 

  53. Hu K, Qi Y. 2017. The Moscovian (Pennsylvanian) conodont genus Swadelina from Luodian, southern Guizhou, South China. Stratigraphy, 14: 197–215

    Google Scholar 

  54. Ivanov A P. 1926. Middle and Upper Carboniferous deposits of Moscow province (in Russian). Otdel Geologicheskiy, 5: 133–180

    Google Scholar 

  55. Jin Y G, Fan Y N, Wang X D, Wang R N. 2000. Stratigraphical Lexicon of China, Carboniferous System (in Chinese). Beijing: Geological Publishing House. 138

    Google Scholar 

  56. Jin Y G. Additional brachiopods from the Kinling Formation of the Lower Yangtze District (in Chinese with English abstract). Acta Palaeontol Sin, 9: 272–290

  57. Kaiser S I, Aretz M, Becker R T. 2016. The global Hangenberg Crisis (Devonian-Carboniferous transition): Review of a first-order mass extinction. In: Becker R T, Königshof P, Brett C E, eds. Devonian Climate, Sea Level and Evolutionary Events. Geol Soc Spec Publ, 423: 387–437

    Google Scholar 

  58. Korn D, Klug C. 2015. Paleozoic ammonoid biostratigraphy. In: Klug C, Korn D, de Baets K, Kruta I, Mapes R H, eds. Ammonoid Paleobiology: From Macroevolution to Paleogeography. Dordrecht: Springer. 299–328

    Google Scholar 

  59. Kulagina E I, Pazukhin V N, Kotschetkova N M, Sinitsyna Z A, Kochetova N N. 2001. Stratotipicheskiei opornye razrezy bashkirskogo yarusa karbonaYuzhnogo Urala. Ufa: Gilem. 138

    Google Scholar 

  60. Kump L R, Arthur M A, 1997. Global chemical erosion during the Cenozoic: weatherability balances the budgets. In: Ruddiman W F, ed. Tectonic Uplift and Climate Change. New York: Plenum Press. 399–426

    Google Scholar 

  61. Lane H R, Brenckle P L. 2005. Type Mississippian Subdivisions and Biostratigraphic Succession. In: Heckle P H, ed. Stratigraphy and Biostratigraphy of the Mississippian Subsystem (Carboniferous System) in its type region, the Mississippi River Valley of Illinois, Missouri, and Iowa. Champaign: Illinois State Geological Survey. 76–105

    Google Scholar 

  62. Lee J S. 1927. Fusulinidae of North China. Palaeont Sin Sers B, 4: 1–172

    Google Scholar 

  63. Lees A, Miller J. 1985. Facies variations in Waulsortian buildups: Part 2. Mid-Dinantian buildups from Europe and North America. Geol J, 20: 159–180

    Google Scholar 

  64. Li R F, Liu B P, Zhao C L. 1997. Correlation of Carboniferous depositional sequences on the Yangtze Plate with others on a global scale (in Chinese with English abstract). Acta Sediment Sin, 15: 23–28

    Google Scholar 

  65. Li S J. 1987. Late Early Carboniferous to early Late Carboniferous brachiopods from Qixu, Nandan, Guangxi and their palaeoecological significance. In: Wang C Y, ed. Carboniferous Boundaries in China. Beijing: Science Press. 132–150

    Google Scholar 

  66. Liang X L, Wang M Q. 1991. Carboniferous cephalopods of Xinjiang (in Chinese with English abstract). Palaeontol Sin N Ser B, 27: 1–171

    Google Scholar 

  67. Lin J X, Li J X, Sun Q Y. 1990. Late Palaeozoic Foraminifera from South China (in Chinese). Beijing: Science Press. 297

    Google Scholar 

  68. Liu Z H. 2002. On factors of Carboniferous reef developing in Hunan: A comparing study with Akiyoshi reef in Japan (in Chinese with English abstract). Chin J Geol, 37: 38–46

