Science China Earth Sciences

, Volume 61, Issue 6, pp 711–729 | Cite as

Carbonate metasomatism in the lithospheric mantle: Implications for cratonic destruction in North China

  • Keqing Zong
  • Yongsheng Liu
Review Special Topic: Destruction of craton and subduction of western Pacific plate


The activity of melts and fluids may have played a key role in inducing the destruction of the eastern North China Craton in the early Cretaceous. Carbonate melts are important agents in mantle metasomatism and can significantly modify the physical and chemical properties of the subcontinental lithospheric mantle. Carbonate metasomatism can be identified by specific geochemical indices in clinopyroxene, such as high Ca/Al and low Ti/Eu ratios. This study presents the spatial and temporal variations of carbonate metasomatism in the lithospheric mantle beneath the eastern North China Craton. Three types of carbonate metasomatism are classified based on the geochemical compositions of clinopyroxene in mantle peridotites. Clinopyroxene formed by Type 1 carbonate metasomatism is characterized by very high Ca/Al ratios (15–70) and 87Sr/86Sr ratios (0.706–0.713). Clinopyroxene derived from Type 2 carbonate metasomatism shows relatively high Ca/Al ratios (5–18) and 87Sr/86Sr ratios (0.703–0.706). However, clinopyroxene resulting from Type 3 carbonate metasomatism has low Ca/Al ratios (5–9) and 87Sr/86Sr ratios (0.702–0.704). Deep (garnet-bearing) and shallow (spinel-bearing) lithospheric mantle beneath the Sulu orogen and surrounding areas in the eastern North China Craton were affected by intense Type 1 carbonate metasomatism before the late Triassic. The deep subduction of the South China Block with its accompanying carbonate sediments was the trigger for Type 1 carbonate metasomatism, which reduced strength of the lithospheric mantle and provided a prerequisite for the destruction of the eastern North China Craton in the early Cretaceous. After the destruction of the eastern North China Craton, the ancient relict lithospheric mantle, represented by spinel harzburgite xenoliths hosted in the late Cretaceous to Cenozoic basalts, only recorded Type 2 carbonate metasomatism. This implies that the lithospheric mantle experienced the intense Type 1 carbonate metasomatism was completely destroyed and not preserved during decratonization. Spinel lherzolite xenoliths hosted in the late Cretaceous to Cenozoic basalts represent the young, fertile lithospheric mantle formed after the cratonic destruction and only a few samples record Type 2 and 3 carbonate metasomatisms. We suggest that carbonate melts derived from the subduction-modified asthenospheric mantle with variable proportions of recycled crustal material was responsible for the Type 2 and 3 carbonate metasomatisms. The carbonate metasomatism of the lithospheric mantle beneath the Jiaodong Peninsula and surrounding areas is very pervasive and is spatially consistent with the remarkable thinning of lithospheric mantle and giant gold deposits in this region. Therefore, we conclude that carbonate metasomatism in the lithospheric mantle played a crucial part in the modification, destruction and gold deposits in the eastern North China Craton.


Cratonic destruction North China Carbonate metasomatism Ca/Al in clinopyroxene Lithospheric mantle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Three anonymous reviewers are thanked for their detailed and constructive comments. We are grateful for discussions with Dr. Junfeng Zhang, Chao Wang, Wei Chen, Xiaodong Deng, Zaicong Wang, Rong Xu, Jingliang Guo, Zhanke Li and Haijun Xu, which helped to improve this paper. Master student candidates Yang Liu and Luye Zhang and doctoral student candidate Huai Cheng are thanked for their data collection work. This research was co-supported by the National Key R&D Program of China (Grant No. 2016YFC0600103), the National Natural Science Foundation of China (Grant Nos. 41473031, 41530211), the National Program on Key Basic Research Project (Grant No. 2015CB856101) and the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Grant No. MSFGPMR01).


  1. Aulbach S, Griffin W L, O’Reilly S Y, McCandless T E. 2004. Genesis and evolution of the lithospheric mantle beneath the Buffalo Head Terrane, Alberta (Canada). Lithos, 77: 413–451Google Scholar
  2. Baker M B, Stolper E M. 1994. Determining the composition of highpressure mantle melts using diamond aggregates. Geochim Cosmochim Acta, 58: 2811–2827Google Scholar
  3. Bernstein S, Kelemen P B, Brooks C K. 1998. Depleted spinel harzburgite xenoliths in Tertiary dykes from East Greenland: Restites from high degree melting. Earth Planet Sci Lett, 154: 221–235Google Scholar
  4. Bizzarro M, Stevenson R K. 2003. Major element composition of the lithospheric mantle under the North Atlantic craton: Evidence from peridotite xenoliths of the Sarfartoq area, southwestern Greenland. Contrib Mineral Petrol, 146: 223–240Google Scholar
  5. Blundy J, Dalton J. 2000. Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate systems, and implications for mantle metasomatism. Contrib Mineral Petrol, 139: 356–371Google Scholar
  6. Bodinier J L, Godard M, Heinrich D H, Karl K T. 2003. Orogenic, ophiolitic, and abyssal peridotites. Treatise on Geochemistry. Oxford: Elsevier-Pergamon. 103–170Google Scholar
  7. Boyd F R, Pearson D G, Hoal K O, Hoal B G, Nixon P H, Kingston M J, Mertzman S A. 2004. Garnet lherzolites from Louwrensia, Namibia: Bulk composition and P/T relations. Lithos, 77: 573–592Google Scholar
  8. Boyd F R, Pokhilenko N P, Pearson D G, Mertzman S A, Sobolev N V, Finger L W. 1997. Composition of the Siberian cratonic mantle: Evidence from Udachnaya peridotite xenoliths. Contrib Mineral Petrol, 128: 228–246Google Scholar
  9. Brey G P, Bulatov V K, Girnis A V, Lahaye Y. 2008. Experimental melting of carbonated peridotite at 6–10 GPa. J Petrol, 49: 797–821Google Scholar
