Skip to main content

Upper Cretaceous trench deposits of the Neo-Tethyan subduction zone: Jiachala Formation from Yarlung Zangbo suture zone in Tibet, China

Abstract

The history of convergence between the India and the Asia plates, and of their subsequent collision which triggered the Himalayan orogeny is recorded in the Yarlung Zangbo suture zone. Exposed along the southern side of the suture, turbidites of the the Jiachala Formation fed largely from the Gangdese arc have long been considered as post-collisional foreland-basin deposits based on the reported occurrence of Paleocene-early Eocene dinoflagellate cysts and pollen assemblages. Because magmatic activity in the Gangdese arc continued through the Late Cretaceous and Paleogene, this scenario is incompatible with U-Pb ages of detrital zircons invariably older than the latest Cretaceous. To solve this conundrum, we carried out detailed stratigraphic, sedimentological, paleontological, and provenance analyses in the Gyangze and Sajia areas of southern Tibet, China. The Jiachala Formation consists of submarine fan deposits that lie in fault contact with the Zongzhuo Formation. Sandstone petrography together with U-Pb ages and Hf isotope ratios of detrital zircons indicate provenance from the Gangdese arc and central Lhasa terrane. Well preserved pollen or dinoflagellate cysts microfossils were not found in spite of careful research, and the youngest age obtained from zircon grain was ∼84 Ma. Based on sedimentary facies, provenance analysis and tectonic position, we suggest that the Jiachala Formation was deposited during the Late Cretaceous (∼88–84 Ma) in the trench formed along the southern edge of Asia during subduction of Neo-Tethyan oceanic lithosphere.

This is a preview of subscription content, access via your institution.

References

  1. An W, Hu X, Garzanti E. 2017. Sandstone provenance and tectonic evolution of the Xiukang Mélange from Neotethyan subduction to India- Asia collision (Yarlung-Zangbo suture, south Tibet). Gondwana Res, 41: 222–234

    Article  Google Scholar 

  2. An W, Hu X, Garzanti E, BouDagher-Fadel M K, Wang J, Sun G. 2014. Xigaze forearc basin revisited (South Tibet): Provenance changes and origin of the Xigaze Ophiolite. Geol Soc Am Bull, 126: 1595–1613

    Article  Google Scholar 

  3. An W, Hu X M, Garzanti E. 2018. Discovery of Upper Cretaceous Neo-Tethyan trench deposits in south Tibet (Luogangcuo Formation). Lithosphere, https://doi.org/10.1130/L690.1

    Google Scholar 

  4. Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem Geol, 192: 59–79

    Article  Google Scholar 

  5. Beck R A, Burbank D W, Sercombe W J, Riley G W, Barndt J K, Berry J R, Afzal J, Khan A M, Jurgen H, Metje J, Cheema A, Shafique N A, Lawrence R D, Khan M A. 1995. Stratigraphic evidence for an early collision between northwest India and Asia. Nature, 373: 55–58

    Article  Google Scholar 

  6. Cai F L, Ding L, Zhang Q H, Xu X X, Yue Y H, Zhang L Y, Xu Q. 2008. Provenance and tectonic evolution of the Yalu-Zangbo peripheral foreland basin (in Chinese with English abstract). Acta Petrol Sin, 24: 430–446

    Google Scholar 

  7. Cai F, Ding L, Yue Y. 2011. Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: Implications for timing of India- Asia collision. Earth Planet Sci Lett, 305: 195–206

    Article  Google Scholar 

  8. Cai F, Ding L, Leary R J, Wang H, Xu Q, Zhang L, Yue Y. 2012. Tectonostratigraphy and provenance of an accretionary complex within the Yarlung Zangpo suture zone, southern Tibet: Insights into subductionaccretion processes in the Neo-Tethys. Tectonophysics, 574–575: 181–192

    Article  Google Scholar 

  9. Cai F L, Ding L, Wang H Q, Yue Y H L Q Z. 2013. Provenance of the Upper Paleocene to Early Eocene strata, Gyantze, South Tibet: Implications for early Himalaya thickening(in Chinese with English abstract). Sci Geol Sin, 48: 435–448