    Google Scholar 

  69. McArthur J M, Howarth R J, Shields G A, 2012. Strontium Isotope Stratigraphy. In: Gradstein F, Ogg J, Schmitz M, Ogg G, eds. The Geologic Time Scale 2012. London: Elsevier. 127–144

    Google Scholar 

  70. Mii H, Grossman E L, Yancey T E. 1999. Carboniferous isotope stratigraphies of North America: Implications for Carboniferous paleoceanography and Mississippian glaciation. Geological Soc Am Bull, 111: 960–973

    Google Scholar 

  71. Montañez I P, Poulsen C J. 2013. The Late Paleozoic Ice Age: An Evolving Paradigm. Annu Rev Earth Planet Sci, 41: 629–656

    Google Scholar 

  72. Munier C, Lapparent A. 1893. Note sur la nomenclature des terrains sédimentaires. Bulletin de la Société géologique de France, 3ès, 21: 438–488

    Google Scholar 

  73. Myrow P M, Ramezani J, Hanson A E, Bowring S, Racki G, Rakociński M. 2014. High-precision U-Pb age and duration of the latest Devonian (Famennian) Hangenberg event, and its implications. Terra Nova, 26: 222–229

    Google Scholar 

  74. Nemyrovska T I. 1999. Bashkirian conodonts of the Donets Basin, Ukraine. Sci Geol, 119: 1–115

    Google Scholar 

  75. Nemyrovska T I. 2011. Preliminary Moscovian conodont scale of the Donets Basin, Ukraine. Newsl Carb Stratigr, 29: 56–61

    Google Scholar 

  76. Nemyrovska T I. 2017. Late Mississippian-Middle Pennsylvanian conodont zonation of Ukraine. Stratigraphy, 14: 299–318

    Google Scholar 

  77. Nikitin S N. 1890. The Carboniferous of the Moscow Basin and artesian water in the region of the Moscow Basin (in French). Trans Geol Comm, 5: 139–182

    Google Scholar 

  78. Poletaev V I, Brazhnikova N E, Vasilyuk N P, Vdovenko M V. 1990. Local zones and major Lower Carboniferous biostratigraphic boundaries of the Donets Basin (Donbass), Ukraine, U.S.S.R. Courier Forsch Senekenberg, 130: 47–59

    Google Scholar 

  79. Popp B N, Anderson T F, Sandberg P A. 1986. Brachiopods as indicators of original isotopic compositions in some Paleozoic limestones. Geol Soc Am Bull, 97: 1262–1269

    Google Scholar 

  80. Poty E, Devuyst F X, Hance L. 2006. Upper Devonian and Mississippian foraminiferal and rugose coral zonations of Belgium and northern France: A tool for Eurasian correlations. Geol Mag, 143: 829–857

    Google Scholar 

  81. Qi Y P, Hu K Y, Barrick J E, Wang Q L, Lin W. 2012. Discovery of the conodont lineage from Idiognathodus swadei to I. turbatus in South China and its implications (in Chinese with English abstract). J Stratigr, 36: 551–557

    Google Scholar 

  82. Qi Y P, Lambert L L, Nemyrovska T I, Wang X D, Hu K Y, Wang Q L. 2016. Late Bashkirian and early Moscovian conodonts from the Naqing section, Luodian, Guizhou, South China. Palaeoworld, 25: 170–187

    Google Scholar 

  83. Qi Y, Nemyrovska T I, Wang X, Chen J, Wang Z, Lane H R, Richards B C, Hu K, Wang Q. 2014. Late Visean-early Serpukhovian conodont succession at the Naqing (Nashui) section in Guizhou, South China. Geol Mag, 151: 254–268

    Google Scholar 

  84. Qie W K, Zhang X H, Du Y S, Zhang Y. 2011. Lower Carboniferous carbon isotope stratigraphy in South China: Implications for the Late Paleozoic glaciation. Sci China Earth Sci, 54: 84–92