  10. Bruce M C, Niu Y, Harbort T A, Holcombe R J. 2000. Petrological, geochemical and geochronological evidence for a Neoproterozoic ocean basin recorded in the Marlborough terrane of the northern New England Fold Belt. Aust J Earth Sci, 47: 1053–1064Google Scholar
  11. Carlson R W, Pearson D G, James D E. 2005. Physical, chemical, and chronological characteristics of continental mantle. Rev Geophys, 43: RG1001Google Scholar
  12. Carter Hearn Jr B. 2004. The Homestead kimberlite, central Montana, USA: Mineralogy, xenocrysts, and upper-mantle xenoliths. Lithos, 77: 473–491Google Scholar
  13. Chen C F, Liu Y S, Foley S F, Ducea M N, He D T, Hu Z C, Chen W, Zong K Q. 2016. Paleo-Asian oceanic slab under the North China craton revealed by carbonatites derived from subducted limestones. Geology, 44: 1039–1042Google Scholar
  14. Chen C F, Liu Y S, Foley S F, Ducea M N, Geng X L, Zhang W, Xu R, Hu Z C, Zhou L, Wang Z C. 2017. Carbonated sediment recycling and its contribution to lithospheric refertilization under the northern North China Craton. Chem Geol, 466: 641–653Google Scholar
  15. Chen G D. 1956. Examples of “activizing region”in the chinese platform with special reference to the “cathaysia” problem (in Chinese with English abstract). Acta Geol Sin, 36: 239–272Google Scholar
  16. Chen Y X, Tang J, Zheng Y F, Wu Y B. 2016. Geochemical constraints on petrogenesis of marble-hosted eclogites from the Sulu orogen in China. Chem Geol, 436: 35–53Google Scholar
  17. Chu Z Y, Wu F Y, Walker R J, Rudnick R L, Pitcher L, Puchtel I S, Yang Y H, Wilde S A. 2009. Temporal evolution of the lithospheric mantle beneath the eastern North China Craton. J Petrol, 50: 1857–1898Google Scholar
  18. Coltorti M, Bonadiman C, Hinton R W, Siena F, Upton B G J. 1999. Carbonatite metasomatism of the oceanic upper mantle: Evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean. J Petrol, 40: 133–165Google Scholar
  19. Dai L Q, Zheng Y F, Zhao Z F. 2016. Termination time of peak decratonization in North China: Geochemical evidence from mafic igneous rocks. Lithos, 240-243: 327–336Google Scholar
  20. Dalton J A, Wood B J. 1993. The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle. Earth Planet Sci Lett, 119: 511–525Google Scholar
  21. Dasgupta R, Hirschmann M M, Dellas N. 2005. The effect of bulk composition on the solidus of carbonated eclogite from partial melting experiments at 3 GPa. Contrib Mineral Petrol, 149: 288–305Google Scholar
  22. Dasgupta R, Hirschmann M M, Smith N D. 2007. Partial melting experiments of peridotite+CO2 at 3 GPa and genesis of alkalic ocean island basalts. J Petrol, 48: 2093–2124Google Scholar
  23. Dasgupta R, Mallik A, Tsuno K, Withers A C, Hirth G, Hirschmann M M. 2013. Carbon-dioxide-rich silicate melt in the Earth’s upper mantle. Nature, 493: 211–215Google Scholar
  24. Dawson J B. 2002. Metasomatism and partial melting in upper-mantle peridotite xenoliths from the Lashaine volcano, northern Tanzania. J Petrol, 43: 1749–1777Google Scholar
  25. Deng J, Wang Q. 2016. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework. Gondwana Res, 36: 219–274Google Scholar
  26. Deng J F, Mo X X, Zhao H L, Wu Z X, Luo Z H, Su S G. 2004. A new model for the dynamic evolution of Chinese lithosphere: ‘continental roots–plume tectonics’. Earth-Sci Rev, 65: 223–275Google Scholar
  27. Deng L, Liu Y, Zong K, Zhu L, Xu R, Hu Z, Gao S. 2017. Trace element and Sr isotope records of multi-episode carbonatite metasomatism on the eastern margin of the North China Craton. Geochem Geophys Geosyst, 18: 220–237Google Scholar
  28. Dong S, Zhang Y, Zhang F, Cui J, Chen X, Zhang S, Miao L, Li J, Shi W, Li Z, Huang S, Li H. 2015. Late Jurassic-Early Cretaceous continental convergence and intracontinental orogenesis in East Asia: A synthesis of the Yanshan Revolution. J Asian Earth Sci, 114: 750–770Google Scholar
  29. Downes H. 2004. Ultramafic xenoliths from the Bearpaw Mountains, Montana, USA: Evidence for multiple metasomatic events in the lithospheric mantle beneath the Wyoming craton. J Petrol, 45: 1631–1662Google Scholar
  30. Eggins S M, Rudnick R L, McDonough W F. 1998. The composition of peridotites and their minerals: A laser-ablation ICP–MS study. Earth Planet Sci Lett, 154: 53–71Google Scholar
  31. Falloon T J, Green D H, Danyushevsky L V, Faul U H. 1999. Peridotite melting at 1.0 and 1.5 GPa: An experimental evaluation of techniques using diamond aggregates and mineral mixes for determination of nearsolidus melts. J Petrol, 40: 1343–1375Google Scholar
  32. Fan H R, Feng K, Li X H, Hu F F, Yang K F. 2016. Mesozoic gold mineralization in the Jiaodong and Korean peninsulas (in Chinese with English abstract). Acta Petrol Sin, 32: 3225–3238Google Scholar
  33. Fan H R, Zhai M G, Xie Y H, Yang J H. 2003. Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold province, China. Mineralium Deposita, 38: 739–750Google Scholar
  34. Franz L, Brey G P, Okrusch M. 1996. Steady state geotherm, thermal disturbances, and tectonic development of the lower lithosphere underneath the Gibeon Kimberlite Province, Namibia. Contrib Mineral Petrol, 126: 181–198Google Scholar
  35. Gaetani G A, Grove T L. 1998. The influence of water on melting of mantle peridotite. Contrib Mineral Petrol, 131: 323–346Google Scholar
  36. Gale A, Dalton C A, Langmuir C H, Su Y, Schilling J G. 2013. The mean composition of ocean ridge basalts. Geochem Geophys Geosyst, 14: 489–518Google Scholar
  37. Gao S, Rudnick R L, Carlson R W, McDonough W F, Liu Y S. 2002. Re–Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth Planet Sci Lett, 198: 307–322Google Scholar
  38. Gao S, Rudnick R L, Xu W L, Yuan H L, Liu Y S, Walker R J, Puchtel I S, Liu X, Huang H, Wang X R, Yang J. 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth Planet Sci Lett, 270: 41–53Google Scholar
  39. Gao S, Rudnick R L, Yuan H L, Liu X M, Liu Y S, Xu W L, Ling W L, Ayers J, Wang X C, Wang Q H. 2004. Recycling lower continental crust in the North China craton. Nature, 432: 892–897Google Scholar
  40. Gao S, Zhang J F, Xu W L, Liu Y S. 2009. Delamination and destruction of the North China Craton. Chin Sci Bull, 54: 1962–1973Google Scholar