    Google Scholar 

  10. Chen X, Wang C, Kuhnt W, Holbourn A, Huang Y, Ma C. 2011. Lithofacies, microfacies and depositional environments of Upper Cretaceous Oceanic red beds (Chuangde Formation) in southern Tibet. Sediment Geol, 235: 100–110

    Article  Google Scholar 

  11. Chu M F, Chung S L, Song B, Liu D, O’Reilly S Y, Pearson N J, Ji J, Wen D J. 2006. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 34: 745–748

    Article  Google Scholar 

  12. Dai J, Wang C, Polat A, Santosh M, Li Y, Ge Y. 2013. Rapid forearc spreading between 130 and 120 Ma: Evidence from geochronology and geochemistry of the Xigaze ophiolite, southern Tibet. Lithos, 172–173: 1–16

    Article  Google Scholar 

  13. DeCelles P G, Kapp P, Gehrels G E, Ding L. 2014. Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: Implications for the age of initial India-Asia collision. Tectonics, 33: 824–849

    Article  Google Scholar 

  14. Dickinson W R, Gehrels G E. 2009. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth Planet Sci Lett, 288: 115–125

    Article  Google Scholar 

  15. Einsele G, Liu B, Dürr S, Frisch W, Liu G, Luterbacher H P, Ratschbacher L, Ricken W, Wendt J, Wetzel A, Yu G, Zheng H. 1994. The Xigaze forearc basin: Evolution and facies architecture (Cretaceous, Tibet). Sediment Geol, 90: 1–32

    Article  Google Scholar 

  16. Ding L, Maksatbek S, Cai F L, Wang H Q, Song P P, Ji W Q, Xu Q, Zhang L Y, Muhammad Q, Upendra B. 2017. Processes of initial collision and suturing between India and Asia. Sci China Earth Sci, 60: 635–651

    Article  Google Scholar 

  17. Gansser A. 1980. The significance of the Himalayan suture zone. Tectonophysics, 62: 37–52

    Article  Google Scholar 

  18. Garzanti E. 1999. Stratigraphy and sedimentary history of the Nepal Tethys Himalaya passive margin. J Asian Earth Sci, 17: 805–827

    Article  Google Scholar 

  19. Garzanti E, Hu X M. 2015. Latest Cretaceous Himalayan tectonics: Obduction, collision or Deccan-related uplift? Gondwana Res, 28: 165–178

    Article  Google Scholar 

  20. Garzanti E. 2016. From static to dynamic provenance analysis—Sedimentary petrology upgraded. Sediment Geol, 336: 3–13

    Article  Google Scholar 

  21. Göpel C, Allègre C J, Xu R H. 1984. Lead isotopic study of the Xigaze ophiolite (Tibet): The problem of the relationship between magmatites (gabbros, dolerites, lavas) and tectonites (harzburgites). Earth Planet Sci Lett, 69: 301–310

    Article  Google Scholar 

  22. Griffin W L, Pearson N J, Belousova E, Jackson S E, van Achterbergh E, O’Reilly S Y, Shee S R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta, 64: 133–147

    Article  Google Scholar 

  23. Guilmette C, Hébert R, Wang C, Villeneuve M. 2009. Geochemistry and geochronology of the metamorphic sole underlying the Xigaze Ophiolite, Yarlung Zangbo Suture Zone, South Tibet. Lithos, 112: 149–162

    Article  Google Scholar 

  24. Guilmette C, Hébert R, Dostal J, Indares A, Ullrich T, Bédard É, Wang C. 2012. Discovery of a dismembered metamorphic sole in the Saga ophiolitic mélange, South Tibet: Assessing an Early Cretaceous disruption of the Neo-Tethyan supra-subduction zone and consequences on basin closing. Gondwana Res, 22: 398–414

    Article  Google Scholar 

  25. Hébert R, Bezard R, Guilmette C, Dostal J, Wang C S, Liu Z F. 2012. The Indus–Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: First synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethyan. Gondwana Res, 22: 377–397

