Skip to main content
Log in

Understanding the Moon’s internal structure through moonquake observations and remote sensing technologies

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Explorations for the interior structure of the Moon mainly involve three technologies: the early gravitational observations via circumlunar satellites, the moonquake observations during the Apollo period, and the recent high-resolution remote sensing observations. Based on these technologies, we divided the development of the moon’s interior structure into three stages. The first stage is the discovery of high-density anomalous masses (mascons) on the lunar surface with the low-order gravitational field models, which were obtained by observing perturbations of the early lunar orbital satellites. The second stage is the preliminary understanding of the layer structure with the help of moonquake observations during the Apollo period. The third stage is the deep understanding of the structure of the lunar crust, mantle, and core, with the use of high-resolution remote sensing data and the reassessment of moonquake data from the Apollo’s mission. This paper gave detailed introduction and comments on different observation technologies, gathered data, and data processing techniques used at the three stages. In addition, this paper analyzed the current issues in the researches on the Moon’s internal structure and discussed the prospects for future explorations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews-Hanna J C, Asmar S W, Head J W, Kiefer W S, Konopliv A S, Lemoine F G, Matsuyama I, Mazarico E, McGovern P J, Melosh H J, Neumann G A, Nimmo F, Phillips R J, Smith D E, Solomon S C, Taylor G J, Wieczorek M A, Williams J G, Zuber M T. 2013. Ancient igneous intrusions and early expansion of the Moon revealed by GRAIL gravity gradiometry. Science, 339: 675–678

    Article  Google Scholar 

  • Besserer J, Nimmo F, Wieczorek M A, Weber R C, Kiefer W S, McGovern P J, Andrews-Hanna J C, Smith D E, Zuber M T. 2014. GRAIL gravity constraints on the vertical and lateral density structure of the lunar crust. Geophys Res Lett, 41: 5771–5777

    Article  Google Scholar 

  • Hao W F, Li F, Yan J G, Zhang J, Su X L. 2012a. Lunar polar illumination based on Chang’E-1 laser altimeter (in Chinese). Chin J Geophys-Ch, 55: 46–52

    Article  Google Scholar 

  • Hao W F, Ye M, Li F, Yan J G, Shao X Y. 2012b. The Communication Accessibility of the Lunar Rover Based on DEM Derived from Chang’E-1 (in Chinese). J Astronautics, 33: 1453–1459

    Google Scholar 

  • Harada Y, Goossens S, Matsumoto K, Yan J, Ping J, Noda H, Haruyama J. 2014. Strong tidal heating in an ultralow-viscosity zone at the coremantle boundary of the Moon. Nat Geosci, 7: 569–572

    Article  Google Scholar 

  • Hikida H, Wieczorek M A. 2007. Crustal thickness of the Moon: New constraints from gravity inversions using polyhedral shape models. Icarus, 192: 150–166

    Article  Google Scholar 

  • Hood L L. 1986. Geophysical constraints on the lunar interior. Origin Moon, 31: 361–410

    Google Scholar 

  • Hood L L, Herbert F, Sonett C P. 1982. The deep lunar electrical conductivity profile: Structural and thermal inferences. J Geophys Res, 87: 5311–5326

    Article  Google Scholar 

  • Huang Q, Wieczorek M A. 2012. Density and porosity of the lunar crust from gravity and topography. J Geophys Res, 117: E05003

    Article  Google Scholar 

  • Ishihara Y, Goossens S, Matsumoto K, Noda H, Araki H, Namiki N, Hanada H, Iwata T, Tazawa S, Sasaki S. 2009. Crustal thickness of the Moon: Implications for farside basin structures. Geophys Res Lett, 36: L19202

    Article  Google Scholar 

  • Gagnepain-Beyneix J, Lognonné P, Chenet H, Lombardi D, Spohn T. 2006. A seismic model of the lunar mantle and constraints on temperature and mineralogy. Phys Earth Planet Inter, 159: 140–166

    Article  Google Scholar 

  • Garcia R F, Gagnepain-Beyneix J, Chevrot S, Lognonné P. 2011. Very preliminary reference Moon model. Phys Earth Planet Inter, 188: 96–113

