Skip to main content
Log in

Crustal azimuthal anisotropy in the trans-North China orogen and adjacent regions from receiver functions

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The North China Craton (NCC) is an important part of eastern China. Recent studies have shown that the eastern NCC (ENCC) has undergone significant lithospheric thinning and destruction since the late Mesozoic. Destruction of the cratonic lithosphere is necessarily accompanied by crustal deformation. Therefore, a detailed crustal deformation model can provide basic observational constraints for understanding the process and mechanisms of the destruction of the NCC. In this study, we estimated the crustal azimuthal anisotropy beneath 198 broadband stations in the NCC with a joint analysis of Ps waves converted at the Moho from radial and transverse receiver function data. We also performed a harmonic analysis to test the reliability of the measured anisotropy. We obtained robust crustal azimuthal anisotropy beneath 23 stations that are mostly located on the western margin of the Bohai Bay Basin, Yin-Yan orogenic belt, and Taihang Mountains, which reflects the crustal deformation characteristics in those regions. The crustal shear wave splitting time was found to range from 0.05 s to 0.68 s, with an average value of 0.23 s, which reveals a distinct crustal anisotropy in the Trans-North China Orogen (TNCO) and its adjacent areas. Our analysis of the results suggests that the strong NW-SE tectonic extension in the late Mesozoic and Cenozoic played an important role in crustal anisotropy in this region. In addition, the E-W trending crustal anisotropy on the margin of the Bohai Bay Basin indicates an effect of the ENE-WSW trending horizontal principal compressive stress. The crustal anisotropy in the Yin-Yan orogenic belt may be an imprint of the multiple-phase shortening of a dominant N-S direction from the early-to-middle Jurassic to the Early Cretaceous. Stations in the Taihang Mountains show large splitting times and well-aligned NW-SE fast directions that correlate with those measured from SKS splitting and that are possibly related to the lithospheric modification and magmatic underplating from the Late Mesozoic to Cenozoic in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammon C J. 1991. Isolation of receiver effects from teleseismic P waveforms. Bull Seismol Soc Am, 81: 2504–2510

    Google Scholar 

  • Bianchi I, Park J, Piana Agostinetti N, Levin V. 2010. Mapping seismic anisotropy using harmonic decomposition of receiver functions: An application to Northern Apennines, Italy. J Geophys Res, 115: 12317

    Article  Google Scholar 

  • Boness N L, Zoback M D. 2006. Mapping stress and structurally controlled crustal shear velocity anisotropy in California. Geology, 34: 825–828

    Article  Google Scholar 

  • Bowman J R, Ando M. 1987. Shear-wave splitting in the upper-mantle wedge above the Tonga subduction zone. Geophys J Int, 88: 25–41

    Article  Google Scholar 

  • Chang L J, Wang C Y, Ding Z F. 2012. Upper mantle anisotropy beneath North China (in Chinese). Chin J Geophys, 55: 886–896

    Google Scholar 

  • Chen L. 2010. Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications. Lithos, 120: 96–115

    Article  Google Scholar 

  • Chen S, O’Reilly S Y, Zhou X, Griffin W L, Zhang G, Sun M, Feng J, Zhang M. 2001. Thermal and petrological structure of the lithosphere beneath Hannuoba, Sino-Korean Craton, China: evidence from xenoliths. Lithos, 56: 267–301

    Article  Google Scholar 

  • Chen Y, Zhang Z, Sun C, Badal J. 2013. Crustal anisotropy from Moho converted Ps wave splitting analysis and geodynamic implications beneath the eastern margin of Tibet and surrounding regions. Gondwana Res, 24: 946–957

    Article  Google Scholar 

  • ChinArray. 2006. China Seismic Array waveform data. China Earthquake Administration, doi: 10.12001/ChinArray.Data

    Google Scholar 

  • Crampin S, Chastin S, Gao Y. 2003. Shear-wave splitting in a critical crust. J Appl Geophys, 54: 265–277