  41. Gervasoni F, Klemme S, Rohrbach A, Grützner T, Berndt J. 2017. Experimental constraints on mantle metasomatism caused by silicate and carbonate melts. Lithos, 282-283: 173–186Google Scholar
  42. Ghorbani M R, Middlemost E A K. 2000. Geochemistry of pyroxene inclusions from the Warrumbungle Volcano, New South Wales, Australia. Am Miner, 85: 1349–1367Google Scholar
  43. Grassi D, Schmidt M W. 2011. The Melting of Carbonated Pelites from 70 to 700 km Depth. J Petrol, 52: 765–789Google Scholar
  44. Green D H, Wallace M E. 1988. Mantle metasomatism by ephemeral carbonatite melts. Nature, 336: 459–462Google Scholar
  45. Gregoire M. 2003. Garnet lherzolites from the Kaapvaal Craton (South Africa): Trace element evidence for a metasomatic history. J Petrol, 44: 629–657Google Scholar
  46. Gregoire M, Tinguely C, Bell D, Leroex A. 2005. Spinel lherzolite xenoliths from the Premier kimberlite (Kaapvaal craton, South Africa): Nature and evolution of the shallow upper mantle beneath the Bushveld complex. Lithos, 84: 185–205Google Scholar
  47. Griffin W L, Doyle B J, Ryan C G, Pearson N J, Suzanne Y O, Davies R, Kivi K, Van Achterbergh E, Natapov L M. 1999. Layered mantle lithosphere in the Lac de Gras area, Slave craton: Composition, structure and origin. J Petrol, 40: 705–727Google Scholar
  48. Griffin W L, Kaminsky F V, Ryan C G, O’Reilly S Y, Win T T, Ilupin I P. 1996. Thermal state and composition of the lithospheric mantle beneath the Daldyn kimberlite field, Yakutia. Tectonophysics, 262: 19–33Google Scholar
  49. Griffin W L, Natapov L M, O’Reilly S Y, van Achterbergh E, Cherenkova A F, Cherenkov V G. 2005. The Kharamai kimberlite field, Siberia: Modification of the lithospheric mantle by the Siberian Trap event. Lithos, 81: 167–187Google Scholar
  50. Guo F, Fan W, Wang Y, Zhang M. 2004. Origin of early Cretaceous calcalkaline lamprophyres from the Sulu orogen in eastern China: Implications for enrichment processes beneath continental collisional belt. Lithos, 78: 291–305Google Scholar
  51. Hammouda T. 2003. High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet Sci Lett, 214: 357–368Google Scholar
  52. Hammouda T, Laporte D. 2000. Ultrafast mantle impregnation by carbonatite melts. Geology, 28: 283–285Google Scholar
  53. Hellebrand E, Snow J E. 2003. Deep melting and sodic metasomatism underneath the highly oblique-spreading Lena Trough (Arctic Ocean). Earth Planet Sci Lett, 216: 283–299Google Scholar
  54. Hofmann A W. 1997. Mantle geochemistry: The message from oceanic volcanism. Nature, 385: 219–229Google Scholar
  55. Holm P M, Prægel N O. 2006. Cumulates from primitive rift-related East Greenland Paleogene magmas: Petrological and isotopic evidence from the ultramafic complexes at Kælvegletscher and near Kærven. Lithos, 92: 251–275Google Scholar
  56. Hou T, Zhang Z, Keiding J K, Veksler I V. 2015. Petrogenesis of the ultrapotassic Fanshan intrusion in the North China Craton: Implications for lithospheric mantle metasomatism and the origin of apatite ores. J Petrol, 56: 893–918Google Scholar
  57. Ionov D A. 2004. Chemical variations in peridotite xenoliths from Vitim, Siberia: Inferences for REE and Hf behaviour in the garnet-facies upper mantle. J Petrol, 45: 343–367Google Scholar
  58. Ionov D A, O’Reilly S Y, Genshaft Y S, Kopylova M G. 1996. Carbonatebearing mantle peridotite xenoliths from Spitsbergen: Phase relationships, mineral compositions and trace-element residence. Contrib Mineral Petrol, 125: 375–392Google Scholar
  59. Ionov D A, Ashchepkov I, Jagoutz E. 2005a. The provenance of fertile offcraton lithospheric mantle: Sr-Nd isotope and chemical composition of garnet and spinel peridotite xenoliths from Vitim, Siberia. Chem Geol, 217: 41–75Google Scholar
  60. Ionov D A, Ashchepkov I V, Stosch H G, Witt-Eickschen G, Seck H A. 1993a. Garnet peridotite xenoliths from the Vitim volcanic field, Baikal region: The nature of the garnet—Spinel peridotite transition zone in the continental mantle. J Petrol, 34: 1141–1175Google Scholar
  61. Ionov D A, Chanefo I, Bodinier J L. 2005b. Origin of Fe-rich lherzolites and wehrlites from Tok, SE Siberia by reactive melt percolation in refractory mantle peridotites. Contrib Mineral Petrol, 150: 335–353Google Scholar
  62. Ionov D A, Chazot G, Chauvel C, Merlet C, Bodinier J L. 2006. Trace element distribution in peridotite xenoliths from Tok, SE Siberian craton: A record of pervasive, multi-stage metasomatism in shallow refractory mantle. Geochim Cosmochim Acta, 70: 1231–1260Google Scholar
  63. Ionov D A, DuPuy C, O’Reilly S Y, Kopylova M G, Genshaft Y S. 1993b. Carbonated peridotite xenoliths from Spitsbergen: Implications for trace element signature of mantle carbonate metasomatism. Earth Planet Sci Lett, 119: 283–297Google Scholar
  64. Ionov D A, Hofmann A W. 1995. NbTa-rich mantle amphiboles and micas: Implications for subduction-related metasomatic trace element fractionations. Earth Planet Sci Lett, 131: 341–356Google Scholar
  65. Ionov D A, Prikhodko V S, Bodinier J L, Sobolev A V, Weis D. 2005c. Lithospheric mantle beneath the south-eastern Siberian craton: Petrology of peridotite xenoliths in basalts from the Tokinsky Stanovik. Contrib Mineral Petrol, 149: 647–665Google Scholar
  66. Jenner F E. 2017. Cumulate causes for the low contents of sulfide-loving elements in the continental crust. Nat Geosci, 10: 524–529Google Scholar
  67. Kamenetsky V S, Yaxley G M. 2015. Carbonate–silicate liquid immiscibility in the mantle propels kimberlite magma ascent. Geochim Cosmochim Acta, 158: 48–56Google Scholar
  68. Kerrick D M, Connolly J A D. 2001. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle.. Nature, 411: 293–296Google Scholar
  69. Kim N, Cheong A C, Yi K, Jeong Y J, Koh S M. 2016. Post-collisional carbonatite-hosted rare earth element mineralization in the Hongcheon area, central Gyeonggi massif, Korea: Ion microprobe monazite U-Th- Pb geochronology and Nd-Sr isotope geochemistry. Ore Geol Rev, 79: 78–87Google Scholar