    Google Scholar 

  85. Ramsbottom W H C. 1984. The founding of the Carboniferous System. In: Gordon M Jr, ed. Official Reports. Compte Rendu IX Congrès International du Stratigraphieet Géologie du Carbonifère, Washington & Champaign-Urbana 1979, 1: 109–112

    Google Scholar 

  86. Richards B C. 2013. Current status of the International Carboniferous timescale. In: Lucas S G, ed. The Carboniferous-Permian Transition. New Mexico Mus Nat Hist Sci Bull, 60: 348–353

    Google Scholar 

  87. Ross C A, Ross J R P. 1987. Late Paleozoic sea levels and depositional sequences. In: Ross C A, Haman D, eds. Timing and Depositional History of Eustatic Sequences: Constraints on Seismic Stratigraphy. Cushman Found Foraminiferal Res Spec Publ, 24: 137–149

    Google Scholar 

  88. Ross C A, Ross J R P. 1988. Late Paleozoic transgressive-regressive deposition. In: Wilgus C K, Hastings B S, Kendall C G S C, eds. Sea-level changes: An integrated approach. Society of Economic Paleontologists and Mineralogists Special Publication. 227–247

    Google Scholar 

  89. Rosscoe S J, Barrick J E. 2013. North American species of the conodont genus Idiognathodus from the Moscovian-Kasimovian boundary composite sequence and correlation of the Moscovian-Kasimovian Stage boundary. In: Lucas S G, Dimichele W A, Barrick J E, Schneider J W, Spielmann J A, eds. The Carboniferous-Permian Transition. New Mexico Mus Nat Hist Sci Bull, 60: 354–371

    Google Scholar 

  90. Ruan Y P. 1981a. Devonian and earliest Carboniferous ammonoids from Guangxi and Guizhou (in Chinese with English abstract). Mem Nanjing Ins Geol Palaeont Acad Sin, 15: 1–152

    Google Scholar 

  91. Ruan Y P. 1981b. Carboniferous ammonoid faunas from Qixu in Nandan of Guangxi (in Chinese with English abstract). Mem Nanjing Ins Geol Palaeont Acad Sin, 15: 152–232

    Google Scholar 

  92. Ruan Y P, Zhou Z R. 1987. Carboniferous cephalopods in Ningxia Hui Autonomous Region. In: Ningxia Bureau of Geology and Mineralogy and Nanjing Institute of Geology and Palaeontology, ed. Namurian Strata and Fossils of Ningxia, China (in Chinese with English abstract). Nanjing: Nanjing University Press. 55–177

    Google Scholar 

  93. Rui L, Wang Z H, Zhang L X. 1987. Luosuan Stage—A new chronostratigraphic unit for the lowermost Upper Carboniferous (in Chinese). J Stratigr, 11: 103–115

    Google Scholar 

  94. Rygel M C, Fielding C R, Frank T D, Birgenheier L P. 2008. The magnitude of Late Paleozoic glacioeustatic fluctuations: A synthesis. J Sediment Res, 78: 500–511

    Google Scholar 

  95. Saltzman M R. 2002. Carbon and oxygen isotope stratigraphy of the Lower Mississippian (Kinderhookian-lower Osagean), western United States: Implications for seawater chemistry and glaciation. Geol Soc Am Bull, 114: 96–108

    Google Scholar 

  96. Saltzman M R. 2003. The Late Paleozoic Ice Age: Oceanic gateway or pCO2? Geology, 31: 151–154

    Google Scholar 

  97. Saltzman M R, Gonzalez L A, Lohmann K C. 2000. Earliest Carboniferous cooling step triggered by the Antler orogeny? Geology, 28: 347–350

    Google Scholar 

  98. Saltzman M, Groessens E, Zhuravlev A. 2004. Carbon cycle models based on extreme changes in δ13C: An example from the lower Mississippian. Palaeogeogr Palaeoclimatol Palaeoecol, 213: 359–377

