Skip to main content
Log in

Carbonate metasomatism in the lithospheric mantle: Implications for cratonic destruction in North China

  • Review
  • Special Topic: Destruction of craton and subduction of western Pacific plate
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The activity of melts and fluids may have played a key role in inducing the destruction of the eastern North China Craton in the early Cretaceous. Carbonate melts are important agents in mantle metasomatism and can significantly modify the physical and chemical properties of the subcontinental lithospheric mantle. Carbonate metasomatism can be identified by specific geochemical indices in clinopyroxene, such as high Ca/Al and low Ti/Eu ratios. This study presents the spatial and temporal variations of carbonate metasomatism in the lithospheric mantle beneath the eastern North China Craton. Three types of carbonate metasomatism are classified based on the geochemical compositions of clinopyroxene in mantle peridotites. Clinopyroxene formed by Type 1 carbonate metasomatism is characterized by very high Ca/Al ratios (15–70) and 87Sr/86Sr ratios (0.706–0.713). Clinopyroxene derived from Type 2 carbonate metasomatism shows relatively high Ca/Al ratios (5–18) and 87Sr/86Sr ratios (0.703–0.706). However, clinopyroxene resulting from Type 3 carbonate metasomatism has low Ca/Al ratios (5–9) and 87Sr/86Sr ratios (0.702–0.704). Deep (garnet-bearing) and shallow (spinel-bearing) lithospheric mantle beneath the Sulu orogen and surrounding areas in the eastern North China Craton were affected by intense Type 1 carbonate metasomatism before the late Triassic. The deep subduction of the South China Block with its accompanying carbonate sediments was the trigger for Type 1 carbonate metasomatism, which reduced strength of the lithospheric mantle and provided a prerequisite for the destruction of the eastern North China Craton in the early Cretaceous. After the destruction of the eastern North China Craton, the ancient relict lithospheric mantle, represented by spinel harzburgite xenoliths hosted in the late Cretaceous to Cenozoic basalts, only recorded Type 2 carbonate metasomatism. This implies that the lithospheric mantle experienced the intense Type 1 carbonate metasomatism was completely destroyed and not preserved during decratonization. Spinel lherzolite xenoliths hosted in the late Cretaceous to Cenozoic basalts represent the young, fertile lithospheric mantle formed after the cratonic destruction and only a few samples record Type 2 and 3 carbonate metasomatisms. We suggest that carbonate melts derived from the subduction-modified asthenospheric mantle with variable proportions of recycled crustal material was responsible for the Type 2 and 3 carbonate metasomatisms. The carbonate metasomatism of the lithospheric mantle beneath the Jiaodong Peninsula and surrounding areas is very pervasive and is spatially consistent with the remarkable thinning of lithospheric mantle and giant gold deposits in this region. Therefore, we conclude that carbonate metasomatism in the lithospheric mantle played a crucial part in the modification, destruction and gold deposits in the eastern North China Craton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aulbach S, Griffin W L, O’Reilly S Y, McCandless T E. 2004. Genesis and evolution of the lithospheric mantle beneath the Buffalo Head Terrane, Alberta (Canada). Lithos, 77: 413–451

    Article  Google Scholar 

  • Baker M B, Stolper E M. 1994. Determining the composition of highpressure mantle melts using diamond aggregates. Geochim Cosmochim Acta, 58: 2811–2827

    Article  Google Scholar 

  • Bernstein S, Kelemen P B, Brooks C K. 1998. Depleted spinel harzburgite xenoliths in Tertiary dykes from East Greenland: Restites from high degree melting. Earth Planet Sci Lett, 154: 221–235

    Article  Google Scholar 

  • Bizzarro M, Stevenson R K. 2003. Major element composition of the lithospheric mantle under the North Atlantic craton: Evidence from peridotite xenoliths of the Sarfartoq area, southwestern Greenland. Contrib Mineral Petrol, 146: 223–240

    Article  Google Scholar 

  • Blundy J, Dalton J. 2000. Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate systems, and implications for mantle metasomatism. Contrib Mineral Petrol, 139: 356–371

    Article  Google Scholar 

  • Bodinier J L, Godard M, Heinrich D H, Karl K T. 2003. Orogenic, ophiolitic, and abyssal peridotites. Treatise on Geochemistry. Oxford: Elsevier-Pergamon. 103–170

    Google Scholar 

  • Boyd F R, Pearson D G, Hoal K O, Hoal B G, Nixon P H, Kingston M J, Mertzman S A. 2004. Garnet lherzolites from Louwrensia, Namibia: Bulk composition and P/T relations. Lithos, 77: 573–592

    Article  Google Scholar 

  • Boyd F R, Pokhilenko N P, Pearson D G, Mertzman S A, Sobolev N V, Finger L W. 1997. Composition of the Siberian cratonic mantle: Evidence from Udachnaya peridotite xenoliths. Contrib Mineral Petrol, 128: 228–246

    Article  Google Scholar 

  • Brey G P, Bulatov V K, Girnis A V, Lahaye Y. 2008. Experimental melting of carbonated peridotite at 6–10 GPa. J Petrol, 49: 797–821

    Article  Google Scholar 

  • Bruce M C, Niu Y, Harbort T A, Holcombe R J. 2000. Petrological, geochemical and geochronological evidence for a Neoproterozoic ocean basin recorded in the Marlborough terrane of the northern New England Fold Belt. Aust J Earth Sci, 47: 1053–1064

    Article  Google Scholar 

  • Carlson R W, Pearson D G, James D E. 2005. Physical, chemical, and chronological characteristics of continental mantle. Rev Geophys, 43: RG1001

    Article  Google Scholar 

  • Carter Hearn Jr B. 2004. The Homestead kimberlite, central Montana, USA: Mineralogy, xenocrysts, and upper-mantle xenoliths. Lithos, 77: 473–491

    Article  Google Scholar 

  • Chen C F, Liu Y S, Foley S F, Ducea M N, He D T, Hu Z C, Chen W, Zong K Q. 2016. Paleo-Asian oceanic slab under the North China craton revealed by carbonatites derived from subducted limestones. Geology, 44: 1039–1042

    Article  Google Scholar 

  • Chen C F, Liu Y S, Foley S F, Ducea M N, Geng X L, Zhang W, Xu R, Hu Z C, Zhou L, Wang Z C. 2017. Carbonated sediment recycling and its contribution to lithospheric refertilization under the northern North China Craton. Chem Geol, 466: 641–653

    Article  Google Scholar 

  • Chen G D. 1956. Examples of “activizing region”in the chinese platform with special reference to the “cathaysia” problem (in Chinese with English abstract). Acta Geol Sin, 36: 239–272

    Google Scholar 

  • Chen Y X, Tang J, Zheng Y F, Wu Y B. 2016. Geochemical constraints on petrogenesis of marble-hosted eclogites from the Sulu orogen in China. Chem Geol, 436: 35–53

    Article  Google Scholar 

  • Chu Z Y, Wu F Y, Walker R J, Rudnick R L, Pitcher L, Puchtel I S, Yang Y H, Wilde S A. 2009. Temporal evolution of the lithospheric mantle beneath the eastern North China Craton. J Petrol, 50: 1857–1898