    Article  Google Scholar 

  • Davis G A, Zheng Y D, Wang C, Darby B J, Zhang C H, Gehrels G. 2001. Mesozoic tectonic evolution of the Yanshan fold and thrust belt with emphasis on Hebei and Liaoning provinces, northern China. Mem Geol Soc Am, 194: 171–197

    Google Scholar 

  • Dziewonski A M, Anderson D L. 1981. Preliminary reference Earth model. Phys Earth Planet Inter, 25: 297–356

    Article  Google Scholar 

  • Farra V, Vinnik L. 2000. Upper mantle stratification by P and S receiver functions. Geophys J Int, 141: 699–712

    Article  Google Scholar 

  • Frederiksen A W, Bostock M G. 2000. Modelling teleseismic waves in dipping anisotropic structures. Geophys J Int, 141: 401–412

    Article  Google Scholar 

  • Gao Y, Wu J, Fukao Y, Shi Y, Zhu A. 2011. Shear wave splitting in the crust in North China: stress, faults and tectonic implications. Geophys J Int, 187: 642–654

    Article  Google Scholar 

  • Gao Y, Wu J, Yi G X, Shi Y T. 2010. Crust-mantle coupling in North China: Preliminary analysis from seismic anisotropy (in Chinese). Chin Sci Bull, 55: 2837–2843

    Google Scholar 

  • Griffin W L, Andi Z, O’Reilly S Y, Ryan C G. 1998. Phanerozoic Evolution of the Lithosphere Beneath the Sino-Korean Craton. In: Flower M F J, Chung S L, Lo C H, eds. Mantle Dynamics and Plate Interactions in East Asia. Am Geophys Union, 27: 107–126

    Article  Google Scholar 

  • Gripp A E, Gordon R G. 2002. Young tracks of hotspots and current plate velocities. Geophys J Int, 150: 321–361

    Article  Google Scholar 

  • Guo Z, Chen Y J, Ning J, Yang Y, Afonso J C, Tang Y. 2016. Seismic evidence of on-going sublithosphere upper mantle convection for intraplate volcanism in Northeast China. Earth Planet Sci Lett, 433: 31–43

    Article  Google Scholar 

  • Hu S, He L, Wang J. 2000. Heat flow in the continental area of China: a new data set. Earth Planet Sci Lett, 179: 407–419

    Article  Google Scholar 

  • Jiang M, Ai Y, Chen L, Yang Y. 2013. Local modification of the lithosphere beneath the central and western North China Craton: 3-D constraints from Rayleigh wave tomography. Gondwana Res, 24: 849–864

    Article  Google Scholar 

  • Kennett B L N, Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification. Geophys J Int, 105: 429–465

    Article  Google Scholar 

  • Kosarev G L, Makeyeva L I, Vinnik L P. 1984. Anisotropy of the mantle inferred from observations of P to S converted waves. Geophys J Int, 76: 209–220

    Article  Google Scholar 

  • Levin V, Park J. 1997. Crustal anisotropy in the Ural Mountains Foredeep from teleseismic receiver functions. Geophys Res Lett, 24: 1283–1286

    Article  Google Scholar 

  • Li S R, Santosh M, Zhang H F, Shen J F, Dong G C, Wang J Z, Zhang J Q. 2013. Inhomogeneous lithospheric thinning in the central North China Craton: Zircon U-Pb and S-He-Ar isotopic record from magmatism and metallogeny in the Taihang Mountains. Gondwana Res, 23: 141–160

    Article  Google Scholar 

  • Lin F C, Ritzwoller M H, Yang Y, Moschetti M P, Fouch M J. 2011. Complex and variable crustal and uppermost mantle seismic anisotropy in the western United States. Nat Geosci, 4: 55–61

    Article  Google Scholar 

  • Liu H, Niu F. 2012. Estimating crustal seismic anisotropy with a joint analysis of radial and transverse receiver function data. Geophys J Int, 188: 144–164