  70. Klemme S, van der Laan S R, Foley S F, Günther D. 1995. Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper mantle conditions. Earth Planet Sci Lett, 133: 439–448Google Scholar
  71. Kopylova M G, Caro G. 2004. Mantle xenoliths from the southeastern Slave craton: Evidence for chemical zonation in a thick, cold lithosphere. J Petrol, 45: 1045–1067Google Scholar
  72. Kopylova M G, Russell J K, Cookenboo H. 1999. Petrology of peridotite and pyroxenite xenoliths from the Jericho Kimberlite: Implications for the thermal state of the mantle beneath the Slave craton, northern Canada. J Petrol, 40: 79–104Google Scholar
  73. Kruk A N, Sokol A G, Chebotarev D A, Palyanov Y A, Sobolev N V. 2016. Composition of a carbonatitic melt in equilibrium with lherzolite at 5.5–6.3 GPa and 1350°C. Dokl Earth Sci, 467: 303–307Google Scholar
  74. Lee C T, Rudnick R L, McDonough W F, Horn I. 2000. Petrologic and geochemical investigation of carbonates in peridotite xenoliths from northeastern Tanzania. Contrib Mineral Petrol, 139: 470–484Google Scholar
  75. Lee C T A, Luffi P, Chin E J. 2011. Building and destroying continental mantle. Annu Rev Earth Planet Sci, 39: 59–90Google Scholar
  76. Li J W, Bi S J, Selby D, Chen L, Vasconcelos P, Thiede D, Zhou M F, Zhao X F, Li Z K, Qiu H N. 2012. Giant Mesozoic gold provinces related to the destruction of the North China craton. Earth Planet Sci Lett, 349-350: 26–37Google Scholar
  77. Li S G, Yang W, Ke S, Meng X, Tian H C, Xu L J, He Y S, Huang J, Wang X C, Xia Q K, Sun W D, Yang X Y, Ren Z Y, Wei H Q, Liu Y S, Meng F C, Yan J. 2017. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. Nat Sci Rev, 4: 111–120Google Scholar
  78. Li Y, Audétat A. 2012. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions. Earth Planet Sci Lett, 355-356: 327–340Google Scholar
  79. Lin W, Wang J, Liu F, Ji W B, Wang Q C. 2013. Late Mesozoic extension structures on the North China Craton and adjacent regions and its geodynamics (in Chinese with English abstract). Acta Petrol Sin, 29: 1791–1810Google Scholar
  80. Litasov K D, Foley S F, Litasov Y D. 2000. Magmatic modification and metasomatism of the subcontinental mantle beneath the Vitim volcanic field (East Siberia): Evidence from trace element data on pyroxenite and peridotite xenoliths from Miocene picrobasalt. Lithos, 54: 83–114Google Scholar
  81. Liu D Y, Nutman A P, Compston W, Wu J S, Shen Q H. 1992. Remnants of =3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology, 20: 339–342Google Scholar
  82. Liu F, Zong K Q, Liu Y S, Hu Z C, Zhu L Y, Xu R. 2015. Methane-bearing melt inclusion in olivine phenocryst in Cenozoic alkaline basalt from Eastern China and its geological significance. Chin Sci Bull, 60: 1310–1319Google Scholar
  83. Liu P L, Wu Y, Chen Y, Zhang J F, Jin Z M. 2015. UHP impure marbles from the Dabie Mountains: Metamorphic evolution and carbon cycling in continental subduction zones. Lithos, 212-215: 280–297Google Scholar
  84. Liu S A, Wang Z Z, Li S G, Huang J, Yang W. 2016. Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China. Earth Planet Sci Lett, 444: 169–178Google Scholar
  85. Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q, Wang D B. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol, 51: 537–571Google Scholar
  86. Liu Y S, Gao S, Kelemen P B, Xu W L. 2008. Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton. Geochim Cosmochim Acta, 72: 2349–2376Google Scholar
  87. Liu Y S, Gao S, Lee C T A, Hu S H, Liu X M, Yuan H L. 2005. Meltperidotite interactions: Links between garnet pyroxenite and high-Mg# signature of continental crust. Earth Planet Sci Lett, 234: 39–57Google Scholar
  88. Liu Y S, He D T, Gao C G, Foley S, Gao S, Hu Z C, Zong K Q, Chen H H. 2015. First direct evidence of sedimentary carbonate recycling in subduction- related xenoliths. Sci Rep, 5: 11547Google Scholar
  89. Lorand J P, Luguet A. 2016. Chalcophile and siderophile elements in mantle rocks: Trace elements controlled by trace minerals. Rev Mineral Geochem, 81: 441–488Google Scholar
  90. Ma L, Jiang S Y, Hofmann A W, Xu Y G, Dai B Z, Hou M L. 2016. Rapid lithospheric thinning of the North China Craton: New evidence from cretaceous mafic dikes in the Jiaodong Peninsula. Chem Geol, 432: 1–15Google Scholar
  91. Machetel P, Humler E. 2003. High mantle temperature during Cretaceous avalanche. Earth Planet Sci Lett, 208: 125–133Google Scholar
  92. MacKenzie J M, Canil D. 1999. Composition and thermal evolution of cratonic mantle beneath the central Archean Slave Province, NWT, Canada. Contrib Mineral Petrol, 134: 313–324Google Scholar
  93. Malarkey J, Wittig N, Graham Pearson D, Davidson J P. 2011. Characterising modal metasomatic processes in young continental lithospheric mantle: A microsampling isotopic and trace element study on xenoliths from the Middle Atlas Mountains, Morocco. Contrib Mineral Petrol, 162: 289–302Google Scholar
  94. Mao J, Wang Y, Li H, Pirajno F, Zhang C, Wang R. 2008. The relationship of mantle-derived fluids to gold metallogenesis in the Jiaodong Peninsula: Evidence from D-O-C-S isotope systematics. Ore Geol Rev, 33: 361–381Google Scholar
  95. McCammon C, Kopylova M G. 2004. A redox profile of the Slave mantle and oxygen fugacity control in the cratonic mantle. Contrib Mineral Petrol, 148: 55–68Google Scholar
  96. Meng Q R. 2003. What drove late Mesozoic extension of the northern China-Mongolia tract? Tectonophysics, 369: 155–174Google Scholar
  97. Menzies A, Westerlund K, Grütter H, Gurney J, Carlson J, Fung A, Nowicki T. 2004. Peridotitic mantle xenoliths from kimberlites on the Ekati Diamond Mine property, N.W.T., Canada: Major element compositions and implications for the lithosphere beneath the central Slave craton. Lithos, 77: 395–412Google Scholar
  98. Menzies M A, Fan W, Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China. Geol Soc London Spec Publ, 76: 71–81Google Scholar