    Article  Google Scholar 

  • Coltorti M, Bonadiman C, Hinton R W, Siena F, Upton B G J. 1999. Carbonatite metasomatism of the oceanic upper mantle: Evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean. J Petrol, 40: 133–165

    Article  Google Scholar 

  • Dai L Q, Zheng Y F, Zhao Z F. 2016. Termination time of peak decratonization in North China: Geochemical evidence from mafic igneous rocks. Lithos, 240-243: 327–336

    Article  Google Scholar 

  • Dalton J A, Wood B J. 1993. The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle. Earth Planet Sci Lett, 119: 511–525

    Article  Google Scholar 

  • Dasgupta R, Hirschmann M M, Dellas N. 2005. The effect of bulk composition on the solidus of carbonated eclogite from partial melting experiments at 3 GPa. Contrib Mineral Petrol, 149: 288–305

    Article  Google Scholar 

  • Dasgupta R, Hirschmann M M, Smith N D. 2007. Partial melting experiments of peridotite+CO2 at 3 GPa and genesis of alkalic ocean island basalts. J Petrol, 48: 2093–2124

    Article  Google Scholar 

  • Dasgupta R, Mallik A, Tsuno K, Withers A C, Hirth G, Hirschmann M M. 2013. Carbon-dioxide-rich silicate melt in the Earth’s upper mantle. Nature, 493: 211–215

    Article  Google Scholar 

  • Dawson J B. 2002. Metasomatism and partial melting in upper-mantle peridotite xenoliths from the Lashaine volcano, northern Tanzania. J Petrol, 43: 1749–1777

    Article  Google Scholar 

  • Deng J, Wang Q. 2016. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework. Gondwana Res, 36: 219–274

    Article  Google Scholar 

  • Deng J F, Mo X X, Zhao H L, Wu Z X, Luo Z H, Su S G. 2004. A new model for the dynamic evolution of Chinese lithosphere: ‘continental roots–plume tectonics’. Earth-Sci Rev, 65: 223–275

    Article  Google Scholar 

  • Deng L, Liu Y, Zong K, Zhu L, Xu R, Hu Z, Gao S. 2017. Trace element and Sr isotope records of multi-episode carbonatite metasomatism on the eastern margin of the North China Craton. Geochem Geophys Geosyst, 18: 220–237

    Article  Google Scholar 

  • Dong S, Zhang Y, Zhang F, Cui J, Chen X, Zhang S, Miao L, Li J, Shi W, Li Z, Huang S, Li H. 2015. Late Jurassic-Early Cretaceous continental convergence and intracontinental orogenesis in East Asia: A synthesis of the Yanshan Revolution. J Asian Earth Sci, 114: 750–770

    Article  Google Scholar 

  • Downes H. 2004. Ultramafic xenoliths from the Bearpaw Mountains, Montana, USA: Evidence for multiple metasomatic events in the lithospheric mantle beneath the Wyoming craton. J Petrol, 45: 1631–1662

    Article  Google Scholar 

  • Eggins S M, Rudnick R L, McDonough W F. 1998. The composition of peridotites and their minerals: A laser-ablation ICP–MS study. Earth Planet Sci Lett, 154: 53–71

    Article  Google Scholar 

  • Falloon T J, Green D H, Danyushevsky L V, Faul U H. 1999. Peridotite melting at 1.0 and 1.5 GPa: An experimental evaluation of techniques using diamond aggregates and mineral mixes for determination of nearsolidus melts. J Petrol, 40: 1343–1375

    Article  Google Scholar 

  • Fan H R, Feng K, Li X H, Hu F F, Yang K F. 2016. Mesozoic gold mineralization in the Jiaodong and Korean peninsulas (in Chinese with English abstract). Acta Petrol Sin, 32: 3225–3238

    Google Scholar 

  • Fan H R, Zhai M G, Xie Y H, Yang J H. 2003. Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold province, China. Mineralium Deposita, 38: 739–750

    Article  Google Scholar 

  • Franz L, Brey G P, Okrusch M. 1996. Steady state geotherm, thermal disturbances, and tectonic development of the lower lithosphere underneath the Gibeon Kimberlite Province, Namibia. Contrib Mineral Petrol, 126: 181–198

    Article  Google Scholar 

  • Gaetani G A, Grove T L. 1998. The influence of water on melting of mantle peridotite. Contrib Mineral Petrol, 131: 323–346

    Article  Google Scholar 

  • Gale A, Dalton C A, Langmuir C H, Su Y, Schilling J G. 2013. The mean composition of ocean ridge basalts. Geochem Geophys Geosyst, 14: 489–518

    Article  Google Scholar 

  • Gao S, Rudnick R L, Carlson R W, McDonough W F, Liu Y S. 2002. Re–Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth Planet Sci Lett, 198: 307–322

    Article  Google Scholar 

  • Gao S, Rudnick R L, Xu W L, Yuan H L, Liu Y S, Walker R J, Puchtel I S, Liu X, Huang H, Wang X R, Yang J. 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth Planet Sci Lett, 270: 41–53

    Article  Google Scholar 

  • Gao S, Rudnick R L, Yuan H L, Liu X M, Liu Y S, Xu W L, Ling W L, Ayers J, Wang X C, Wang Q H. 2004. Recycling lower continental crust in the North China craton. Nature, 432: 892–897

    Article  Google Scholar 

  • Gao S, Zhang J F, Xu W L, Liu Y S. 2009. Delamination and destruction of the North China Craton. Chin Sci Bull, 54: 1962–1973

    Google Scholar 

  • Gervasoni F, Klemme S, Rohrbach A, Grützner T, Berndt J. 2017. Experimental constraints on mantle metasomatism caused by silicate and carbonate melts. Lithos, 282-283: 173–186

    Article  Google Scholar 

  • Ghorbani M R, Middlemost E A K. 2000. Geochemistry of pyroxene inclusions from the Warrumbungle Volcano, New South Wales, Australia. Am Miner, 85: 1349–1367

    Article  Google Scholar 

  • Grassi D, Schmidt M W. 2011. The Melting of Carbonated Pelites from 70 to 700 km Depth. J Petrol, 52: 765–789

    Article  Google Scholar 

  • Green D H, Wallace M E. 1988. Mantle metasomatism by ephemeral carbonatite melts. Nature, 336: 459–462

    Article  Google Scholar 

  • Gregoire M. 2003. Garnet lherzolites from the Kaapvaal Craton (South Africa): Trace element evidence for a metasomatic history. J Petrol, 44: 629–657

    Article  Google Scholar 

  • Gregoire M, Tinguely C, Bell D, Leroex A. 2005. Spinel lherzolite xenoliths from the Premier kimberlite (Kaapvaal craton, South Africa): Nature and evolution of the shallow upper mantle beneath the Bushveld complex. Lithos, 84: 185–205

    Article  Google Scholar 

  • Griffin W L, Doyle B J, Ryan C G, Pearson N J, Suzanne Y O, Davies R, Kivi K, Van Achterbergh E, Natapov L M. 1999. Layered mantle lithosphere in the Lac de Gras area, Slave craton: Composition, structure and origin. J Petrol, 40: 705–727