    Article  Google Scholar 

  26. Hu X, Jansa L, Wang C, Sarti M, Bak K, Wagreich M, Michalik J, Soták J. 2005. Upper Cretaceous oceanic red beds (CORBs) in the Tethys: occurrences, lithofacies, age, and environments. Cretac Res, 26: 3–20

    Article  Google Scholar 

  27. Hu X M, Wang C S, Li X H, Luba J. 2006. Upper Cretaceous oceanic red beds in outhern Tibet: lithofacies, environments and colour origin. Sci China Ser D-Earth Sci, 49: 85–795

    Google Scholar 

  28. Hu X, Jansa L, Chen L, Griffin W L, O’Reilly S Y, Wang J. 2010. Provenance of Lower Cretaceous Wölong Volcaniclastics in the Tibetan Tethyan Himalaya: Implications for the final breakup of Eastern Gondwana. Sediment Geol, 223: 193–205

    Article  Google Scholar 

  29. Hu X, Sinclair H D, Wang J, Jiang H, Wu F. 2012. Late Cretaceous- Palaeogene stratigraphic and basin evolution in the Zhepure Mountain of southern Tibet: Implications for the timing of India-Asia initial collision. Basin Res, 24: 520–543

    Article  Google Scholar 

  30. Hu X, Garzanti E, Moore T, Raffi I. 2015. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59±1 Ma). Geology, 43: 859–862

    Article  Google Scholar 

  31. Hu X, Wang J, BouDagher-Fadel M, Garzanti E, An W. 2016a. New insights into the timing of the India-Asia collision from the Paleogene Quxia and Jialazi formations of the Xigaze forearc basin, South Tibet. Gondwana Res, 32: 76–92

    Article  Google Scholar 

  32. Hu X, Garzanti E, Wang J, Huang W, An W, Webb A. 2016b. The timing of India-Asia collision onset—Facts, theories, controversies. Earth-Sci Rev, 160: 264–299

    Article  Google Scholar 

  33. Hu X M, Li J, An W, Wang J G. 2017a. The redefinition of Cretaceous-Paleogene lithostratigraphic units and tectonostratigraphic division in southern Tibet. Earth Sci Front, 24: 174–194

    Google Scholar 

  34. Hu X M, Wang J G, An W, Garzanti E, Li J. 2017b. Constraining the timing of the India-Asia continental collision by the sedimentary record. Sci China Earth Sci, 60: 603–625

    Article  Google Scholar 

  35. Ingersoll R V, Bullard T F, Ford R L, Grimm J P, Pickle J D, Sares S W. 1984. The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method. J Sediment Res, 54: 103–116

    Google Scholar 

  36. Jackson S E, Pearson N J, Griffin W L, Belousova E A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol, 211: 47–69

    Article  Google Scholar 

  37. Jadoul F, Berra F, Garzanti E. 1998. The Tethys Himalayan passive margin from Late Triassic to Early Cretaceous (South Tibet). J Asian Earth Sci, 16: 173–194

    Article  Google Scholar 

  38. Ji W Q, Wu F Y, Chung S L, Li J X, Liu C Z. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. ChemGeol, 262: 229–245

    Google Scholar 

  39. Kapp P, Yin A, Harrison T M, Ding L. 2005. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geol Soc Am Bull, 117: 865–878

    Article  Google Scholar 

  40. Leary R J, DeCelles P G, Quade J, Gehrels G E, Waanders G. 2016. The Liuqu Conglomerate, southern Tibet: Early Miocene basin development related to deformation within the Great Counter Thrust system. Lithosphere, 8: 427–450

    Article  Google Scholar 

  41. Lee H Y, Chung S L, Wang Y B, Zhu D C, Yang J H, Song B L D Y, Wu F Y. 2007. Age, petrogenesis and geological significance of the Linzizong volcanic successions in the Linzhou basin, southern Tibet: Evidence from zircon U-Pb dates and Hf isotopes (in Chinese with English abstract. Acta Petrol Sin, 23: 493–500

    Google Scholar 

  42. Lee H Y, Chung S L, Lo C H, Ji J, Lee T Y, Qian Q, Zhang Q. 2009. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record. Tectonophysics, 477: 20–35