  99. Molina J F, Poli S. 2000. Carbonate stability and fluid composition in subducted oceanic crust: An experimental study on H2O-CO2-bearing basalts. Earth Planet Sci Lett, 176: 295–310Google Scholar
  100. Neumann E R, Wulff-Pedersen E, Pearson N J, Spencer E A. 2002. Mantle xenoliths from Tenerife (Canary Islands): Evidence for reactions between mantle peridotites and silicic carbonatite melts inducing Ca metasomatism. J Petrol, 43: 825–857Google Scholar
  101. Niu X, Chen B, Liu A, Suzuki K, Ma X. 2012. Petrological and Sr-Nd-Os isotopic constraints on the origin of the Fanshan ultrapotassic complex from the North China Craton. Lithos, 149: 146–158Google Scholar
  102. Niu X L, Chen B, Feng G Y, Liu F, Yang J S. 2017. Origin of lamprophyres from the northern margin of the North China Craton: Implications for mantle metasomatism. J Geological Soc, 174: 353–364Google Scholar
  103. Niu Y L. 2005. Generation and evolution of basaltic magmas: Some basic concepts and a new view on the origin of Mesozoic-Cenozoic basaltic volcanism in eastern China. Geol J China Univ, 11: 9–46Google Scholar
  104. Pearson D G, Canil D, Shirey S B, Heinrich D H, Karl K T. 2003. Treatise on Geochemistry. Oxford: Elsevier-Pergamon. 171–275Google Scholar
  105. Peslier A H. 2002. The lithospheric mantle beneath continental margins: Melting and melt-rock reaction in Canadian Cordillera xenoliths. J Petrol, 43: 2013–2047Google Scholar
  106. Phillips G N, Evans K A. 2004. Role of CO2 in the formation of gold deposits. Nature, 429: 860–863Google Scholar
  107. Pickering-Witter J, Johnston A D. 2000. The effects of variable bulk composition on the melting systematics of fertile peridotitic assemblages. Contrib Mineral Petrol, 140: 190–211Google Scholar
  108. Powell W, Zhang M, O’Reilly S Y, Tiepolo M. 2004. Mantle amphibole trace-element and isotopic signatures trace multiple metasomatic episodes in lithospheric mantle, western Victoria, Australia. Lithos, 75: 141–171Google Scholar
  109. Proyer A, Rolfo F, Zhu Y F, Castelli D, Compagnoni R. 2013. Ultrahighpressure metamorphism in the magnesite+aragonite stability field: Evidence from two impure marbles from the Dabie-Sulu UHPM belt. J Metamorph Geol, 31: 35–48Google Scholar
  110. Rapp R P, Shimizu N, Norman M D, Applegate G S. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chem Geol, 160: 335–356Google Scholar
  111. Roach I C. 2004. Mineralogy, textures and P-T relationships of a suite of xenoliths from the Monaro Volcanic Province, New South Wales, Australia. J Petrol, 45: 739–758Google Scholar
  112. Rudnick R L, McDonough W F, Chappell B W. 1993. Carbonatite metasomatism in the northern Tanzanian mantle: Petrographic and geochemical characteristics. Earth Planet Sci Lett, 114: 463–475Google Scholar
  113. Russell J K, Porritt L A, Lavallée Y, Dingwell D B. 2012. Kimberlite ascent by assimilation-fuelled buoyancy. Nature, 481: 352–356Google Scholar
  114. Saltzer R L. 2001. The spatial distribution of garnets and pyroxenes in mantle peridotites: Pressure-temperature history of peridotites from the Kaapvaal Craton. J Petrol, 42: 2215–2229Google Scholar
  115. Schmidberger S S, Francis D. 1999. Nature of the mantle roots beneath the North American craton: Mantle xenolith evidence from Somerset Island kimberlites. Lithos, 48: 195–216Google Scholar
  116. Schmidberger S S, Francis D. 2001. Constraints on the trace element composition of the Archean mantle root beneath Somerset Island, Arctic Canada. J Petrol, 42: 1095–1117Google Scholar
  117. Schmidberger S S, Simonetti A, Francis D. 2003. Small-scale Sr isotope investigation of clinopyroxenes from peridotite xenoliths by laser ablation MC-ICP-MS—Implications for mantle metasomatism. Chem Geol, 199: 317–329Google Scholar
  118. Schwab B E, Johnston A D. 2001. Melting systematics of modally variable, compositionally intermediate peridotites and the effects of mineral fertility. J Petrol, 42: 1789–1811Google Scholar
  119. Sharygin V V, Golovin A V, Pokhilenko N P, Kamenetsky V S. 2007. Djerfisherite in the Udachnaya-East pipe kimberlites (Sakha-Yakutia, Russia): Paragenesis, composition and origin. Eur J Mineral, 19: 51–63Google Scholar
  120. Shi L, Francis D, Ludden J, Frederiksen A, Bostock M. 1998. Xenolith evidence for lithospheric melting above anomalously hot mantle under the northern Canadian Cordillera. Contrib Mineral Petrol, 131: 39–53Google Scholar
  121. Simon N S C, Irvine G J, Davies G R, Pearson D G, Carlson R W. 2003. The origin of garnet and clinopyroxene in “depleted” Kaapvaal peridotites. Lithos, 71: 289–322Google Scholar
  122. Sleep N H. 2003. Survival of Archean cratonal lithosphere. J Geophys Res, 108: 2302Google Scholar
  123. Sleep N H. 2005. Evolution of the continental lithosphere. Annu Rev Earth Planet Sci, 33: 369–393Google Scholar
  124. Sokol A G, Kruk A N, Chebotarev D A, Palyanov Y N. 2016. Carbonatite melt-peridotite interaction at 5.5–7.0 GPa: Implications for metasomatism in lithospheric mantle. Lithos, 248-251: 66–79Google Scholar
  125. Stiefenhofer J, Viljoen K S, Marsh J S. 1997. Petrology and geochemistry of peridotite xenoliths from the Letlhakane kimberlites, Botswana. Contrib Mineral Petrol, 127: 147–158Google Scholar
  126. Su B, Chen Y, Guo S, Chu Z Y, Liu J B, Gao Y J. 2016. Carbonatitic metasomatism in orogenic dunites from Lijiatun in the Sulu UHP terrane, eastern China. Lithos, 262: 266–284Google Scholar
  127. Sun J G, Hu S X, Shen K, Yao F L. 2001. Research on C, O isotopic geochemistry of intermediate-basic and intermediate-acid dykes in goldfields of Jiaodong Peninsula (in Chinese with English abstract). Acta Petrol Mineral, 20: 47–56Google Scholar
  128. Sun J, Liu C Z, Wu F Y, Yang Y H, Chu Z Y. 2012. Metasomatic origin of clinopyroxene in Archean mantle xenoliths from Hebi, North China Craton: Trace-element and Sr-isotope constraints. Chem Geol, 328: 123–136Google Scholar
  129. Sun W D, Ding X, Hu Y H, Li X H. 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth Planet Sci Lett, 262: 533–542Google Scholar