    Article  Google Scholar 

  • Griffin W L, Kaminsky F V, Ryan C G, O’Reilly S Y, Win T T, Ilupin I P. 1996. Thermal state and composition of the lithospheric mantle beneath the Daldyn kimberlite field, Yakutia. Tectonophysics, 262: 19–33

    Article  Google Scholar 

  • Griffin W L, Natapov L M, O’Reilly S Y, van Achterbergh E, Cherenkova A F, Cherenkov V G. 2005. The Kharamai kimberlite field, Siberia: Modification of the lithospheric mantle by the Siberian Trap event. Lithos, 81: 167–187

    Article  Google Scholar 

  • Guo F, Fan W, Wang Y, Zhang M. 2004. Origin of early Cretaceous calcalkaline lamprophyres from the Sulu orogen in eastern China: Implications for enrichment processes beneath continental collisional belt. Lithos, 78: 291–305

    Article  Google Scholar 

  • Hammouda T. 2003. High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet Sci Lett, 214: 357–368

    Article  Google Scholar 

  • Hammouda T, Laporte D. 2000. Ultrafast mantle impregnation by carbonatite melts. Geology, 28: 283–285

    Article  Google Scholar 

  • Hellebrand E, Snow J E. 2003. Deep melting and sodic metasomatism underneath the highly oblique-spreading Lena Trough (Arctic Ocean). Earth Planet Sci Lett, 216: 283–299

    Article  Google Scholar 

  • Hofmann A W. 1997. Mantle geochemistry: The message from oceanic volcanism. Nature, 385: 219–229

    Article  Google Scholar 

  • Holm P M, Prægel N O. 2006. Cumulates from primitive rift-related East Greenland Paleogene magmas: Petrological and isotopic evidence from the ultramafic complexes at Kælvegletscher and near Kærven. Lithos, 92: 251–275

    Article  Google Scholar 

  • Hou T, Zhang Z, Keiding J K, Veksler I V. 2015. Petrogenesis of the ultrapotassic Fanshan intrusion in the North China Craton: Implications for lithospheric mantle metasomatism and the origin of apatite ores. J Petrol, 56: 893–918

    Article  Google Scholar 

  • Ionov D A. 2004. Chemical variations in peridotite xenoliths from Vitim, Siberia: Inferences for REE and Hf behaviour in the garnet-facies upper mantle. J Petrol, 45: 343–367

    Article  Google Scholar 

  • Ionov D A, O’Reilly S Y, Genshaft Y S, Kopylova M G. 1996. Carbonatebearing mantle peridotite xenoliths from Spitsbergen: Phase relationships, mineral compositions and trace-element residence. Contrib Mineral Petrol, 125: 375–392

    Article  Google Scholar 

  • Ionov D A, Ashchepkov I, Jagoutz E. 2005a. The provenance of fertile offcraton lithospheric mantle: Sr-Nd isotope and chemical composition of garnet and spinel peridotite xenoliths from Vitim, Siberia. Chem Geol, 217: 41–75

    Article  Google Scholar 

  • Ionov D A, Ashchepkov I V, Stosch H G, Witt-Eickschen G, Seck H A. 1993a. Garnet peridotite xenoliths from the Vitim volcanic field, Baikal region: The nature of the garnet—Spinel peridotite transition zone in the continental mantle. J Petrol, 34: 1141–1175

    Article  Google Scholar 

  • Ionov D A, Chanefo I, Bodinier J L. 2005b. Origin of Fe-rich lherzolites and wehrlites from Tok, SE Siberia by reactive melt percolation in refractory mantle peridotites. Contrib Mineral Petrol, 150: 335–353

    Article  Google Scholar 

  • Ionov D A, Chazot G, Chauvel C, Merlet C, Bodinier J L. 2006. Trace element distribution in peridotite xenoliths from Tok, SE Siberian craton: A record of pervasive, multi-stage metasomatism in shallow refractory mantle. Geochim Cosmochim Acta, 70: 1231–1260

    Article  Google Scholar 

  • Ionov D A, DuPuy C, O’Reilly S Y, Kopylova M G, Genshaft Y S. 1993b. Carbonated peridotite xenoliths from Spitsbergen: Implications for trace element signature of mantle carbonate metasomatism. Earth Planet Sci Lett, 119: 283–297

    Article  Google Scholar 

  • Ionov D A, Hofmann A W. 1995. NbTa-rich mantle amphiboles and micas: Implications for subduction-related metasomatic trace element fractionations. Earth Planet Sci Lett, 131: 341–356

    Article  Google Scholar 

  • Ionov D A, Prikhodko V S, Bodinier J L, Sobolev A V, Weis D. 2005c. Lithospheric mantle beneath the south-eastern Siberian craton: Petrology of peridotite xenoliths in basalts from the Tokinsky Stanovik. Contrib Mineral Petrol, 149: 647–665

    Article  Google Scholar 

  • Jenner F E. 2017. Cumulate causes for the low contents of sulfide-loving elements in the continental crust. Nat Geosci, 10: 524–529

    Article  Google Scholar 

  • Kamenetsky V S, Yaxley G M. 2015. Carbonate–silicate liquid immiscibility in the mantle propels kimberlite magma ascent. Geochim Cosmochim Acta, 158: 48–56

    Article  Google Scholar 

  • Kerrick D M, Connolly J A D. 2001. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle.. Nature, 411: 293–296

    Article  Google Scholar 

  • Kim N, Cheong A C, Yi K, Jeong Y J, Koh S M. 2016. Post-collisional carbonatite-hosted rare earth element mineralization in the Hongcheon area, central Gyeonggi massif, Korea: Ion microprobe monazite U-Th- Pb geochronology and Nd-Sr isotope geochemistry. Ore Geol Rev, 79: 78–87

    Article  Google Scholar 

  • Klemme S, van der Laan S R, Foley S F, Günther D. 1995. Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper mantle conditions. Earth Planet Sci Lett, 133: 439–448

    Article  Google Scholar 

  • Kopylova M G, Caro G. 2004. Mantle xenoliths from the southeastern Slave craton: Evidence for chemical zonation in a thick, cold lithosphere. J Petrol, 45: 1045–1067

    Article  Google Scholar 

  • Kopylova M G, Russell J K, Cookenboo H. 1999. Petrology of peridotite and pyroxenite xenoliths from the Jericho Kimberlite: Implications for the thermal state of the mantle beneath the Slave craton, northern Canada. J Petrol, 40: 79–104

    Article  Google Scholar 

  • Kruk A N, Sokol A G, Chebotarev D A, Palyanov Y A, Sobolev N V. 2016. Composition of a carbonatitic melt in equilibrium with lherzolite at 5.5–6.3 GPa and 1350°C. Dokl Earth Sci, 467: 303–307

    Article  Google Scholar 

  • Lee C T, Rudnick R L, McDonough W F, Horn I. 2000. Petrologic and geochemical investigation of carbonates in peridotite xenoliths from northeastern Tanzania. Contrib Mineral Petrol, 139: 470–484

