Reconstruction of autumn sea ice extent changes since AD1289 in the Barents-Kara Sea, Arctic

Abstract

Using high-resolution ice core and tree ring proxies for sea ice extent (SIE), we reconstructed a robust time series of autumn SIE over the Barents-Kara (B-K) sector of the Arctic from AD1289–1993. After intercomparing the results and statistical parameters using the ordinary least squares regression (OLSR), the principle component regression (PCR) and the partial least squares regression (PLSR) methods, SIE time series were synthesized into a more robust series using the weighted average method, which used the explained variances as weights. The results showed that from the end of the 13th century to the end of 18th century, the autumn B-K SIE was large, with large variations and a slightly expanding trend overall. This reflected significant multidecadal oscillations under the Little Ice Age (LIA) background. The B-K SIE began to decrease at the end of the 18th century, and a shrinking trend became significant during the second half of the 19th century, which lasted into the 1930s–1940s. The 1930s–1940s was a period with a relatively low SIE in the B-K Sea, and the SIE had a short period of expansion from the 1940s–1970s. However, the B-K SIE has continuously and significantly shrank since the 1970s. The reduction in the B-K SIE since the end of the 18th century has been unprecedented in both duration and speed over the last 700 years. The B-K SIE has retreated significantly since the 1970s, with a speed 6.18 times greater than the former mean retreating speed. The industrial revolution may be a dominant factor in this result. The Arctic SIE in recent years may be the lowest it has been over the last millennium.

This is a preview of subscription content, access via your institution.

References

  1. Abram N J, Wolff E W, Curran M A J. 2013. A review of sea ice proxy information from polar ice cores. Quat Sci Rev, 79: 168–183

    Article  Google Scholar 

  2. Barnes E A. 2013. Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys Res Lett, 40: 4734–4739

    Article  Google Scholar 

  3. Barnes E A, Screen J A. 2015. The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? WIREs Clim Change, 6: 277–286

    Article  Google Scholar 

  4. Benassai S, Becagli S, Gragnani R, Magand O, Proposito M, Fattori I, Traversi R, Udisti R. 2005. Sea-spray deposition in Antarctic coastal and plateau areas from ITASE traverses. Ann Glaciol, 41: 32–40

    Article  Google Scholar 

  5. Bothe O, Evans M, Donado L F, Bustamante E G, Gergis J, Gonzalez- Rouco J F, Goosse H, Hegerl G, Hind A, Jungclaus J H, Kaufman D. 2015. Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional temperature reconstructions over the past millennium. Clim Past, 11: 1673–1699

    Article  Google Scholar 

  6. Cohen J, Screen J A, Furtado J C, Barlow M, Whittleston D, Coumou D, Francis J, Dethloff K, Entekhabi D, Overland J, Jones J. 2014. Recent Arctic amplification and extreme mid-latitude weather. Nat Geosci, 7: 627–637

    Article  Google Scholar 

  7. Cook E R, D’Arrigo R D, Mann M E. 2002. A well-verified, multiproxy reconstruction of the winter North Atlantic Oscillation Index since AD 1400. J Clim, 15: 1754–1764

    Article  Google Scholar 

  8. Curran M A J, van Ommen T D, Morgan V I, Phillips K L, Palmer A S. 2003. Ice core evidence for Antarctic Sea ice decline since the 1950s. Science, 302: 1203–1206

    Article  Google Scholar 

  9. D’Arrigo R, Jacoby G, Wilson R, Panagiotopoulos F. 2005. A reconstructed Siberian High index since AD1599 from Eurasian and North American tree rings. Geophys Res Lett, 32: L05705

    Google Scholar 

  10. Fauria M M, Grinsted A, Helama S, Moore J, Timonen M, Martma T, Isaksson E, Eronen M. 2010. Unprecedented low twentieth century winter sea ice extent in the Western Nordic Seas since AD1200. Clim Dyn, 34: 781–795

    Article  Google Scholar 

  11. Francis J A, Chan W, Leathers D J, Miller J R, Veron D E. 2009. Winter Northern Hemisphere weather patterns remember summer Arctic seaice extent. Geophys Res Lett, 36: L07503

    Article  Google Scholar 

  12. Goosse H, Renssen H, Timmermann A, Bradley R S, Mann M E. 2006. Using paleoclimate proxy-data to select optimal realisations in an en- Semble of simulations of the climate of the past millennium. Clim Dyn, 27: 165–184

    Article  Google Scholar 

  13. IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Hartmann D L, Klein Tank A M G, Rusticucci M, Alexander L V, Brönnimann S, Charabi Y, Dentener F J, Dlugokencky E J, Easterling D R, Kaplan A, Soden B J, Thorne P W, Wild M, Zhai P M, eds. Observations: Atmosphere and Surface. Cambridge: Cambridge University Press

  14. Henderson K A. 2002. An ice core paleoclimate study of Windy Dome, Franz Josef Land (Russia): Development of a recent climate history for the Barents Sea. Doctoral Dissertation. Columbus: Ohio State University