  130. Tong X R, Liu Y S, Hu Z C, Chen H H, Zhou L, Hu Q H, Xu R, Deng L X, Chen C F, Yang L, Gao S. 2016. Accurate determination of Sr isotopic compositions in clinopyroxene and silicate glasses by LA-MC-ICP-MS. Geostand Geoanal Res, 40: 85–99Google Scholar
  131. van Achterbergh E, Griffin W L, Ryan C G, O’Reilly S Y, Pearson N J, Kivi K, Doyle B J. 2004. Melt inclusions from the deep Slave lithosphere: Implications for the origin and evolution of mantle-derived carbonatite and kimberlite. Lithos, 76: 461–474Google Scholar
  132. Varela M E, Clocchiatti R, Kurat G, Schiano P. 1999. Silicic glasses in hydrous and anhydrous mantle xenoliths from Western Victoria, Australia: At least two different sources. Chem Geol, 153: 151–169Google Scholar
  133. Wallace M E, Green D H. 1988. An experimental determination of primary carbonatite magma composition. Nature, 335: 343–346Google Scholar
  134. Walter M J. 1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol, 39: 29–60Google Scholar
  135. Wang C G, Liang Y, Xu W L, Dygert N. 2013. Effect of melt composition on basalt and peridotite interaction: Laboratory dissolution experiments with applications to mineral compositional variations in mantle xenoliths from the North China Craton. Contrib Mineral Petrol, 166: 1469–1488Google Scholar
  136. Wang C, Jin Z M, Gao S, Zhang J F, Zheng S. 2010. Eclogite-melt/peridotite reaction: Experimental constrains on the destruction mechanism of the North China Craton. Sci China Earth Sci, 40: 541–555Google Scholar
  137. Wang C Y, Liu Y S, Min N, Zong K Q, Hu Z C, Gao S. 2016. Paleo-Asian oceanic subduction-related modification of the lithospheric mantle under the North China Craton: Evidence from peridotite xenoliths in the Datong basalts. Lithos, 261: 109–127Google Scholar
  138. Wang C, Liu Y, Zhang J, Jin Z. 2016. Carbonate melt form subduction zone: The key for craton destruction. Goldschmidt Abstracts, 3307Google Scholar
  139. Wang Y J, Fan W M, Zhang G W, Zhang Y H. 2013. Phanerozoic tectonics of the South China Block: Key observations and controversies. Gondwana Res, 23: 1273–1305Google Scholar
  140. Wang Z S, Kusky T M, Capitanio F A. 2016. Lithosphere thinning induced by slab penetration into a hydrous mantle transition zone. Geophys Res Lett, 43: 11,567–11,577Google Scholar
  141. Wasylenki L E, Baker M B, Kent A J R, Stolper E M. 2003. Near-solidus melting of the shallow upper mantle: Partial melting experiments on depleted peridotite. J Petrol, 44: 1163–1191Google Scholar
  142. Whitehead K, Le Roex A, Class C, Bell D. 2002. Composition and Cretaceous thermal structure of the upper mantle beneath the Damara Mobile Belt: Evidence from nephelinite-hosted peridotite xenoliths, Swakopmund, Namibia. J Geological Soc, 159: 307–321Google Scholar
  143. Windley B F, Maruyama S, Xiao W J. 2010. Delamination/thinning of subcontinental lithospheric mantle under Eastern China: The role of water and multiple subduction. Am J Sci, 310: 1250–1293Google Scholar
  144. Woodland A B, Seitz H M, Yaxley G M. 2004. Varying behaviour of Li in metasomatised spinel peridotite xenoliths from western Victoria, Australia. Lithos, 75: 55–66Google Scholar
  145. Wu D, Liu Y S, Chen C F, Xu R, Ducea M N, Hu Z C, Zong K Q. 2017. Insitu trace element and Sr isotopic compositions of mantle xenoliths constrain two-stage metasomatism beneath the northern North China Craton. Lithos, 288-289: 338–351Google Scholar
  146. Wu F Y, Lin J Q, Wilde S A, Zhang X, Yang J H. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet Sci Lett, 233: 103–119Google Scholar
  147. Wu F Y, Walker R J, Yang Y H, Yuan H L, Yang J H. 2006. The chemicaltemporal evolution of lithospheric mantle underlying the North China Craton. Geochim Cosmochim Acta, 70: 5013–5034Google Scholar
  148. Xia Q K, Hao Y, Li P, Deloule E, Coltorti M, Dallai L, Yang X, Feng M. 2010. Low water content of the Cenozoic lithospheric mantle beneath the eastern part of the North China Craton. J Geophys Res, 115: B07207Google Scholar
  149. Xia Q K, Liu J, Liu S C, Kovács I, Feng M, Dang L. 2013. High water content in Mesozoic primitive basalts of the North China Craton and implications on the destruction of cratonic mantle lithosphere. Earth Planet Sci Lett, 361: 85–97Google Scholar
  150. Xiao Y, Zhang H F, Fan W M, Ying J F, Zhang J, Zhao X M, Su B X. 2010. Evolution of lithospheric mantle beneath the Tan-Lu fault zone, eastern North China Craton: Evidence from petrology and geochemistry of peridotite xenoliths. Lithos, 117: 229–246Google Scholar
  151. Xu R, Liu Y S, Tong X R, Hu Z C, Zong K Q, Gao S. 2013a. In-situ trace elements and Li and Sr isotopes in peridotite xenoliths from Kuandian, North China Craton: Insights into Pacific slab subduction-related mantle modification. Chem Geol, 354: 107–123Google Scholar
  152. Xu R, Liu Y S, Zong K Q, Zou D Y, Deng L X, Tong X R, Hu Z C, Gao S. 2013b. Micro-geochemistry of peridotite xenoliths from Kuandian: Implications for evolution of lithospheric mantle (in Chinese with English abstract). Acta Petrol Mineral, 32: 613–636Google Scholar
  153. Xu W L, Hergt J M, Gao S, Pei F P, Wang W, Yang D B. 2008. Interaction of adakitic melt-peridotite: Implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton. Earth Planet Sci Lett, 265: 123–137Google Scholar
  154. Xu W L, Zhou Q J, Pei F P, Yang D B, Gao S, Li Q L, Yang Y H. 2013. Destruction of the North China Craton: Delamination or thermal/chemical erosion? Mineral chemistry and oxygen isotope insights from websterite xenoliths. Gondwana Res, 23: 119–129Google Scholar
  155. Xu X S, O’Reilly S Y, Griffin W L, Zhou X M, Huang X L. 1998. The nature of the Cenozoic lithosphere at Nushan, eastern China: Mantle Dynamics and Plate Interactions in Eastern Asia, Geodynamics 27, American Geophysical Union. 167–195Google Scholar
  156. Xu X S, O’Reilly S Y, Griffin W L, Zhou X M. 2000. Genesis of young lithospheric mantle in southeastern China: An LAM-ICPMS trace element study. J Petrol, 41: 111–148Google Scholar