    Article  Google Scholar 

  • Lee C T A, Luffi P, Chin E J. 2011. Building and destroying continental mantle. Annu Rev Earth Planet Sci, 39: 59–90

    Article  Google Scholar 

  • Li J W, Bi S J, Selby D, Chen L, Vasconcelos P, Thiede D, Zhou M F, Zhao X F, Li Z K, Qiu H N. 2012. Giant Mesozoic gold provinces related to the destruction of the North China craton. Earth Planet Sci Lett, 349-350: 26–37

    Article  Google Scholar 

  • Li S G, Yang W, Ke S, Meng X, Tian H C, Xu L J, He Y S, Huang J, Wang X C, Xia Q K, Sun W D, Yang X Y, Ren Z Y, Wei H Q, Liu Y S, Meng F C, Yan J. 2017. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. Nat Sci Rev, 4: 111–120

    Google Scholar 

  • Li Y, Audétat A. 2012. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions. Earth Planet Sci Lett, 355-356: 327–340

    Article  Google Scholar 

  • Lin W, Wang J, Liu F, Ji W B, Wang Q C. 2013. Late Mesozoic extension structures on the North China Craton and adjacent regions and its geodynamics (in Chinese with English abstract). Acta Petrol Sin, 29: 1791–1810

    Google Scholar 

  • Litasov K D, Foley S F, Litasov Y D. 2000. Magmatic modification and metasomatism of the subcontinental mantle beneath the Vitim volcanic field (East Siberia): Evidence from trace element data on pyroxenite and peridotite xenoliths from Miocene picrobasalt. Lithos, 54: 83–114

    Article  Google Scholar 

  • Liu D Y, Nutman A P, Compston W, Wu J S, Shen Q H. 1992. Remnants of =3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology, 20: 339–342

    Article  Google Scholar 

  • Liu F, Zong K Q, Liu Y S, Hu Z C, Zhu L Y, Xu R. 2015. Methane-bearing melt inclusion in olivine phenocryst in Cenozoic alkaline basalt from Eastern China and its geological significance. Chin Sci Bull, 60: 1310–1319

    Article  Google Scholar 

  • Liu P L, Wu Y, Chen Y, Zhang J F, Jin Z M. 2015. UHP impure marbles from the Dabie Mountains: Metamorphic evolution and carbon cycling in continental subduction zones. Lithos, 212-215: 280–297

    Article  Google Scholar 

  • Liu S A, Wang Z Z, Li S G, Huang J, Yang W. 2016. Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China. Earth Planet Sci Lett, 444: 169–178

    Article  Google Scholar 

  • Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q, Wang D B. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol, 51: 537–571

    Article  Google Scholar 

  • Liu Y S, Gao S, Kelemen P B, Xu W L. 2008. Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton. Geochim Cosmochim Acta, 72: 2349–2376

    Article  Google Scholar 

  • Liu Y S, Gao S, Lee C T A, Hu S H, Liu X M, Yuan H L. 2005. Meltperidotite interactions: Links between garnet pyroxenite and high-Mg# signature of continental crust. Earth Planet Sci Lett, 234: 39–57

    Article  Google Scholar 

  • Liu Y S, He D T, Gao C G, Foley S, Gao S, Hu Z C, Zong K Q, Chen H H. 2015. First direct evidence of sedimentary carbonate recycling in subduction- related xenoliths. Sci Rep, 5: 11547

    Article  Google Scholar 

  • Lorand J P, Luguet A. 2016. Chalcophile and siderophile elements in mantle rocks: Trace elements controlled by trace minerals. Rev Mineral Geochem, 81: 441–488

    Article  Google Scholar 

  • Ma L, Jiang S Y, Hofmann A W, Xu Y G, Dai B Z, Hou M L. 2016. Rapid lithospheric thinning of the North China Craton: New evidence from cretaceous mafic dikes in the Jiaodong Peninsula. Chem Geol, 432: 1–15

    Article  Google Scholar 

  • Machetel P, Humler E. 2003. High mantle temperature during Cretaceous avalanche. Earth Planet Sci Lett, 208: 125–133

    Article  Google Scholar 

  • MacKenzie J M, Canil D. 1999. Composition and thermal evolution of cratonic mantle beneath the central Archean Slave Province, NWT, Canada. Contrib Mineral Petrol, 134: 313–324

    Article  Google Scholar 

  • Malarkey J, Wittig N, Graham Pearson D, Davidson J P. 2011. Characterising modal metasomatic processes in young continental lithospheric mantle: A microsampling isotopic and trace element study on xenoliths from the Middle Atlas Mountains, Morocco. Contrib Mineral Petrol, 162: 289–302

    Article  Google Scholar 

  • Mao J, Wang Y, Li H, Pirajno F, Zhang C, Wang R. 2008. The relationship of mantle-derived fluids to gold metallogenesis in the Jiaodong Peninsula: Evidence from D-O-C-S isotope systematics. Ore Geol Rev, 33: 361–381

    Article  Google Scholar 

  • McCammon C, Kopylova M G. 2004. A redox profile of the Slave mantle and oxygen fugacity control in the cratonic mantle. Contrib Mineral Petrol, 148: 55–68

    Article  Google Scholar 

  • Meng Q R. 2003. What drove late Mesozoic extension of the northern China-Mongolia tract? Tectonophysics, 369: 155–174

    Article  Google Scholar 

  • Menzies A, Westerlund K, Grütter H, Gurney J, Carlson J, Fung A, Nowicki T. 2004. Peridotitic mantle xenoliths from kimberlites on the Ekati Diamond Mine property, N.W.T., Canada: Major element compositions and implications for the lithosphere beneath the central Slave craton. Lithos, 77: 395–412

    Article  Google Scholar 

  • Menzies M A, Fan W, Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China. Geol Soc London Spec Publ, 76: 71–81

    Article  Google Scholar 

  • Molina J F, Poli S. 2000. Carbonate stability and fluid composition in subducted oceanic crust: An experimental study on H2O-CO2-bearing basalts. Earth Planet Sci Lett, 176: 295–310

    Article  Google Scholar 

  • Neumann E R, Wulff-Pedersen E, Pearson N J, Spencer E A. 2002. Mantle xenoliths from Tenerife (Canary Islands): Evidence for reactions between mantle peridotites and silicic carbonatite melts inducing Ca metasomatism. J Petrol, 43: 825–857

    Article  Google Scholar 

  • Niu X, Chen B, Liu A, Suzuki K, Ma X. 2012. Petrological and Sr-Nd-Os isotopic constraints on the origin of the Fanshan ultrapotassic complex from the North China Craton. Lithos, 149: 146–158

    Article  Google Scholar 

  • Niu X L, Chen B, Feng G Y, Liu F, Yang J S. 2017. Origin of lamprophyres from the northern margin of the North China Craton: Implications for mantle metasomatism. J Geological Soc, 174: 353–364

    Article  Google Scholar 

  • Niu Y L. 2005. Generation and evolution of basaltic magmas: Some basic concepts and a new view on the origin of Mesozoic-Cenozoic basaltic volcanism in eastern China. Geol J China Univ, 11: 9–46