    Google Scholar 

  15. Helama S, Fauria M M, Mielikainen K, Timonen M, Eronen M. 2010. Sub- Milankovitch solar forcing of past climates: Mid and late Holocene perspectives. Geol Soc Am Bull, 122: 1981–1988

    Article  Google Scholar 

  16. Honda M, Inoue J, Yamane S. 2009. Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys Res Lett, 36: L08707

    Article  Google Scholar 

  17. Hopsch S, Cohen J, Dethloff K. 2012. Analysis of a link between fall Arctic sea ice concentration and atmospheric patterns in the following winter. Tellus Ser A-Dyn Meteorol Oceanol, 64: 18624

    Article  Google Scholar 

  18. Inoue J, Hori M E, Takaya K. 2012. The role of Barents Sea Ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly. J Clim, 25: 2561–2568

    Article  Google Scholar 

  19. Isaksson E, Divine D, Kohler J, Martma T, Pohjola V, Motoyama H, Watanabe O. 2005a. Climate oscillations as recorded in svalbard ice core δ 18O records between ad 1200 and 1997. Geogr Ann Ser A-Phys Geogr, 87: 203–214

    Article  Google Scholar 

  20. Isaksson E, Kekonen T, Moore J, Mulvaney R. 2005b. The methanesulfonic acid (MSA) record in a Svalbard ice core. Ann Glaciol, 42: 345–351

    Article  Google Scholar 

  21. Isaksson E, Kohler J, Pohjola V, Moore J, Igarashi M, Karlöf L, Martma T, Meijer H, Motoyama H, Vaikmäe R, van de Wal R S W. 2005c. Two ice-core δ 18O records from Svalbard illustrating climate and sea-ice variability over the last 400 years. Holocene, 15: 501–509

    Article  Google Scholar 

  22. Jones P. 2016. The reliability of global and hemispheric surface temperature records. Adv Atmos Sci, 33: 269–282

    Article  Google Scholar 

  23. Jones P D, Mann M E. 2004. Climate over past millennia. Rev Geophys, 42: RG2002

    Article  Google Scholar 

  24. Kaufman D S, Schneider D P, McKay N P, Ammann C M, Bradley R S, Briffa K R, Miller G H, Otto-Bliesner B L, Overpeck J T, Vinther B M, Abbott M, Axford Y, Bird B, Birks H J B, Bjune A E, Briner J, Cook T, Chipman M, Francus P, Gajewski K, Geirsdottir A, Hu F S, Kutchko B, Lamoureux S, Loso M, MacDonald G, Peros M, Porinchu D, Schiff C, Seppa H, Thomas E. 2009. Recent warming reverses long-term Arctic cooling. Science, 325: 1236–1239

    Article  Google Scholar 

  25. Kekonen T, Moore J, Perämäki P, Mulvaney R, Isaksson E, Pohjola V, van W R S. 2005. The 800 year long ion record from the Lomonosovfonna (Svalbard) ice core. J Geophys Res, 110: D07304

    Article  Google Scholar 

  26. Kinnard C, Zdanowicz C M, Fisher D A, Isaksson E, de Vernal A, Thompson L G. 2011. Reconstructed changes in Arctic sea ice over the past 1450 years. Nature, 479: 509–512

    Article  Google Scholar 

  27. Lewis E R, Schwartz S E. 2004. Sea Salt Aerosol Production: Mechanisms, Methods, Measurements, and Models—A Critical Review. Washington D C: American Geophysical Union. 152

    Google Scholar 

  28. Liu J, Curry J A, Wang H, Song M, Horton R M. 2012. Impact of declining Arctic sea ice on winter snowfall. Proc Natl Acad Sci USA, 109: 4074–4079

    Article  Google Scholar 

  29. Liu J, Chen Z, Francis J, Song M, Mote T, Hu Y. 2016. Has Arctic sea ice loss contributed to increased surface melting of the Greenland ice sheet? J Clim, 29: 3373–3386

    Article  Google Scholar 

  30. McCusker K E, Fyfe J C, Sigmond M. 2016. Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic sea-ice loss. Nat Geosci, 9: 838–842

    Article  Google Scholar 

  31. Motoyama H, Watanabe O, Goto-Azuma K, Igarashi M, Miyahara M, Nagasaki T, Karloef L, Isaksson E. 2001. Activities of the Japanese Arctic Glaciological Expedetion in 1999 (JAGE 1999). Technical Report. Memoirs of National Institute of Polar Research. Special issue, 54: 253–260

    Google Scholar 

  32. Muscheler R, Joos F, Beer J, Müller S A, Vonmoos M, Snowball I. 2007. Solar activity during the last 1000 yr inferred from radionuclide records. Quat Sci Rev, 26: 82–97

    Article  Google Scholar 

  33. Opel T, Fritzsche D, Meyer H. 2013. Eurasian Arctic climate over the past millennium as recorded in the Akademii Nauk ice core (Severnaya Zemlya). Clim Past, 9: 2379–2389

    Article  Google Scholar 

  34. Overland J, Francis J A, Hall R, Hanna E, Kim S J, Vihma T. 2015. The melting Arctic and midlatitude weather patterns: Are they connected? J Clim, 28: 7917–7932