  157. Xu Y G, Huang X L, Thirlwall M F, Chen X M. 2003a. “Reactive” harzburgite xenoliths from Huinan, Jilin province and their implications for deep dynamic processes (in Chinese with English abstract). Acta Petrol Sin, 19: 19–26Google Scholar
  158. Xu Y G, Menzies M A, Thirlwall M F, Huang X L, Liu Y, Chen X M. 2003b. “Reactive” harzburgites from Huinan, NE China: Products of the lithosphere-asthenosphere interaction during lithospheric thinning? Geochim Cosmochim Acta, 67: 487–505Google Scholar
  159. Xu Y G. 2001. Thermo-tectonic destruction of the archaean lithospheric keel beneath the sino-korean craton in china: Evidence, timing and mechanism. Phys Chem Earth Part A-Solid Earth Geodesy, 26: 747–757Google Scholar
  160. Yan G H, Mu B L, Xu B L, He G Q, Han B F, Wang S G, Tong Y, Ren K X, Yang B, Hong D W, Qiao G S, Xu R H, Zhang R H, Chu Z Y. 2002. Characteristics and implications of Nd, Sr and Pb isotopes and chronology of Phanerozoic alkaline-rich intrusions in North China (in Chinese with English abstract). Geol Rev, 48: 69–76Google Scholar
  161. Yan G H, Mu B L, Zeng Y S, Cai J H, Ren K X, Li F T. 2007. Igneous carbonatites in North China Craton: The temporal and spatial distribution, Sr and Nd isotopic charateristics and their geological significance (in Chinese with English abstract). Geol J China Univ, 13: 463–473Google Scholar
  162. Yan G H, Tan L K, Xu B L, Mou B L, Shao H X, Chen T L, Tong Y, Ren K X, Yang B. 2001. Petrogeochemical characteristics of Indosinian alkaline intrusions in Yinshan Area (in Chinese with English abstract). Acta Petrol Mineral, 20: 281–292Google Scholar
  163. Yang J H, Chung S L, Zhai M G, Zhou X H. 2004. Geochemical and Sr-Nd- Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China: Evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos, 73: 145–160Google Scholar
  164. Yang J H, Wu F Y, Wilde S A. 2003. A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton: An association with lithospheric thinning. Ore Geol Rev, 23: 125–152Google Scholar
  165. Yang J H, Sun J F, Zhang M, Wu F Y, Wilde S A. 2012. Petrogenesis of silica-saturated and silica-undersaturated syenites in the northern North China Craton related to post-collisional and intraplate extension. Chem Geol, 328: 149–167Google Scholar
  166. Yang J H, O’Reilly S, Walker R J, Griffin W, Wu F Y, Zhang M, Pearson N. 2010. Diachronous decratonization of the Sino-Korean craton: Geochemistry of mantle xenoliths from North Korea. Geology, 38: 799–802Google Scholar
  167. Yang J J, Jahn B M. 2000. Deep subduction of mantle-derived garnet peridotites from the Su-Lu UHP metamorphic terrane in China. J Metamorph Geol, 18: 167–180Google Scholar
  168. Yang W, Teng F Z, Zhang H F, Li S G. 2012. Magnesium isotopic systematics of continental basalts from the North China craton: Implications for tracing subducted carbonate in the mantle. Chem Geol, 328: 185–194Google Scholar
  169. Yaxley G M, Kamenetsky V, Green D H, Falloon T J. 1997. Glasses in mantle xenoliths from western Victoria, Australia, and their relevance to mantle processes. Earth Planet Sci Lett, 148: 433–446Google Scholar
  170. Yaxley G M, Brey G P. 2004. Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: Implications for petrogenesis of carbonatites. Contrib Mineral Petrol, 146: 606–619Google Scholar
  171. Yaxley G M, Crawford A J, Green D H. 1991. Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth Planet Sci Lett, 107: 305–317Google Scholar
  172. Yaxley G M, Green D H. 1994. Experimental demonstration of refractory carbonate-bearing eclogite and siliceous melt in the subduction regime. Earth Planet Sci Lett, 128: 313–325Google Scholar
  173. Yaxley G M, Green D H. 1998. Reactions between eclogite and peridotite: Mantle refertilisation by subduction of oceanic crust. Schweiz Mineral Petrogr Mitt, 78: 243–255Google Scholar
  174. Yaxley G M, Green D H, Kamenetsky V. 1998. Carbonatite metasomatism in the southeastern Australian lithosphere. J Petrol, 39: 1917–1930Google Scholar
  175. Yaxley G M, Kamenetsky V. 1999. In situ origin for glass in mantle xenoliths from southeastern Australia: Insights from trace element compositions of glasses and metasomatic phases. Earth Planet Sci Lett, 172: 97–109Google Scholar
  176. Ye K, Cong B L, Ye D N. 2000. The possible subduction of continental material to depths greater than 200 km. Nature, 407: 734–736Google Scholar
  177. Yin A. 2010. Cenozoic tectonic evolution of Asia: A preliminary synthesis. Tectonophysics, 488: 293–325Google Scholar
  178. Ying J, Zhou X, Zhang H. 2004. Geochemical and isotopic investigation of the Laiwu-Zibo carbonatites from western Shandong Province, China, and implications for their petrogenesis and enriched mantle source. Lithos, 75: 413–426Google Scholar
  179. Ying J F, Zhang H F, Kita N, Morishita Y, Shimoda G. 2006. Nature and evolution of Late Cretaceous lithospheric mantle beneath the eastern North China Craton: Constraints from petrology and geochemistry of peridotitic xenoliths from Jünan, Shandong Province, China. Earth Planet Sci Lett, 244: 622–638Google Scholar
  180. Yuan H L, Gao S, Rudnick R L, Jin Z M, Liu Y S, Puchtel I S, Walker R J, Yu R D. 2007. Re-Os evidence for the age and origin of peridotites from the Dabie-Sulu ultrahigh pressure metamorphic belt, China. Chem Geol, 236: 323–338Google Scholar
  181. Zeng G, Chen L H, Xu X S, Jiang S Y, Hofmann A W. 2010. Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China. Chem Geol, 273: 35–45Google Scholar
  182. Zhang H F. 2009. Peridotite-melt interaction: A key point for the destruction of cratonic lithospheric mantle. Chin Sci Bull, 54: 2008–2026Google Scholar
  183. Zhang H F, Goldstein S L, Zhou X H, Sun M, Zheng J P, Cai Y. 2008. Evolution of subcontinental lithospheric mantle beneath eastern China: Re-Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts. Contrib Mineral Petrol, 155: 271–293Google Scholar