    Google Scholar 

  99. Sandberg C A, Ziegler W, Leuteritz K, Brill S M. 1978. Phylogeny, speciation, and zonation of Siphonodella (Conodonta, Upper Devonian and Lower Carboniferous). Newsl Stratigr, 7: 102–120

    Google Scholar 

  100. Schmidt H. 1925. Die carbonischen Goniatiten Deutschlands. Jahrb Preuss Geol Landesanst, 45: 489–609

    Google Scholar 

  101. Semikhatova S V. 1934. Moscovian deposits of Lower and Middle Volga area and position of the Moscovian Stage in general Carboniferous scale of the US (in Russian). Problems Soviet Geol, 3/8: 73–92

    Google Scholar 

  102. Sheng H B. 1983. The ammonoids of late Lower Carboniferous from Yongzhu Village, Xainza District in North Xizang (in Chinese with English abstract). Contrib Geol Qinghai-Xizang Plateau, 8: 41–68

    Google Scholar 

  103. Sheng Q Y. 2016. Mississippian foraminifers from South China. Doctoral Dissertation. Beijing: The University of Chinese Academy of Sciences. 1–285

    Google Scholar 

  104. Sheng Q, Wang X, Brenckle P, Huber B T. 2018. Serpukhovian (Mississippian) foraminiferal zones from the Fenghuangshan section, Anhui Province, South China: Implications for biostratigraphic correlations. Geol J, 53: 45–57

    Google Scholar 

  105. Shi Y K, Yang X L, Liu J R. 2012. Early Carboniferous to Early Permian Fusulinids from Zongdi Section in Southern Guizhou (in Chinese with English summary). Beijing: Science Press. 271

    Google Scholar 

  106. Tarling D H. 1991. Applications of Palaeomagnetism in the Carboniferous. Compte Rendu XI Congres International de Stratigraphie et de Géologie du Carbonifere, Beijing 1987, 1: 205–212

    Google Scholar 

  107. Teodorovich G I. 1949. On the subdivision of Upper Carboniferous into stages (in Russian). Doklady Akademii Nauk SSSR, 67: 537–540

    Google Scholar 

  108. Ting V K, Grabau A W. 1936. The Carboniferous of China and its bearing on the classification of the Mississippian and Pennsylvanian. Rept 16th Internat Geol Congr 1933, 1: 555–571

    Google Scholar 

  109. Trapp E, Kaufmann B, Mezger K, Korn D, Weyer D. 2004. Numerical calibration of the Devonian-Carboniferous boundary: Two new U-Pb isotope dilution-thermal ionization mass spectrometry single-zircon ages from Hasselbachtal (Sauerland, Germany). Geology, 32: 857–860

    Google Scholar 

  110. Ueno K, Hayakawa N, Nakazawa T, Wang Y, Wang X. 2013. Pennsylvanian- Early Permian cyclothemic succession on the Yangtze Carbonate Platform, South China. Geol Soc London Spec Publ, 376: 235–267

    Google Scholar 

  111. Ueno K, Task Group. 2014. Report of the task group to establish the Moscovian-Kasimovian and Kasimovian-Gzhelian boundaries. Newsl Carb Stratigr, 31: 36–40

    Google Scholar 

  112. Ueno K, Task Group. 2017. Report of the task group to establish the Moscovian-Kasimovian and Kasimovian-Gzhelian boundaries. Newsl Carb Stratigr, 33: 18–20

    Google Scholar 

  113. Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden G A F, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha O G, Strauss H. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol, 161: 59–88

    Google Scholar 

  114. Villa E, Task Group. 2008. Progress report of the Task Group to establish the Moscovian-Kasimovian and Kasimovian-Gzhelian boundaries. Newsl Carb Stratigr, 26: 12–13

    Google Scholar 

  115. Wagner R H, Winkler Prins C F. 1991. Major subdivisions of the Carboniferous System. Compte Rendu XI Congres International de Stratigraphie et de Géologie du Carbonifere, Beijing 1987, 1: 213–245