    Article  Google Scholar 

  • Goins N R, Dainty A M, Toksoz M N. 1981. Lunar seismology: The internal structure of the Moon. J Geophys Res, 86: 5061–5074

    Article  Google Scholar 

  • Goins N R, Toksöz M N, Dainty A M. 1978. Seismic structure of the lunar mantle: An overview. In: Lunar and Planetary science conference, 9th. Honston. 3575–3588

    Google Scholar 

  • Ke B G, Li F, Wang W R, Wang S W, Yan J G. 2009. Analysis of the lower mantle thickness and core size of lunar based on the solution of the Lane-Emden equation (in Chinese). Chin J Geophys-Ch, 52: 1208–1213

    Google Scholar 

  • Khan A, Connolly J A D, Maclennan J, Mosegaard K. 2007. Joint inversion of seismic and gravity data for lunar composition and thermal state. Geophys J Int, 168: 243–258

    Article  Google Scholar 

  • Khan A, Connolly J A D, Pommier A, Noir J. 2014. Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution. J Geophys Res Planets, 119: 2197–2221

    Article  Google Scholar 

  • Khan A, Mosegaard K. 2002. An inquiry into the lunar interior: A nonlinear inversion of the Apollo lunar seismic data. J Geophys Res, 107: 3–23

    Article  Google Scholar 

  • Khan A, Mosegaard K, Rasmussen K L. 2000. A new seismic velocity model for the Moon from a Monte Carlo inversion of the Apollo lunar seismic data. Geophys Res Lett, 27: 1591–1594

    Article  Google Scholar 

  • Konopliv A S, Binder A B, Hood L L, Kucinskas A B, Sjogren W L, Williams J G. 1998. Improved gravity field of the Moon from Lunar Prospector. Science, 281: 1476–1480

    Article  Google Scholar 

  • Lemoine F G R, Smith D E, Zuber M T, Neumann G A, Rowlands D D. 1997. A 70th degree lunar gravity model (GLGM-2) from Clementine and other tracking data. J Geophys Res, 102: 16339–16359

    Article  Google Scholar 

  • Li F, Ke B G, Wang W R, Yan J G. 2009. Estimation of the ancient lunar crust thickness from the admittance (in Chinese). Chin J Geophys-Ch, 52: 2001–2007

    Google Scholar 

  • Li F, Hao W F, Yan J G, Shao X Y, Ye M, Xiao C. 2016. Advancement of lunar gravity model due to the development of space tracking techniques (in Chinese). Chin J Geophys-Ch, 59: 1249–1259

    Google Scholar 

  • Lognonné P, Gagnepain-Beyneix J, Chenet H. 2003. A new seismic model of the Moon: Implications for structure, thermal evolution and formation of the Moon. Earth Planet Sci Lett, 211: 27–44

    Article  Google Scholar 

  • Lucey P, Korotev R L, Gillis J J, Taylor L A, Lawrence D, Campbell B A, Elphic R, Feldman B, Lon L H, Hunten D, Mendillo M, Noble S, Papike J J, Reedy R C, Lawson S, Prettyman T, Gasnault O, Maurice S. 2006. Understanding the Lunar surface and space-Moon interactions. Rev Mineral Geochem, 60: 83–219

    Article  Google Scholar 

  • Matsumoto K, Yamada R, Kikuchi F, Kamata S, Ishihara Y, Iwata T, Hanada H, Sasaki S. 2015. Internal structure of the Moon inferred from Apollo seismic data and selenodetic data from GRAIL and LLR. Geophys Res Lett, 42: 7351–7358

    Article  Google Scholar 

  • Muller P M, Sjogren W L. 1968. Mascons: Lunar mass concentrations. Science, 161: 680–684

    Article  Google Scholar 

  • Mueller S, Taylor G J, Phillips R J. 1988. Lunar composition: A geophysical and petrological synthesis. J Geophys Res, 93: 6338–6352

    Article  Google Scholar 

  • Nakamura Y. 2003. New identification of deep moonquakes in the Apollo lunar seismic data. Phys Earth Planet Inter, 139: 197–205