    Article  Google Scholar 

  43. Li J, Peng J, Batten D J. 2013. Palynostratigraphy of a Jurassic-Cretaceous transitional succession in the Himalayan Tethys, southern Xizang (Tibet), China. Cretac Res, 46: 123–135

    Article  Google Scholar 

  44. Li G B, Wan X Q, Liu W C, Liang D, Yun H. 2005. Discovery of Paleogene marine stratum along the southern side of Yarlung-Zangbo suture zone and its implications in tectonics. Sci China Ser D-Earth Sci, 48: 647–661

    Article  Google Scholar 

  45. Li G, Kohn B, Sandiford M, Xu Z, Wei L. 2015. Constraining the age of Liuqu Conglomerate, southern Tibet: Implications for evolution of the India-Asia collision zone. Earth Planet Sci Lett, 426: 259–266

    Article  Google Scholar 

  46. Li J, Hu X, Garzanti E, An W, Wang J. 2015. Paleogene carbonate microfacies and sandstone provenance (Gamba area, South Tibet): Stratigraphic response to initial India-Asia continental collision. J Asian Earth Sci, 104: 39–54

    Article  Google Scholar 

  47. Li X H, Wang C S, Wan X Q, Tao R. 1999. Verification of stratigraphical sequence and classification of the Chuangde Section of Gyangze, South Tibet (in Chinese with English abstract). J Stratigr, 24: 303–309

    Google Scholar 

  48. Li X H, Wang C S, Hu X M. 2000. Sedimentation of sandy debris flow in deep-sea environment-verification from massive sandstone of the Upper Jurassic-Lower Cretaceous in Tibetan Tethys Himalayas (in Chinese with English abstract). J Mineral Petrol, 20: 45–51

    Google Scholar 

  49. Li X, Wang C, Hu X. 2005. Stratigraphy of deep-water Cretaceous deposits in Gyangze, southern Tibet, China. Cretac Res, 26: 33–41

    Article  Google Scholar 

  50. Lin X W. 1998. Sedimentary chaotic mélanges and their tectonic significance: upper Cretaceous Zongzhuo Formation. Gyangze, Xizang (in Chinese with English abstract). Litho-Paleogeogr, 18: 28–33

    Google Scholar 

  51. Liu J, Aitchison J C. 2002. Upper paleocene radiolarians from the Yamdrok mélange, south Xizang (Tibet), China. Micropaleontol, 145–154

    Google Scholar 

  52. Ludwig K R. 2011. Isoplot/Ex Version 4: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronol Center Spec Publ, 4: 70

    Google Scholar 

  53. Mo X, Niu Y, Dong G, Zhao Z, Hou Z, Zhou S, Ke S. 2008. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic Succession in southern Tibet. Chem Geol, 250: 49–67

    Article  Google Scholar 

  54. Mutti E, Ricci Lucchi F. 1978. Turbidites of the northern Apennines: introduction to facies analysis. Int Geol Rev, 20: 125–166

    Article  Google Scholar 

  55. Najman Y, Appel E, Boudagher-Fadel M, Bown P, Carter A, Garzanti E, Godin L, Han J, Liebke U, Oliver G, Parrish R, Vezzoli G. 2010. Timing of India-Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints. J Geophys Res, 115: 1–70

    Article  Google Scholar 

  56. Orme D A, Carrapa B, Kapp P. 2015. Sedimentology, provenance and geochronology of the upper Cretaceous-lower Eocene western Xigaze forearc basin, southern Tibet. Basin Res, 27: 387–411

    Article  Google Scholar 

  57. Ratschbacher L, Frisch W, Liu G, Chen C. 1994. Distributed deformation in southern and western Tibet during and after the India-Asia collision. J Geophys Res, 99: 19917–19945

    Article  Google Scholar 

  58. Pan G T, Ding J, Yao D S, Wang L Q, 2004. The Guide Book of 1:1500000 Geologic Map of the Qinghai-Xizang (Tibet) Plateau and Adjacent Areas (in Chinese). Chengdu: Chengdu Cartographic Publishing House