    Google Scholar 

  • Pearson D G, Canil D, Shirey S B, Heinrich D H, Karl K T. 2003. Treatise on Geochemistry. Oxford: Elsevier-Pergamon. 171–275

    Book  Google Scholar 

  • Peslier A H. 2002. The lithospheric mantle beneath continental margins: Melting and melt-rock reaction in Canadian Cordillera xenoliths. J Petrol, 43: 2013–2047

    Article  Google Scholar 

  • Phillips G N, Evans K A. 2004. Role of CO2 in the formation of gold deposits. Nature, 429: 860–863

    Article  Google Scholar 

  • Pickering-Witter J, Johnston A D. 2000. The effects of variable bulk composition on the melting systematics of fertile peridotitic assemblages. Contrib Mineral Petrol, 140: 190–211

    Article  Google Scholar 

  • Powell W, Zhang M, O’Reilly S Y, Tiepolo M. 2004. Mantle amphibole trace-element and isotopic signatures trace multiple metasomatic episodes in lithospheric mantle, western Victoria, Australia. Lithos, 75: 141–171

    Article  Google Scholar 

  • Proyer A, Rolfo F, Zhu Y F, Castelli D, Compagnoni R. 2013. Ultrahighpressure metamorphism in the magnesite+aragonite stability field: Evidence from two impure marbles from the Dabie-Sulu UHPM belt. J Metamorph Geol, 31: 35–48

    Article  Google Scholar 

  • Rapp R P, Shimizu N, Norman M D, Applegate G S. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chem Geol, 160: 335–356

    Article  Google Scholar 

  • Roach I C. 2004. Mineralogy, textures and P-T relationships of a suite of xenoliths from the Monaro Volcanic Province, New South Wales, Australia. J Petrol, 45: 739–758

    Article  Google Scholar 

  • Rudnick R L, McDonough W F, Chappell B W. 1993. Carbonatite metasomatism in the northern Tanzanian mantle: Petrographic and geochemical characteristics. Earth Planet Sci Lett, 114: 463–475

    Article  Google Scholar 

  • Russell J K, Porritt L A, Lavallée Y, Dingwell D B. 2012. Kimberlite ascent by assimilation-fuelled buoyancy. Nature, 481: 352–356

    Article  Google Scholar 

  • Saltzer R L. 2001. The spatial distribution of garnets and pyroxenes in mantle peridotites: Pressure-temperature history of peridotites from the Kaapvaal Craton. J Petrol, 42: 2215–2229

    Article  Google Scholar 

  • Schmidberger S S, Francis D. 1999. Nature of the mantle roots beneath the North American craton: Mantle xenolith evidence from Somerset Island kimberlites. Lithos, 48: 195–216

    Article  Google Scholar 

  • Schmidberger S S, Francis D. 2001. Constraints on the trace element composition of the Archean mantle root beneath Somerset Island, Arctic Canada. J Petrol, 42: 1095–1117

    Article  Google Scholar 

  • Schmidberger S S, Simonetti A, Francis D. 2003. Small-scale Sr isotope investigation of clinopyroxenes from peridotite xenoliths by laser ablation MC-ICP-MS—Implications for mantle metasomatism. Chem Geol, 199: 317–329

    Article  Google Scholar 

  • Schwab B E, Johnston A D. 2001. Melting systematics of modally variable, compositionally intermediate peridotites and the effects of mineral fertility. J Petrol, 42: 1789–1811

    Article  Google Scholar 

  • Sharygin V V, Golovin A V, Pokhilenko N P, Kamenetsky V S. 2007. Djerfisherite in the Udachnaya-East pipe kimberlites (Sakha-Yakutia, Russia): Paragenesis, composition and origin. Eur J Mineral, 19: 51–63

    Article  Google Scholar 

  • Shi L, Francis D, Ludden J, Frederiksen A, Bostock M. 1998. Xenolith evidence for lithospheric melting above anomalously hot mantle under the northern Canadian Cordillera. Contrib Mineral Petrol, 131: 39–53

    Article  Google Scholar 

  • Simon N S C, Irvine G J, Davies G R, Pearson D G, Carlson R W. 2003. The origin of garnet and clinopyroxene in “depleted” Kaapvaal peridotites. Lithos, 71: 289–322

    Article  Google Scholar 

  • Sleep N H. 2003. Survival of Archean cratonal lithosphere. J Geophys Res, 108: 2302

    Article  Google Scholar 

  • Sleep N H. 2005. Evolution of the continental lithosphere. Annu Rev Earth Planet Sci, 33: 369–393

    Article  Google Scholar 

  • Sokol A G, Kruk A N, Chebotarev D A, Palyanov Y N. 2016. Carbonatite melt-peridotite interaction at 5.5–7.0 GPa: Implications for metasomatism in lithospheric mantle. Lithos, 248-251: 66–79

    Article  Google Scholar 

  • Stiefenhofer J, Viljoen K S, Marsh J S. 1997. Petrology and geochemistry of peridotite xenoliths from the Letlhakane kimberlites, Botswana. Contrib Mineral Petrol, 127: 147–158

    Article  Google Scholar 

  • Su B, Chen Y, Guo S, Chu Z Y, Liu J B, Gao Y J. 2016. Carbonatitic metasomatism in orogenic dunites from Lijiatun in the Sulu UHP terrane, eastern China. Lithos, 262: 266–284

    Article  Google Scholar 

  • Sun J G, Hu S X, Shen K, Yao F L. 2001. Research on C, O isotopic geochemistry of intermediate-basic and intermediate-acid dykes in goldfields of Jiaodong Peninsula (in Chinese with English abstract). Acta Petrol Mineral, 20: 47–56

    Google Scholar 

  • Sun J, Liu C Z, Wu F Y, Yang Y H, Chu Z Y. 2012. Metasomatic origin of clinopyroxene in Archean mantle xenoliths from Hebi, North China Craton: Trace-element and Sr-isotope constraints. Chem Geol, 328: 123–136

    Article  Google Scholar 

  • Sun W D, Ding X, Hu Y H, Li X H. 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth Planet Sci Lett, 262: 533–542

    Article  Google Scholar 

  • Tong X R, Liu Y S, Hu Z C, Chen H H, Zhou L, Hu Q H, Xu R, Deng L X, Chen C F, Yang L, Gao S. 2016. Accurate determination of Sr isotopic compositions in clinopyroxene and silicate glasses by LA-MC-ICP-MS. Geostand Geoanal Res, 40: 85–99

    Article  Google Scholar 

  • van Achterbergh E, Griffin W L, Ryan C G, O’Reilly S Y, Pearson N J, Kivi K, Doyle B J. 2004. Melt inclusions from the deep Slave lithosphere: Implications for the origin and evolution of mantle-derived carbonatite and kimberlite. Lithos, 76: 461–474

    Article  Google Scholar 

  • Varela M E, Clocchiatti R, Kurat G, Schiano P. 1999. Silicic glasses in hydrous and anhydrous mantle xenoliths from Western Victoria, Australia: At least two different sources. Chem Geol, 153: 151–169

    Article  Google Scholar 

  • Wallace M E, Green D H. 1988. An experimental determination of primary carbonatite magma composition. Nature, 335: 343–346