    Google Scholar 

  116. Wagner R H, Winkler Prins C F. 2016. History and current status of the Pennsylvanian chronostratigraphic units: Problems of definition and interregional correlation. Newsl Stratigr, 49: 281–320

    Google Scholar 

  117. Walliser O H. 1995. Global events in the Devonian and Carboniferous. In: Walliser O H, ed. Global Events and Event Stratigraphy. Berlin: Springer-Verlag. 225–250

    Google Scholar 

  118. Wang K L. 1983. Early Carboniferous Foraminifera from Shaoyang area of Hunnan Province and their stratigraphic significance (in Chinese with English abstract). Bull Nanjing Inst Geol Palaeont Acad Sin, 6: 209–224

    Google Scholar 

  119. Wang Q L. 2014. Conodonts from the Kasimovian-Gzhelian boundary intervals in South China. Master Thesis. Beijing: University of Chinese Academy of Sciences. 1–94

    Google Scholar 

  120. Wang X D, Jin Y G. 2000. An outline of Carboniferous chronostratigraphy (in Chinese with English abstract). J Stratigr, 24: 90–98

    Google Scholar 

  121. Wang X D, Jin Y G. 2003. Carboniferous Biostratigraphy of China. In: Zhang W T, Chen P J, Palmer A R, eds. Biostratigraphy in China. Beijing: Science Press. 281–330

    Google Scholar 

  122. Wang X D, Jin Y G. 2005. Achievements in the establishment of the Carboniferous GSSPs (in Chinese with English abstract). J Stratigr, 29: 147–153

    Google Scholar 

  123. Wang X, Qi Y, Lambert L, Wang Z, Wang Y, Hu K, Lin W, Chen B. 2011. A potential global standard stratotype-section and point of the Moscovian Stage (Carboniferous). Acta Geol Sin, 85: 366–372

    Google Scholar 

  124. Wang X D, Qie W K, Sheng Q Y, Qi Y P, Wang Y, Liao Z T, Shen S Z, Ueno K. 2013. Carboniferous and Lower Permian sedimentological cycles and biotic events of South China. In: Gasiewicz A, Słowakiewicz M, eds. Palaeozoic Climate Cycles: Their Evolutionary and Sedimentological Impact. Geol Soc Spec Publ, 376: 33–46

    Google Scholar 

  125. Wang X D, Wang X J, Zhang F, Zhang H. 2006. Diversity patterns of Carboniferous and Permian rugose corals in South China. Geol J, 41: 329–343

    Google Scholar 

  126. Wang Z H. 1990. Conodont zonation of the Lower Carboniferous in South China and phylogeny of some important species. Courier Forsch Senckenberg, 130: 41–46

    Google Scholar 

  127. Wang Z H, Qi Y P. 2003. Upper Carboniferous (Pennsylvanian) conodonts from South Guizhou of China. Riv Ital Paleontol S, 109: 379–397

    Google Scholar 

  128. Wang Z H, Qi Y P, Wang X D. 2008. Stage boundaries of the Pennsylvanian in the Nashui Section, Luodian of Guizhou, South China (in Chinese with English abstract). Acta Micropalaeont Sin, 25: 205–214

    Google Scholar 

  129. Wu W S, Zhao J M. 1989. Carboniferous and Early Permian Rugosa from Western Guizhou and Eastern Yunnan, SW. China (in Chinese with English summary). Palaeontol Sin Ser B, 21: 1–230

    Google Scholar 

  130. Wu X H. 2008. Report on integrated study of the Chinese Dewuan (Mississippian). In: The 3rd National Commission on Stratigraphy, ed. Reports on the Subdivision and Establishment of the Chinese Stages (in Chinese). Beijing: Geological Publishing House. 255–286

    Google Scholar 

  131. Yang F Q. 1978. The strata and Cephalopod fauna of the Lower and Middle Carboniferous in western Guizhou (in Chinese). Prof Papers Stratigr Palaeont, 5: 143–200