    Google Scholar 

  59. Pan G T, Mo X X, Hou Z Q, Zhu D C, Wang L Q, Li G M, Zhao Z D, Geng Q R, Liao Z L. 2006. Spatial–temporal framework of the Gangdese Orogenic Belt and its evolution (in Chinese with English abstract). Acta Petrol Sin, 22: 521–533

    Google Scholar 

  60. Schärer U, Xu R H, Allègre C J. 1984. U-Pb geochronology of Gangdese (Transhimalaya) plutonism in the Lhasa-Xigaze region, Tibet. Earth Planet Sci Lett, 69: 311–320

    Article  Google Scholar 

  61. Söderlund U, Patchett P J, Vervoort J D, Isachsen C E. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett, 219: 311–324

    Article  Google Scholar 

  62. Sun G Y, Hu X M, Wang J G. 2011. Petrologic and Provenance Analysis of the Zongzhuo Melange in Baisha Area, Gyangze, Southern Tibet (in Chinese with English abstract). Acta Geol Sin, 85: 1343–1351

    Article  Google Scholar 

  63. Thornburg T M, Kulm L D. 1987. Sedimentation in the Chile Trench: Depositional morphologies, lithofacies, and stratigraphy. Geol Soc Am Bull, 98: 33–52

    Article  Google Scholar 

  64. Underwood M B, Moore G. 1995. Trenches and trench-slope basins. In: Tectonics of Sedimentary Basins. New Jersey: Blackwell Science. 179–219

    Google Scholar 

  65. van Achterbergh E, Ryan C, Jackson S, Griffin W. 2001. Data reduction software for LA-ICPMS. Laser-Ablation-ICPMS in the Earth Sciences: Principles and Applications. Mineral Ass Canada Short Course, 29: 239–243

    Google Scholar 

  66. Wan X Q W L, Wang C X, Jansa L. 1998. Discovery and significance of Cretaceous fossils from the Xigaze Forearc Basin, Tibet. J Asian Earth Sci, 16: 217–223

    Article  Google Scholar 

  67. Wang C S, Li X H, Wan X Q, Tao R. 2000. The Cretaceous in Gyangze, Southern Xizang (Tibet): Redefined (in Chinese with English abstract). Acta Geol Sin, 74: 97–107

    Google Scholar 

  68. Wang C, Hu X, Sarti M, Scott R W, Li X. 2005. Upper Cretaceous oceanic red beds in southern Tibet: A major change from anoxic to oxic, deepsea environments. Cretac Res, 26: 21–32

    Article  Google Scholar 

  69. Wang C, Li X, Liu Z, Li Y, Jansa L, Dai J, Wei Y. 2012. Revision of the Cretaceous-Paleogene stratigraphic framework, facies architecture and provenance of the Xigaze forearc basin along the Yarlung Zangbo suture zone. Gondwana Res, 22: 415–433

    Article  Google Scholar 

  70. Wang J, Hu X, Jansa L, Huang Z. 2011. Provenance of the Upper Cretaceous- Eocene deep-water sandstones in Sangdanlin, Southern Tibet: Constraints on the timing of initial India-Asia collision. J Geol, 119: 293–309

    Article  Google Scholar 

  71. Wang J G, Hu X M, Garzanti E, Wu F Y. 2013. Upper Oligocene-Lower Miocene Gangrinboche Conglomerate in the Xigaze Area, Southern Tibet: Implications for Himalayan Uplift and Paleo-Yarlung-Zangbo initiation. J Geol, 121: 425–444

    Article  Google Scholar 

  72. Wang J G, Hu X, Garzanti E, An W, Liu X C. 2017. The birth of the Xigaze forearc basin in southern Tibet. Earth Planet Sci Lett, 465: 38–47

    Article  Google Scholar 

  73. Wei Y S, Wang C S, Li X H, Cao K. 2006. Provenance analysis of Paleogene Gyachala Formation in Southern Tibet: Implication for the initiation of collision between India and Asia. J Mineral Petrol, 26: 46–55

    Google Scholar 

  74. Wen D, Liu D, Chung S, Chu M, Ji J, Zhang Q, Song B, Lee T, Yeh M, Lo C. 2008. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chem Geol, 252: 191–201