  184. Zhang H, Liu Y, Hu Z, Zong K, Chen H, Chen C. 2017. Low-d13C carbonates in the Miocene basalt of the northern margin of the North China Craton: Implications for deep carbon recycling. J Asian Earth Sci, 144: 110–125Google Scholar
  185. Zhang H F. 2005. Transformation of lithospheric mantle through peridotitemelt reaction: A case of Sino-Korean craton. Earth Planet Sci Lett, 237: 768–780Google Scholar
  186. Zhang H F, Sun M, Zhou X H, Zhou M F, Fan W M, Zheng J P. 2003. Secular evolution of the lithosphere beneath the eastern North China Craton: Evidence from Mesozoic basalts and high-Mg andesites. Geochim Cosmochim Acta, 67: 4373–4387Google Scholar
  187. Zhang J F, Wang C, Wang Y F. 2012. Experimental constraints on the destruction mechanism of the North China Craton. Lithos, 149: 91–99Google Scholar
  188. Zhang J, Zhang H F, Kita N, Shimoda G, Morishita Y C, Ying J F, Tang Y J. 2011. Secular evolution of the lithospheric mantle beneath the eastern North China craton: Evidence from peridotitic xenoliths from Late Cretaceous mafic rocks in the Jiaodong region, east-central China. Int Geol Rev, 53: 182–211Google Scholar
  189. Zhang R Y, Pan Y M, Yang Y H, Li T F, Liou J G, Yang J S. 2008. Chemical composition and ultrahigh-P metamorphism of garnet peridotites from the Sulu UHP terrane, China: Investigation of major, trace elements and Hf isotopes of minerals. Chem Geol, 255: 250–264Google Scholar
  190. Zhang S H, Zhao Y, Davis G A, Ye H, Wu F. 2014. Temporal and spatial variations of Mesozoic magmatism and deformation in the North China Craton: Implications for lithospheric thinning and decratonization. Earth-Sci Rev, 131: 49–87Google Scholar
  191. Zhang S H, Zhao Y, Ye H, Hou K J, Li C F. 2012. Early Mesozoic alkaline complexes in the northern North China Craton: Implications for cratonic lithospheric destruction. Lithos, 155: 1–18Google Scholar
  192. Zhang Z M, Dong X, Liou J G, Liu F, Wang W, Yui F. 2011. Metasomatism of garnet peridotite from Jiangzhuang, southern Sulu UHP belt: Constraints on the interactions between crust and mantle rocks during subduction of continental lithosphere. J Metamorph Geol, 29: 917–937Google Scholar
  193. Zhao G C, Wilde S A, Cawood P A, Sun M. 2001. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res, 107: 45–73Google Scholar
  194. Zhao G C, Zhai M G. 2013. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Res, 23: 1207–1240Google Scholar
  195. Zhao Z F, Dai L Q, Zheng Y F. 2013. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction. Sci Rep, 3: 3413Google Scholar
  196. Zheng H R, Hu Z Q. 2010. Atlas of Pre-Mesozoic tectonic lithofacies paleogeography in China (in Chinese). Beijing: Geological Publishing HouseGoogle Scholar
  197. Zheng J P. 2009. Comparison of mantle-derived matierals from different spatiotemporal settings: Implications for destructive and accretional processes of the North China Craton. Chin Sci Bull, 54: 1990–2007Google Scholar
  198. Zheng J P, Griffin W L, O’Reilly S Y, Yang J, Li T F, Zhang M, Zhang R Y, Liou J G. 2006. Mineral chemistry of peridotites from Paleozoic, Mesozoic and Cenozoic lithosphere: Constraints on mantle evolution beneath eastern China. J Petrol, 47: 2233–2256Google Scholar
  199. Zheng J P, Griffin W L, O’Reilly S Y, Yu C M, Zhang H F, Pearson N, Zhang M. 2007. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis. Geochim Cosmochim Acta, 71: 5203–5225Google Scholar
  200. Zheng J P, O’Reilly S Y, Griffin W L, Lu F X, Zhang M. 1998. Nature and evolution of Cenozoic lithospheric mantle beneath Shandong peninsula, Sino-Korean craton, eastern China. Int Geol Rev, 40: 471–499Google Scholar
  201. Zheng J P, O’Reilly S Y, Griffin W L, Lu F X, Zhang M, Pearson N J. 2001. Relict refractory mantle beneath the eastern North China block: Significance for lithosphere evolution. Lithos, 57: 43–66Google Scholar
  202. Zheng J P, Sun M, Zhou M F, Robinson P. 2005a. Trace elemental and PGE geochemical constraints of Mesozoic and Cenozoic peridotitic xenoliths on lithospheric evolution of the North China Craton. Geochim Cosmochim Acta, 69: 3401–3418Google Scholar
  203. Zheng J P, Zhang R Y, Griffin W L, Liou J G, O’Reilly S Y. 2005b. Heterogeneous and metasomatized mantle recorded by trace elements in minerals of the Donghai garnet peridotites, Sulu UHP terrane, China. Chem Geol, 221: 243–259Google Scholar
  204. Zheng Y F, Xu Z, Zhao Z F, Dai L Q. 2018. Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere. Sci China Earth Sci, 61: 353–385, Scholar
  205. Zhou Q J, Xu W L, Yang D B, Pei F P, Wang W, Yuan H L, Gao S. 2013. Modification of the lithospheric mantle by melt derived from recycled continental crust evidenced by wehrlite xenoliths in Early Cretaceous high-Mg diorites from western Shandong, China. Sci China Earth Sci, 43: 1179–1194Google Scholar
  206. Zhu G, Chen Y, Jiang D, Lin S. 2015. Rapid change from compression to extension in the North China Craton during the Early Cretaceous: Evidence from the Yunmengshan metamorphic core complex. Tectonophysics, 656: 91–110Google Scholar
  207. Zhu G, Jiang D, Zhang B, Chen Y. 2012. Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics. Gondwana Res, 22: 86–103Google Scholar
  208. Zhu R X, Chen L, Wu F Y, Liu J L. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Sci China Earth Sci, 41: 583–592Google Scholar
  209. Zhu R X, Fan H R, Li J W, Meng Q R, Li S R, Zeng Q D. 2015. Decratonic gold deposits. Sci China Earth Sci, 45: 1153–1168Google Scholar
  210. Zhu R X, Xu Y G, Zhu G, Zhang H F, Xia Q K, Zheng T Y. 2012a. Destruction of the North China Craton. Sci China Earth Sci, 42: 1135–1159Google Scholar
  211. Zhu R X, Yang J H, Wu F Y. 2012b. Timing of destruction of the North China Craton. Lithos, 149: 51–60Google Scholar
  212. Zhu Y S, Yang J H, Sun J F, Wang H. 2017. Zircon Hf-O isotope evidence for recycled oceanic and continental crust in the sources of alkaline rocks. Geology, 45: 407–410Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Geological Processes and Mineral Resources; School of Earth SciencesChina University of GeosciencesWuhanChina

Personalised recommendations