    Google Scholar 

  132. Yang J Z, Sheng J Z, Wu W S, Lu L H. 1962. Proceeding of The National Meeting on Stratigraphy, The Carboniferous in China (in Chinese). Beijing: Science Press. 113

    Google Scholar 

  133. Yang J Z, Wu W S, Zhang L X, Liang Z T, Ruan Y P. 1979. New perspectives on the Series level subdivision of Carboniferous (in Chinese). Acta Stratigr Sin, 3: 188–192

    Google Scholar 

  134. Yao L, Qie W, Luo G, Liu J, Algeo T J, Bai X, Yang B, Wang X. 2015. The TICE event: Perturbation of carbon-nitrogen cycles during the mid- Tournaisian (Early Carboniferous) greenhouse-icehouse transition. Chem Geol, 401: 1–14

    Google Scholar 

  135. Yao L, Aretz M, Chen J, Webb G E, Wang X. 2016. Global microbial carbonate proliferation after the end-Devonian mass extinction: Mainly controlled by demise of skeletal bioconstructors. Sci Rep, 6: 39694

    Google Scholar 

  136. Yao L, Wang X D. 2016. Distribution and evolution of Carboniferous reefs in South China. Palaeoworld, 25: 362–376

    Google Scholar 

  137. Yin T H. 1932. Gastropoda of Penchi and Taiyuan Series. Palaeontol Sin Ser B, 11: 1–53

    Google Scholar 

  138. Yin T H. 1933. Cephalopoda of Penchi and Taiyuan Series of North China. Palaeontol Sin Ser B, 11: 1–46

    Google Scholar 

  139. Yu C C. 1931. The correlation of the Fengning System, the Chinese Lower Carboniferous, as based on coral zones. Geol Soc China Bull, 10: 1–30

    Google Scholar 

  140. Yu C C. 1933. Lower Carboniferous corals of China. Palaeontol Sin Ser B, 12: 1–211

    Google Scholar 

  141. Yu C M. 1988. Devonian-Carboniferous boundary in Nanbiancun, Guilin, China —— Aspects and Records. Beijing: Science Press. 379

    Google Scholar 

  142. Zhang L X. 1987. Carboniferous Stratigraphy in China. Beijing: Science Press. 160

    Google Scholar 

  143. Zhang L X, Zhou J P, Sheng J Z. 2010. Upper Carboniferous and Lower Permian Fusulinids from Western Guizhou (in Chinese with English summary). Palaeontol Sin Ser B, 34: 1–296

    Google Scholar 

  144. Zhang Z Q. 1988. The Carboniferous System in China. Newsl Stratigr, 18: 51–73

    Google Scholar 

  145. Zhang Z H, Wang Z H, Li C Q. 1988. A Suggestion for Classification of Permian in South Guizhou (in Chinese with English summary). Guiyang: Guizhou People’s Publishing House. 113

    Google Scholar 

  146. Zong P, Becker R T, Ma X. 2015. Upper Devonian (Famennian) and Lower Carboniferous (Tournaisian) ammonoids from western Junggar, Xinjiang, northwestern China—Stratigraphy, taxonomy and palaeobiogeography. Palaeobio Palaeoenv, 95: 159–202

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Chinese Academy of Sciences (Grant Nos. XDB26000000, 18000000 and XDPB05), the National Natural Science Foundation of China (Grant No. 41290263), and the Ministry of Science and Technology of China (Grant No. 2013FY111000).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xiangdong Wang or Keyi Hu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Hu, K., Qie, W. et al. Carboniferous integrative stratigraphy and timescale of China. Sci. China Earth Sci. 62, 135–153 (2019). https://doi.org/10.1007/s11430-017-9253-7

Download citation

Keywords

  • Carboniferous
  • Chronostratigraphy
  • Biostratigraphy
  • Chemostratigraphy
  • Event stratigraphy
  • Stratotype
  • Stratigraphic correlation