    Article  Google Scholar 

  75. Wu F Y, Ji W Q, Liu C Z, Chung S L. 2010. Detrital zircon U-Pb and Hf isotopic data from the Xigaze fore-arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet. Chem Geol, 271: 13–25

    Article  Google Scholar 

  76. Wu F Y, Ji W Q, Wang J G, Liu C Z, Chung S L, Clift P D. 2014. Zircon UPb and Hf isotopic constraints on the onset time of India-Asia collision. Am J Sci, 314: 548–579

    Article  Google Scholar 

  77. Zhang H F, Xu, W C, Guo, J Q, Zong, K Q, Cai, H M. 2007a. Indosinian orogenesis of the Gangdese terrane: Evidences from zircon U-Pb dating and petrogenesis of granitoids. Earth Sci, 332: 155–166

    Google Scholar 

  78. Zhang H F, Xu W C, Guo J Q, Zong K Q, Cai H M, Yuan H L. 2007b. Zircon U-Pb and Hf isotopic composition of deformed granite in the southern margin of the Gangdese belt, Tibet: Evidence for early Jurassic subduction of Neo-Tethyan oceanic slab. Acta Petrol Sin, 23: 1347–1353

    Google Scholar 

  79. Zhou B, Hu X M, An W, Ma A L, Lai W. 2018. Trench Deposition during the Initial Indian-Asian Collision: Petrologic and Provenance Analysis of the Zongzhuo Formation, Southeastern Tibet. Acta Geol Sin, 92:1–14

    Article  Google Scholar 

  80. Zhu D C, Pan G T, Chung S L, Liao Z L, Wang L Q, Li G M. 2008. SHRIMP zircon age and geochemical constraints on the origin of Lower Jurassic volcanic rocks from the Yeba Formation, Southern Gangdese, South Tibet. Int Geol Rev, 50: 442–471

    Article  Google Scholar 

  81. Zhu D C, Mo X X, Niu Y, Zhao Z D, Wang L Q, Liu Y S, Wu F Y. 2009. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet. Chem Geol, 268: 298–312

    Article  Google Scholar 

  82. Zhu D C, Zhao Z D, Niu Y, Mo X X, Chung S L, Hou Z Q, Wang L Q, Wu F Y. 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth Planet Sci Lett, 301: 241–255

    Article  Google Scholar 

  83. Zhu D C, Zhao Z D, Niu Y, Dilek Y, Hou Z Q, Mo X X. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res, 23: 1429–1454

    Article  Google Scholar 

  84. Zhu D C, Wang Q, Zhao Z D. 2017. Constraining quantitatively the timing and process of continent-continent collision using magmatic record: Method and examples. Sci China Earth Sci, 60: 1040–1056

    Article  Google Scholar 

  85. Ziabrev S V, Aitchison J C, Abrajevitch A V, Badengzhu A V, Davis A M, Luo H. 2003. Precise radiolarian age constraints on the timing of ophiolite generation and sedimentation in the Dazhuqu terrane, Yarlung-Tsangpo suture zone, Tibet. J Geol Soc, 160: 591–599

    Article  Google Scholar 

Download references

Acknowledgements

We thank Wang Chengshan, Wu Fuyuan, Li Xianghui, Wan Xiaoqiao and Li Jianguo for constructive discussion and suggestions, Bian Lizeng and Roger Tremain for help in palynological processing, Zhou Bo for assistance in the field, and Lai Wen and Xue Weiwei for help in Hf isotopic analysis. We are grateful to the reviewers for their constructive comments. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41525007, 41602115).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiumian Hu.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fu, H., Hu, X., Crouch, E.M. et al. Upper Cretaceous trench deposits of the Neo-Tethyan subduction zone: Jiachala Formation from Yarlung Zangbo suture zone in Tibet, China. Sci. China Earth Sci. 61, 1204–1220 (2018). https://doi.org/10.1007/s11430-017-9223-5

Download citation

Keywords

  • Provenance analysis
  • Trench deposits
  • Late Cretaceous
  • Neo-Tethyan oceanic subduction
  • Yarlung Zangbo suture zone
  • Tibet of China