    Article  Google Scholar 

  • Mainprice D, Nicolas A. 1989. Development of shape and lattice preferred orientations: Application to the seismic anisotropy of the lower crust. J Struct Geol, 11: 175–189

    Article  Google Scholar 

  • McNamara D E, Owens T J, Silver P G, Wu F T. 1994. Shear wave anisotropy beneath the Tibetan Plateau. J Geophys Res, 99: 13655–13665

    Article  Google Scholar 

  • McNamara D E, Owens T J. 1993. Azimuthal shear wave velocity anisotropy in the Basin and Range Province using moho Ps converted phases. J Geophys Res, 98: 12003–12017

    Article  Google Scholar 

  • Menzies M A, Fan W, Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China. Geol Soc London Spec Publ, 76: 71–81

    Article  Google Scholar 

  • Nagaya M, Oda H, Akazawa H, Ishise M. 2008. Receiver functions of seismic waves in layered anisotropic media: Application to the estimate of seismic anisotropy. Bull Seismol Soc Am, 98: 2990–3006

    Article  Google Scholar 

  • Nu Z H. 2001. A present-day tectonic stress map for eastern Asia region (in Chinese). Earthquake Sci, 23: 492–501

    Google Scholar 

  • Ren J, Tamaki K, Li S, Junxia Z. 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophysics, 344: 175–205

    Article  Google Scholar 

  • Ruan A G, Wang C Y, Li Q H, Zang H. 2004. Effect of the crust on the analysis of the upper mantle anisotropy (in Chinese). Chin J Geophys, 47: 441–448

    Article  Google Scholar 

  • Savage M K. 1998. Lower crustal anisotropy or dipping boundaries? Effects on receiver functions and a case study in New Zealand. J Geophys Res, 103: 15069–15087

    Article  Google Scholar 

  • Silver P G, Chan W W. 1991. Shear wave splitting and subcontinental mantle deformation. J Geophys Res, 96: 16429–16454

    Article  Google Scholar 

  • Silver P G. 1996. Seismic anisotropy beneath the continents: Probing the depths of geology. Annu Rev Earth Planet Sci, 24: 385–432

    Article  Google Scholar 

  • Sun Y, Niu F, Liu H, Chen Y, Liu J. 2012. Crustal structure and deformation of the SE Tibetan plateau revealed by receiver function data. Earth Planet Sci Lett, 349-350: 186–197

    Article  Google Scholar 

  • Vinnik L P, Farra V, Romanowicz B. 1989. Azimuthal anisotropy in the earth from observations of SKS at GEOSCOPE and NARS broadband stations. Bull Seismol Soc Am, 79: 1542–1558

    Google Scholar 

  • Vinnik L P, Kosarev G L, Makeyeva L I. 1984. Anisotropy in the lithosphere from the observations of SKS and SKKS. Dok Acad Nauk SSSR, 278: 1335–1339

    Google Scholar 

  • Wang Q, Gao Y, Niu F L, Chen Y T. 2016. Reliability analysis of crustal anisotropy from receiver functions and effect of dipping interface (in Chinese). Earthquake, 36: 14–25

    Google Scholar 

  • Wang Q, Niu F, Gao Y, Chen Y. 2015. Crustal structure and deformation beneath the NE margin of the Tibetan plateau constrained by teleseismic receiver function data. Geophys J Int, 204: 167–179

    Article  Google Scholar 

  • Wu F Y, Lin J Q, Wilde S A, Zhang X, Yang J H. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet Sci Lett, 233: 103–119

    Article  Google Scholar 

  • Wu J, Zhang Z, Kong F, Yang B B, Yu Y, Liu K H, Gao S S. 2015. Complex seismic anisotropy beneath western Tibet and its geodynamic implications. Earth Planet Sci Lett, 413: 167–175

    Article  Google Scholar 

  • Wu Y. 2011. The structure of the crust and upper mantle in North China Craton from teleseismic receiver function (in Chinese). Doctral Dissertation. Institute of Geophysics, CEA