    Article  Google Scholar 

  • Nakamura Y. 2005. Farside deep moonquakes and deep interior of the Moon. J Geophys Res, 110: E01001

    Google Scholar 

  • Nakamura Y, Latham G, Lammlein D, Ewing M, Duennebier F, Dorman J. 1974. Deep lunar interior inferred from recent seismic data. Geophys Res Lett, 1: 137–140

    Article  Google Scholar 

  • Nakamura Y, Duennebier F K, Latham G V, Dorman H J. 1976. Structure of the lunar mantle. J Geophys Res, 81: 4818–4824

    Article  Google Scholar 

  • Nakamura Y, Latham G V, Dorman H J. 1982. Apollo Lunar seismic experiment—Final summary. J Geophys Res, 87: A117–123

    Article  Google Scholar 

  • Nakamura Y, Koyama J. 1982. Seismic Q of the lunar upper mantle. J Geophys Res, 87: 4855–4861

    Article  Google Scholar 

  • Ouyang Z Y. 2005. Introduction to Lunar Science (in Chinese). Beijing: China Astronautic Publishing House. 292–303

    Google Scholar 

  • Sasaki S, Ishihara Y, Araki H, NodaH, HanadaH, MatsumotoK, GoossensS, NamikiN, IwataT, OhtakeM. 2010. Structure of the lunar South Pole-Aitken basin from Kaguya (SELENE) gravity/topography. In: Lunar and Planetary Science Conference. Woodlands. 41: 1691

    Google Scholar 

  • Sellers P C. 1992. Seismic evidence for a low-velocity lunar core. J Geophys Res, 97: 11663–11672

    Article  Google Scholar 

  • Shimizu H, Matsushima M, Takahashi F, Shibuya H, Tsunakawa H. 2013. Constraint on the lunar core size from electromagnetic sounding based on magnetic field observations by an orbiting satellite. Icarus, 222: 32–43

    Article  Google Scholar 

  • Simmons G, Todd T, Wang H. 1973. The 25-km discontinuity: Implications for Lunar history. Science, 182: 158–161

    Article  Google Scholar 

  • Steinberger B, Zhao D, Werner S C. 2015. Interior structure of the Moon: Constraints from seismic tomography, gravity and topography. Phys Earth Planet Inter, 245: 26–39

    Article  Google Scholar 

  • Su Y, Fang G Y, Feng J Q, Xing S G, Ji Y C, Zhou B, Gao Y Z, Li H, Dai S, Xiao Y, Li C L. 2014. Data processing and initial results of Chang’e-3 lunar penetrating radar. Res Astron Astrophys, 14: 1623–1632

    Article  Google Scholar 

  • Sugano T, Heki K. 2004. Isostasy of the Moon from high-resolution gravity and topography data: Implication for its thermal history. Geophys Res Lett, 31: L24703

    Article  Google Scholar 

  • Toksöz M N, Dainty A M, Solomon S C, Anderson K R. 1974. Structure of the Moon. Rev Geophys, 12: 539–567

    Article  Google Scholar 

  • Toksöz M N, Press F, Dainty A, Anderson K, Latham G, Ewing M, Dorman J, Lammlein D. 1972. Structure, composition and properties of lunar crust. In: Lunar and Planetary Science Conference Proceedings. 3: 2527

    Google Scholar 

  • Weber R C, Lin P Y, Garnero E J, Williams Q, Lognonné P. 2011. Seismicdetection of the Lunar core. Science, 331: 309–312

    Article  Google Scholar 

  • Williams J G, Konopliv A S, Boggs D H, Park R S, Yuan D N, Lemoine F G, Goossens S, Mazarico E, Nimmo F, Weber R C, Asmar S W, Melosh H J, Neumann G A, Phillips R J, Smith D E, Solomon S C, Watkins M M, Wieczorek M A, Andrews-Hanna J C, Head J W, Kiefer W S, Matsuyama I, McGovern P J, Taylor G J, Zuber M T. 2014. Lunar interior properties from the GRAIL mission. J Geophys Res-Planets, 119: 1546–1578

    Article  Google Scholar 

  • Wieczorek M A, Phillips R J. 1997. The structure and compensation of the lunar highland crust. J Geophys Res, 102: 10933–10943