    Article  Google Scholar 

  35. PAGES 2k Consortium. 2013. Continental-scale temperature variability during the past two millennia. Nat Geosci, 6: 339–346

  36. Petoukhov V, Semenov V A. 2010. A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J Geophys Res, 115: D21111

    Article  Google Scholar 

  37. Röthlisberger R, Mulvaney R, Wolff E W, Hutterli M A, Bigler M, De A M, Hansson M E, Steffensen J P, Udisti R. 2003. Limited dechlorination of sea-salt aerosols during the last glacial period: Evidence from the European Project for Ice Coring in Antarctica (EPICA) Dome C ice core. J Geophys Res, 108: 4526

    Article  Google Scholar 

  38. Röthlisberger R, Crosta X, Abram N J, Armand L, Wolff E W. 2010. Potential and limitations of marine and ice core sea ice proxies: An example from the Indian Ocean sector. Quat Sci Rev, 29: 296–302

    Article  Google Scholar 

  39. Screen J A, Simmonds I. 2010. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464: 1334–1337

    Article  Google Scholar 

  40. Screen J A, Simmonds I. 2012. Declining summer snowfall in the Arctic: Causes, impacts and feedbacks. Clim Dyn, 38: 2243–2256

    Article  Google Scholar 

  41. Serreze M C, Holland M M, Stroeve J. 2007. Perspectives on the Arctic’s shrinking sea-ice cover. Science, 315: 1533–1536

    Article  Google Scholar 

  42. Shapiro I, Colony R, Vinje T. 2003. April sea ice extent in the Barents Sea, 1850–2001. Polar Res, 22: 5–10

    Google Scholar 

  43. Soon W, Connolly R, Connolly M. 2015. Re-evaluating the role of solar variability on Northern Hemisphere temperature trends since the 19th century. Earth-Sci Rev, 150: 409–452

    Article  Google Scholar 

  44. Suo L, Otterå O H, Bentsen M, Gao Y, Johannessen O M. 2013. External forcing of the early 20th century Arctic warming. Tellus Ser A-Dyn Meteorol Oceanol, 65: 20578

    Article  Google Scholar 

  45. Tang Q, Zhang X, Yang X, Francis J A. 2013. Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ Res Lett, 8: 014036

    Article  Google Scholar 

  46. Trouet V, Esper J, Graham N E, Baker A, Scourse J D, Frank D C. 2009. Persistent positive North Atlantic oscillation mode dominated the medieval climate anomaly. Science, 324: 78–80

    Article  Google Scholar 

  47. Vare L L, Massé G, Belt S T. 2010. A biomarker-based reconstruction of sea ice conditions for the Barents Sea in recent centuries. Holocene, 20: 637–643

    Article  Google Scholar 

  48. Walsh J E. 2014. Intensified warming of the Arctic: Causes and impacts on middle latitudes. Glob Planet Change, 117: 52–63

    Article  Google Scholar 

  49. Wu B Y, Su J Z, Zhang R H. 2011. Effects of autumn-winter Arctic sea ice on winter Siberian High. Chin Sci Bull, 56: 3220–3228

    Article  Google Scholar 

  50. Wu B Y, Yang K. 2016. Roles of Arctic sea ice and the preceding summer Arctic atmospheric circulation anomalies in the atmospheric circulations anomalies of 2011/2012 and 2015/2016 winters (in Chinese). Acta Meteorol Sin, 74: 683–696

    Google Scholar 

  51. Wu B Y, Bian L G, Zhang R H. 2004. Effects of the winter AO and the Arctic sea ice variations on climate variation over East Asia (in Chinese). Chin J Polar Res, 16: 211–220

    Google Scholar 

  52. Xiao C, Dou T, Sneed S B, Li R, Allison I. 2015. An ice-core record of Antarctic sea-ice extent in the southern Indian Ocean for the past 300 years. Ann Glaciol, 56: 451–455

    Article  Google Scholar 

  53. Yang K, Jiang D. 2017. Interannual climate variability change during the Medieval Climate Anomaly and Little Ice Age in PMIP3 last millennium simulations. Adv Atmos Sci, 34: 497–508

    Article  Google Scholar 

  54. Yang X, Pyle J A, Cox R A. 2008. Sea salt aerosol production and bromine release: Role of snow on sea ice. Geophys Res Lett, 35: L16815

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 41425003), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA19070103), the Basic Research Project of Chinese Academy of Meteorological Sciences-Base Construction of Polar Atmospheric Sciences for Field Observation, and the Scientific Research Foundation of the Key Laboratory of Cryospheric Sciences (Grant No. SKLCS-OP-2016-03).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cunde Xiao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Xiao, C., Ding, M. et al. Reconstruction of autumn sea ice extent changes since AD1289 in the Barents-Kara Sea, Arctic. Sci. China Earth Sci. 61, 1279–1291 (2018). https://doi.org/10.1007/s11430-017-9196-4

Download citation

Keywords

  • Arctic
  • Sea ice
  • Ice core
  • Tree rings
  • Paleoclimatology
  • Global warming