    Article  Google Scholar 

  • Walter M J. 1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol, 39: 29–60

    Article  Google Scholar 

  • Wang C G, Liang Y, Xu W L, Dygert N. 2013. Effect of melt composition on basalt and peridotite interaction: Laboratory dissolution experiments with applications to mineral compositional variations in mantle xenoliths from the North China Craton. Contrib Mineral Petrol, 166: 1469–1488

    Article  Google Scholar 

  • Wang C, Jin Z M, Gao S, Zhang J F, Zheng S. 2010. Eclogite-melt/peridotite reaction: Experimental constrains on the destruction mechanism of the North China Craton. Sci China Earth Sci, 40: 541–555

    Google Scholar 

  • Wang C Y, Liu Y S, Min N, Zong K Q, Hu Z C, Gao S. 2016. Paleo-Asian oceanic subduction-related modification of the lithospheric mantle under the North China Craton: Evidence from peridotite xenoliths in the Datong basalts. Lithos, 261: 109–127

    Article  Google Scholar 

  • Wang C, Liu Y, Zhang J, Jin Z. 2016. Carbonate melt form subduction zone: The key for craton destruction. Goldschmidt Abstracts, 3307

    Google Scholar 

  • Wang Y J, Fan W M, Zhang G W, Zhang Y H. 2013. Phanerozoic tectonics of the South China Block: Key observations and controversies. Gondwana Res, 23: 1273–1305

    Article  Google Scholar 

  • Wang Z S, Kusky T M, Capitanio F A. 2016. Lithosphere thinning induced by slab penetration into a hydrous mantle transition zone. Geophys Res Lett, 43: 11,567–11,577

    Article  Google Scholar 

  • Wasylenki L E, Baker M B, Kent A J R, Stolper E M. 2003. Near-solidus melting of the shallow upper mantle: Partial melting experiments on depleted peridotite. J Petrol, 44: 1163–1191

    Article  Google Scholar 

  • Whitehead K, Le Roex A, Class C, Bell D. 2002. Composition and Cretaceous thermal structure of the upper mantle beneath the Damara Mobile Belt: Evidence from nephelinite-hosted peridotite xenoliths, Swakopmund, Namibia. J Geological Soc, 159: 307–321

    Article  Google Scholar 

  • Windley B F, Maruyama S, Xiao W J. 2010. Delamination/thinning of subcontinental lithospheric mantle under Eastern China: The role of water and multiple subduction. Am J Sci, 310: 1250–1293

    Article  Google Scholar 

  • Woodland A B, Seitz H M, Yaxley G M. 2004. Varying behaviour of Li in metasomatised spinel peridotite xenoliths from western Victoria, Australia. Lithos, 75: 55–66

    Article  Google Scholar 

  • Wu D, Liu Y S, Chen C F, Xu R, Ducea M N, Hu Z C, Zong K Q. 2017. Insitu trace element and Sr isotopic compositions of mantle xenoliths constrain two-stage metasomatism beneath the northern North China Craton. Lithos, 288-289: 338–351

    Article  Google Scholar 

  • Wu F Y, Lin J Q, Wilde S A, Zhang X, Yang J H. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet Sci Lett, 233: 103–119

    Article  Google Scholar 

  • Wu F Y, Walker R J, Yang Y H, Yuan H L, Yang J H. 2006. The chemicaltemporal evolution of lithospheric mantle underlying the North China Craton. Geochim Cosmochim Acta, 70: 5013–5034

    Article  Google Scholar 

  • Xia Q K, Hao Y, Li P, Deloule E, Coltorti M, Dallai L, Yang X, Feng M. 2010. Low water content of the Cenozoic lithospheric mantle beneath the eastern part of the North China Craton. J Geophys Res, 115: B07207

    Article  Google Scholar 

  • Xia Q K, Liu J, Liu S C, Kovács I, Feng M, Dang L. 2013. High water content in Mesozoic primitive basalts of the North China Craton and implications on the destruction of cratonic mantle lithosphere. Earth Planet Sci Lett, 361: 85–97

    Article  Google Scholar 

  • Xiao Y, Zhang H F, Fan W M, Ying J F, Zhang J, Zhao X M, Su B X. 2010. Evolution of lithospheric mantle beneath the Tan-Lu fault zone, eastern North China Craton: Evidence from petrology and geochemistry of peridotite xenoliths. Lithos, 117: 229–246

    Article  Google Scholar 

  • Xu R, Liu Y S, Tong X R, Hu Z C, Zong K Q, Gao S. 2013a. In-situ trace elements and Li and Sr isotopes in peridotite xenoliths from Kuandian, North China Craton: Insights into Pacific slab subduction-related mantle modification. Chem Geol, 354: 107–123

    Article  Google Scholar 

  • Xu R, Liu Y S, Zong K Q, Zou D Y, Deng L X, Tong X R, Hu Z C, Gao S. 2013b. Micro-geochemistry of peridotite xenoliths from Kuandian: Implications for evolution of lithospheric mantle (in Chinese with English abstract). Acta Petrol Mineral, 32: 613–636

    Google Scholar 

  • Xu W L, Hergt J M, Gao S, Pei F P, Wang W, Yang D B. 2008. Interaction of adakitic melt-peridotite: Implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton. Earth Planet Sci Lett, 265: 123–137

    Article  Google Scholar 

  • Xu W L, Zhou Q J, Pei F P, Yang D B, Gao S, Li Q L, Yang Y H. 2013. Destruction of the North China Craton: Delamination or thermal/chemical erosion? Mineral chemistry and oxygen isotope insights from websterite xenoliths. Gondwana Res, 23: 119–129

    Article  Google Scholar 

  • Xu X S, O’Reilly S Y, Griffin W L, Zhou X M, Huang X L. 1998. The nature of the Cenozoic lithosphere at Nushan, eastern China: Mantle Dynamics and Plate Interactions in Eastern Asia, Geodynamics 27, American Geophysical Union. 167–195

    Book  Google Scholar 

  • Xu X S, O’Reilly S Y, Griffin W L, Zhou X M. 2000. Genesis of young lithospheric mantle in southeastern China: An LAM-ICPMS trace element study. J Petrol, 41: 111–148

    Article  Google Scholar 

  • Xu Y G, Huang X L, Thirlwall M F, Chen X M. 2003a. “Reactive” harzburgite xenoliths from Huinan, Jilin province and their implications for deep dynamic processes (in Chinese with English abstract). Acta Petrol Sin, 19: 19–26

    Google Scholar 

  • Xu Y G, Menzies M A, Thirlwall M F, Huang X L, Liu Y, Chen X M. 2003b. “Reactive” harzburgites from Huinan, NE China: Products of the lithosphere-asthenosphere interaction during lithospheric thinning? Geochim Cosmochim Acta, 67: 487–505

    Article  Google Scholar 

  • Xu Y G. 2001. Thermo-tectonic destruction of the archaean lithospheric keel beneath the sino-korean craton in china: Evidence, timing and mechanism. Phys Chem Earth Part A-Solid Earth Geodesy, 26: 747–757