    Article  Google Scholar 

  • Wieczorek M A, Jolliff B L, Khan A, Pritchard M E, Weiss B P, Williams J G, Hood L L, Righter K, Neal C R, Shearer C K, McCallum I S, Tompkins S, Hawke B R, Peterson C, Gillis J J, Bussey B. 2006. The constitution and structure of the Lunar interior. Rev Mineral Geochem, 60: 221–364

    Article  Google Scholar 

  • Wieczorek M A, Neumann G A, Nimmo F, Kiefer W S, Taylor G J, Melosh H J, Phillips R J, Solomon S C, Andrews-Hanna J C, Asmar S W, Konopliv A S, Lemoine F G, Smith D E, Watkins M M, Williams J G, Zuber M T. 2013. The crust of the Moon as seen by GRAIL. Science, 339: 671–675

    Article  Google Scholar 

  • Xiao L, Zhu P M, Fang G Y, Xiao Z Y, Zou Y L, Zhao J N, Zhao N, Yuan Y F, Qiao L, Zhang X P, Zhang H, Wang J, Huang I, Huang Q, He Q, Zhou B, Ji Q Y, Shen S X, Li Y X, Gao Y Z. 2015. A young multilayered terrane of the northern Mare Imbrium revealed by Chang’E-3 mission. Science, 347: 1226–1229

    Article  Google Scholar 

  • Xiao L, Qiao L, Xiao Z Y, Huang Q, He Q, Zhao J N, Xue Z Q, Huang J. 2016. Major scientific objectives and candidate landing sites suggested for future lunar explorations (in Chinese). Sci Sin Phys Mech Astron, 46: 029602

    Article  Google Scholar 

  • Yamada R, Garcia R F, Lognonné P, Feuvre M L, Calvet M, Gagnepain-Beyneix J. 2011. Optimisation of seismic network design: Application to a geophysical international lunar network. Planet Space Sci, 59: 343–354

    Article  Google Scholar 

  • Yamada R, Nébut T, Shiraishi H, Lognonné P, Kobayashi N, Tanaka S. 2015. Frequency band enlargement of the penetrator seismometer and its application to moonquake observation. Adv Space Res, 56: 341–354

    Article  Google Scholar 

  • Yan J, Xu L, Li F, Matsumoto K, Rodriguez J A P, Miyamoto H, Dohm J M. 2015. Lunar core structure investigation: Implication of GRAIL gravity field model. Adv Space Res, 55: 1721–1727

    Article  Google Scholar 

  • Zhang J, Yang W, Hu S, Lin Y T, Fang G Y, Li C L, Peng W X, Zhu S Y, He Z P, Zhou B, Lin H Y, Yang J F, Liu E H, Xu Y C, Wang J Y, Yao Z X, Zou Y L, Yan J, Ouyang Z Y. 2015. Volcanic history of the Imbrium basin: A close-up view from the lunar rover Yutu. Proc Natl Acad Sci USA, 112: 5342–5347

    Article  Google Scholar 

  • Zhao D, Arai T, Liu L, Ohtani E. 2012. Seismic tomography and geochemical evidence for lunar mantle heterogeneity: Comparing with Earth. Glob Planet Change, 90-91: 29–36

    Article  Google Scholar 

  • Zhao D P, Lei J S, Liu L. 2008. Seismic tomography of the Moon. Chin Sci Bull, 53: 3897–3907

    Google Scholar 

  • Zhong Z, Li F, Yan J, Yan P, Dohm J M. 2014. Lunar geophysical parameters inversion based on gravity/topography admittance and particle swarm optimization. Adv Space Res, 54: 770–779

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous reviewers for their constructive feedback, which improved the quality of this paper. This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 41604004, 41374024) and the Hubei Province Natural Science Foundation Innovation Group Project (Grant No. 2015CFA011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, W., Li, F., Xiao, C. et al. Understanding the Moon’s internal structure through moonquake observations and remote sensing technologies. Sci. China Earth Sci. 61, 995–1006 (2018). https://doi.org/10.1007/s11430-017-9197-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9197-4

Keywords

Navigation