    Google Scholar 

  • Xie J, Ritzwoller M H, Brownlee S J, Hacker B R. 2015. Inferring the oriented elastic tensor from surface wave observations: preliminary application across the western United States. Geophys J Int, 201: 996–1021

    Article  Google Scholar 

  • Xu Y G, Ma J L, Frey F A, Feigenson M D, Liu J F. 2005. Role of lithosphere–asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Chem Geol, 224: 247–271

    Article  Google Scholar 

  • Xu Y G. 2001. Thermo-tectonic destruction of the archaean lithospheric keel beneath the sino-Korean Craton in China: Evidence, timing and mechanism. Phys Chem Earth Part A-Solid Earth Geodesy, 26: 747–757

    Article  Google Scholar 

  • Xu Z H. 2001. A present-day tectonic stress map for eastern Asia region (in Chinese). Acta Seismol Sin, 23: 492–501

    Google Scholar 

  • Yao H, van der Hilst R D, Montagner J P. 2010. Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography. J Geophys Res, 115: B12307

    Article  Google Scholar 

  • Zhang C, Yao H, Liu Q, Zhang P, Yuan Y O, Feng J, Fang L. 2018. Linear array ambient noise adjoint tomography reveals intense crust-mantle interactions in North China Craton. J Geophys Res-Solid Earth, 123: 368–383

    Article  Google Scholar 

  • Zhang H, Huang Q, Zhao G, Guo Z, Chen Y J. 2016. Three-dimensional conductivity model of crust and uppermost mantle at the northern Trans North China Orogen: Evidence for a mantle source of Datong volcanoes. Earth Planet Sci Lett, 453: 182–192

    Article  Google Scholar 

  • Zhao G, Sun M, Wilde S A, Sanzhong L. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res, 136: 177–202

    Article  Google Scholar 

  • Zhao G, Wilde S A, Cawood P A, Sun M. 2001. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res, 107: 45–73

    Article  Google Scholar 

  • Zhao L, Zheng T, Lü G. 2008. Insight into craton evolution: Constraints from shear wave splitting in the North China Craton. Phys Earth Planet Inter, 168: 153–162

    Article  Google Scholar 

  • Zhao L, Zheng T. 2005. Using shear wave splitting measurements to investigate the upper mantle anisotropy beneath the North China Craton: Distinct variation from east to west. Geophys Res Lett, 32: L10309

    Article  Google Scholar 

  • Zheng T Y, Zhao L, Zhu R X. 2008. Insight into the geodynamics of cratonic reactivation from seismic analysis of the crust-mantle boundary. Geophys Res Lett, 35: L08303

    Google Scholar 

  • Zheng Y D, Davis G A, Wang C, Darby B J, Zhang C H. 2000. Major Mesozoic tectonic events in the Yanshan Belt and the plate tectonic setting (in Chinese). Acta Geol Sin, 74: 289–302

    Google Scholar 

  • Zhu G, Jiang D, Zhang B, Chen Y. 2012. Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics. Gondwana Res, 22: 86–103

    Article  Google Scholar 

  • Zhu R X, Chen L, Wu F Y, Liu J L. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Sci China Earth Sci, 54: 789–797

    Article  Google Scholar 

Download references

Acknowledgements

We thank the China Seismic Array Data Management Center at the Institute of Geophysics, China Earthquake Administration for providing waveform data for this study. We thank the two anonymous reviewers for their constructive comments and suggestions. This study was supported by the National Natural Science Foundation of China (Grant Nos. 41574034, 41688103, and 91414301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huajian Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Yao, H., Zhang, P. et al. Crustal azimuthal anisotropy in the trans-North China orogen and adjacent regions from receiver functions. Sci. China Earth Sci. 61, 903–913 (2018). https://doi.org/10.1007/s11430-017-9209-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9209-9

Keywords

Navigation