    Article  Google Scholar 

  • Yan G H, Mu B L, Xu B L, He G Q, Han B F, Wang S G, Tong Y, Ren K X, Yang B, Hong D W, Qiao G S, Xu R H, Zhang R H, Chu Z Y. 2002. Characteristics and implications of Nd, Sr and Pb isotopes and chronology of Phanerozoic alkaline-rich intrusions in North China (in Chinese with English abstract). Geol Rev, 48: 69–76

    Google Scholar 

  • Yan G H, Mu B L, Zeng Y S, Cai J H, Ren K X, Li F T. 2007. Igneous carbonatites in North China Craton: The temporal and spatial distribution, Sr and Nd isotopic charateristics and their geological significance (in Chinese with English abstract). Geol J China Univ, 13: 463–473

    Google Scholar 

  • Yan G H, Tan L K, Xu B L, Mou B L, Shao H X, Chen T L, Tong Y, Ren K X, Yang B. 2001. Petrogeochemical characteristics of Indosinian alkaline intrusions in Yinshan Area (in Chinese with English abstract). Acta Petrol Mineral, 20: 281–292

    Google Scholar 

  • Yang J H, Chung S L, Zhai M G, Zhou X H. 2004. Geochemical and Sr-Nd- Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China: Evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos, 73: 145–160

    Article  Google Scholar 

  • Yang J H, Wu F Y, Wilde S A. 2003. A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton: An association with lithospheric thinning. Ore Geol Rev, 23: 125–152

    Article  Google Scholar 

  • Yang J H, Sun J F, Zhang M, Wu F Y, Wilde S A. 2012. Petrogenesis of silica-saturated and silica-undersaturated syenites in the northern North China Craton related to post-collisional and intraplate extension. Chem Geol, 328: 149–167

    Article  Google Scholar 

  • Yang J H, O’Reilly S, Walker R J, Griffin W, Wu F Y, Zhang M, Pearson N. 2010. Diachronous decratonization of the Sino-Korean craton: Geochemistry of mantle xenoliths from North Korea. Geology, 38: 799–802

    Article  Google Scholar 

  • Yang J J, Jahn B M. 2000. Deep subduction of mantle-derived garnet peridotites from the Su-Lu UHP metamorphic terrane in China. J Metamorph Geol, 18: 167–180

    Article  Google Scholar 

  • Yang W, Teng F Z, Zhang H F, Li S G. 2012. Magnesium isotopic systematics of continental basalts from the North China craton: Implications for tracing subducted carbonate in the mantle. Chem Geol, 328: 185–194

    Article  Google Scholar 

  • Yaxley G M, Kamenetsky V, Green D H, Falloon T J. 1997. Glasses in mantle xenoliths from western Victoria, Australia, and their relevance to mantle processes. Earth Planet Sci Lett, 148: 433–446

    Article  Google Scholar 

  • Yaxley G M, Brey G P. 2004. Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: Implications for petrogenesis of carbonatites. Contrib Mineral Petrol, 146: 606–619

    Article  Google Scholar 

  • Yaxley G M, Crawford A J, Green D H. 1991. Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth Planet Sci Lett, 107: 305–317

    Article  Google Scholar 

  • Yaxley G M, Green D H. 1994. Experimental demonstration of refractory carbonate-bearing eclogite and siliceous melt in the subduction regime. Earth Planet Sci Lett, 128: 313–325

    Article  Google Scholar 

  • Yaxley G M, Green D H. 1998. Reactions between eclogite and peridotite: Mantle refertilisation by subduction of oceanic crust. Schweiz Mineral Petrogr Mitt, 78: 243–255

    Google Scholar 

  • Yaxley G M, Green D H, Kamenetsky V. 1998. Carbonatite metasomatism in the southeastern Australian lithosphere. J Petrol, 39: 1917–1930

    Article  Google Scholar 

  • Yaxley G M, Kamenetsky V. 1999. In situ origin for glass in mantle xenoliths from southeastern Australia: Insights from trace element compositions of glasses and metasomatic phases. Earth Planet Sci Lett, 172: 97–109

    Article  Google Scholar 

  • Ye K, Cong B L, Ye D N. 2000. The possible subduction of continental material to depths greater than 200 km. Nature, 407: 734–736

    Article  Google Scholar 

  • Yin A. 2010. Cenozoic tectonic evolution of Asia: A preliminary synthesis. Tectonophysics, 488: 293–325

    Article  Google Scholar 

  • Ying J, Zhou X, Zhang H. 2004. Geochemical and isotopic investigation of the Laiwu-Zibo carbonatites from western Shandong Province, China, and implications for their petrogenesis and enriched mantle source. Lithos, 75: 413–426

    Article  Google Scholar 

  • Ying J F, Zhang H F, Kita N, Morishita Y, Shimoda G. 2006. Nature and evolution of Late Cretaceous lithospheric mantle beneath the eastern North China Craton: Constraints from petrology and geochemistry of peridotitic xenoliths from Jünan, Shandong Province, China. Earth Planet Sci Lett, 244: 622–638

    Article  Google Scholar 

  • Yuan H L, Gao S, Rudnick R L, Jin Z M, Liu Y S, Puchtel I S, Walker R J, Yu R D. 2007. Re-Os evidence for the age and origin of peridotites from the Dabie-Sulu ultrahigh pressure metamorphic belt, China. Chem Geol, 236: 323–338

    Article  Google Scholar 

  • Zeng G, Chen L H, Xu X S, Jiang S Y, Hofmann A W. 2010. Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China. Chem Geol, 273: 35–45

    Article  Google Scholar 

  • Zhang H F. 2009. Peridotite-melt interaction: A key point for the destruction of cratonic lithospheric mantle. Chin Sci Bull, 54: 2008–2026

    Google Scholar 

  • Zhang H F, Goldstein S L, Zhou X H, Sun M, Zheng J P, Cai Y. 2008. Evolution of subcontinental lithospheric mantle beneath eastern China: Re-Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts. Contrib Mineral Petrol, 155: 271–293

    Article  Google Scholar 

  • Zhang H, Liu Y, Hu Z, Zong K, Chen H, Chen C. 2017. Low-d13C carbonates in the Miocene basalt of the northern margin of the North China Craton: Implications for deep carbon recycling. J Asian Earth Sci, 144: 110–125

    Article  Google Scholar 

  • Zhang H F. 2005. Transformation of lithospheric mantle through peridotitemelt reaction: A case of Sino-Korean craton. Earth Planet Sci Lett, 237: 768–780

    Article  Google Scholar 

  • Zhang H F, Sun M, Zhou X H, Zhou M F, Fan W M, Zheng J P. 2003. Secular evolution of the lithosphere beneath the eastern North China Craton: Evidence from Mesozoic basalts and high-Mg andesites. Geochim Cosmochim Acta, 67: 4373–4387

    Article  Google Scholar 

  • Zhang J F, Wang C, Wang Y F. 2012. Experimental constraints on the destruction mechanism of the North China Craton. Lithos, 149: 91–99

    Article  Google Scholar 

  • Zhang J, Zhang H F, Kita N, Shimoda G, Morishita Y C, Ying J F, Tang Y J. 2011. Secular evolution of the lithospheric mantle beneath the eastern North China craton: Evidence from peridotitic xenoliths from Late Cretaceous mafic rocks in the Jiaodong region, east-central China. Int Geol Rev, 53: 182–211

    Article  Google Scholar 

  • Zhang R Y, Pan Y M, Yang Y H, Li T F, Liou J G, Yang J S. 2008. Chemical composition and ultrahigh-P metamorphism of garnet peridotites from the Sulu UHP terrane, China: Investigation of major, trace elements and Hf isotopes of minerals. Chem Geol, 255: 250–264

    Article  Google Scholar 

  • Zhang S H, Zhao Y, Davis G A, Ye H, Wu F. 2014. Temporal and spatial variations of Mesozoic magmatism and deformation in the North China Craton: Implications for lithospheric thinning and decratonization. Earth-Sci Rev, 131: 49–87

    Article  Google Scholar 

  • Zhang S H, Zhao Y, Ye H, Hou K J, Li C F. 2012. Early Mesozoic alkaline complexes in the northern North China Craton: Implications for cratonic lithospheric destruction. Lithos, 155: 1–18

    Article  Google Scholar 

  • Zhang Z M, Dong X, Liou J G, Liu F, Wang W, Yui F. 2011. Metasomatism of garnet peridotite from Jiangzhuang, southern Sulu UHP belt: Constraints on the interactions between crust and mantle rocks during subduction of continental lithosphere. J Metamorph Geol, 29: 917–937

    Article  Google Scholar 

  • Zhao G C, Wilde S A, Cawood P A, Sun M. 2001. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res, 107: 45–73

    Article  Google Scholar 

  • Zhao G C, Zhai M G. 2013. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Res, 23: 1207–1240

    Article  Google Scholar 

  • Zhao Z F, Dai L Q, Zheng Y F. 2013. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction. Sci Rep, 3: 3413

    Article  Google Scholar 

  • Zheng H R, Hu Z Q. 2010. Atlas of Pre-Mesozoic tectonic lithofacies paleogeography in China (in Chinese). Beijing: Geological Publishing House

    Google Scholar 

  • Zheng J P. 2009. Comparison of mantle-derived matierals from different spatiotemporal settings: Implications for destructive and accretional processes of the North China Craton. Chin Sci Bull, 54: 1990–2007

    Google Scholar 

  • Zheng J P, Griffin W L, O’Reilly S Y, Yang J, Li T F, Zhang M, Zhang R Y, Liou J G. 2006. Mineral chemistry of peridotites from Paleozoic, Mesozoic and Cenozoic lithosphere: Constraints on mantle evolution beneath eastern China. J Petrol, 47: 2233–2256

    Article  Google Scholar 

  • Zheng J P, Griffin W L, O’Reilly S Y, Yu C M, Zhang H F, Pearson N, Zhang M. 2007. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis. Geochim Cosmochim Acta, 71: 5203–5225

    Article  Google Scholar 

  • Zheng J P, O’Reilly S Y, Griffin W L, Lu F X, Zhang M. 1998. Nature and evolution of Cenozoic lithospheric mantle beneath Shandong peninsula, Sino-Korean craton, eastern China. Int Geol Rev, 40: 471–499

    Article  Google Scholar 

  • Zheng J P, O’Reilly S Y, Griffin W L, Lu F X, Zhang M, Pearson N J. 2001. Relict refractory mantle beneath the eastern North China block: Significance for lithosphere evolution. Lithos, 57: 43–66

    Article  Google Scholar 

  • Zheng J P, Sun M, Zhou M F, Robinson P. 2005a. Trace elemental and PGE geochemical constraints of Mesozoic and Cenozoic peridotitic xenoliths on lithospheric evolution of the North China Craton. Geochim Cosmochim Acta, 69: 3401–3418

    Article  Google Scholar 

  • Zheng J P, Zhang R Y, Griffin W L, Liou J G, O’Reilly S Y. 2005b. Heterogeneous and metasomatized mantle recorded by trace elements in minerals of the Donghai garnet peridotites, Sulu UHP terrane, China. Chem Geol, 221: 243–259

    Article  Google Scholar 

  • Zheng Y F, Xu Z, Zhao Z F, Dai L Q. 2018. Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere. Sci China Earth Sci, 61: 353–385, https://doi.org/10.1007/s11430-017-9160-3

    Article  Google Scholar 

  • Zhou Q J, Xu W L, Yang D B, Pei F P, Wang W, Yuan H L, Gao S. 2013. Modification of the lithospheric mantle by melt derived from recycled continental crust evidenced by wehrlite xenoliths in Early Cretaceous high-Mg diorites from western Shandong, China. Sci China Earth Sci, 43: 1179–1194

    Google Scholar 

  • Zhu G, Chen Y, Jiang D, Lin S. 2015. Rapid change from compression to extension in the North China Craton during the Early Cretaceous: Evidence from the Yunmengshan metamorphic core complex. Tectonophysics, 656: 91–110

    Article  Google Scholar 

  • Zhu G, Jiang D, Zhang B, Chen Y. 2012. Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics. Gondwana Res, 22: 86–103

    Article  Google Scholar 

  • Zhu R X, Chen L, Wu F Y, Liu J L. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Sci China Earth Sci, 41: 583–592

    Google Scholar 

  • Zhu R X, Fan H R, Li J W, Meng Q R, Li S R, Zeng Q D. 2015. Decratonic gold deposits. Sci China Earth Sci, 45: 1153–1168

    Google Scholar 

  • Zhu R X, Xu Y G, Zhu G, Zhang H F, Xia Q K, Zheng T Y. 2012a. Destruction of the North China Craton. Sci China Earth Sci, 42: 1135–1159

    Google Scholar 

  • Zhu R X, Yang J H, Wu F Y. 2012b. Timing of destruction of the North China Craton. Lithos, 149: 51–60

    Article  Google Scholar 

  • Zhu Y S, Yang J H, Sun J F, Wang H. 2017. Zircon Hf-O isotope evidence for recycled oceanic and continental crust in the sources of alkaline rocks. Geology, 45: 407–410

    Article  Google Scholar 

Download references

Acknowledgements

Three anonymous reviewers are thanked for their detailed and constructive comments. We are grateful for discussions with Dr. Junfeng Zhang, Chao Wang, Wei Chen, Xiaodong Deng, Zaicong Wang, Rong Xu, Jingliang Guo, Zhanke Li and Haijun Xu, which helped to improve this paper. Master student candidates Yang Liu and Luye Zhang and doctoral student candidate Huai Cheng are thanked for their data collection work. This research was co-supported by the National Key R&D Program of China (Grant No. 2016YFC0600103), the National Natural Science Foundation of China (Grant Nos. 41473031, 41530211), the National Program on Key Basic Research Project (Grant No. 2015CB856101) and the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Grant No. MSFGPMR01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keqing Zong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, K., Liu, Y. Carbonate metasomatism in the lithospheric mantle: Implications for cratonic destruction in North China. Sci. China Earth Sci. 61, 711–729 (2018). https://doi.org/10.1007/s11430-017-9185-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9185-2

Keywords

Navigation