Science China Earth Sciences

, Volume 61, Issue 6, pp 765–777 | Cite as

Compound-specific δD and its hydrological and environmental implication in the lakes on the Tibetan Plateau

  • Hu Liu
  • Hong Yang
  • Yunning Cao
  • Weiguo Liu
Research Paper


The hydrogen isotopic composition (δD) of n-alkanes in lacustrine sediments is widely used in palaeoenvironmental studies, but the heterogeneous origins and relative contributions of these lipids provide challenges for the interpretation of the increasing dataset as an environment and climatic proxy. We systematically investigated n-alkane δD values from 51 submerged plants (39 Potamogeton, 1 Myriophyllum, and 11 Ruppia), 13 algae (5 Chara, 3 Cladophora, and 5 Spirogyra) and 20 terrestrial plants (10 grasses and 10 shrubs) in and around 15 lakes on the Tibetan Plateau. Our results demonstrate that δD values of C29n-alkane are correlated significantly with the lake water δD values both for algae (R2=0.85, p<0.01, n=9) and submerged plants (R2=0.90, p<0.01, n=25), indicating that δD values of these algae and submerged plants reflect the δD variation of lake water. We find that apparent hydrogen isotope fractionation factors between individual n-alkanes and water (εa/w) are not constant among different algae and submerged plants, as well as in a single genus under different liminological conditions, indicating that the biosynthesis or environmental conditions (e.g. salinity) may affect their δD values. The δD values of submerged plant Ruppia in the Xiligou Lake (a closed lake) are significant enriched in D than those of terrestrial grasses around the lake (one-way ANOVA, p<0.01), but the algae Chara in the Keluke Lake (an open lake) display similar δD values with grasses around the lake (one-way ANOVA, p=0.826>0.05), suggesting that the n-alkane δD values of the algae and submerged plants record the signal of D enrichment in lake water relative to precipitation only in closed lakes in arid and semi-arid area. For each algae and submerged plant sample, we find uniformed δD values of different chain length n-alkanes, implying that, in combination with other proxies such as Paq and Average Chain Length, the offset between the δD values of different chain length n-alkanes can help determine the source of sedimentary n-alkanes as well as inferring the hydrological characteristics of an ancient lake basin (open vs closed lake).


n-Alkane Hydrogen isotope composition Submerged plant Algae Tibetan Plateau 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Dr. Xiangzhong Li for help with sample collection and Dr. Zheng Wang and Dr. Huanye Wang for supports with GC and GC-TC-IRMS analyses. Two anonymous reviewers are thanked for constructive comments. This study was supported by the National Natural Science Foundation of China (Grant No. 41573005), the National Basic Research Programme of China (Grant No. 2013CB955901) and Key Program of the Chinese Academy of Sciences (Grant No. QYZDY-SSWDQC001).

Supplementary material


  1. Aichner B, Herzschuh U, Wilkes H. 2010a. Influence of aquatic macrophytes on the stable carbon isotopic signatures of sedimentary organic matter in lakes on the Tibetan Plateau. Org Geochem, 41: 706–718CrossRefGoogle Scholar
  2. Aichner B, Herzschuh U, Wilkes H, Schulz H M, Wang Y, Plessen B, Mischke S, Diekmann B, Zhang C. 2012. Ecological development of Lake Donggi Cona, north-eastern Tibetan Plateau, since the late glacial on basis of organic geochemical proxies and non-pollen palynomorphs. Palaeogeogr Palaeoclimatol Palaeoecol, 313-314: 140–149CrossRefGoogle Scholar
  3. Aichner B, Herzschuh U, Wilkes H, Vieth A, Böhner J. 2010b. δD values of n-alkanes in Tibetan lake sediments and aquatic macrophytes—A surface sediment study and application to a 16 ka record from Lake Koucha. Org Geochem, 41: 779–790CrossRefGoogle Scholar
  4. An Z, Porter S C, Kutzbach J E, Wu X, Wang S, Liu X, Zhou W. 2000. Asynchronous holocene optimum of the East Asian monsoon. Quat Sci Rev, 19: 743–762CrossRefGoogle Scholar
  5. An Z, Kutzbach J E, Prell W L, Porter S C. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 411: 62–66CrossRefGoogle Scholar
  6. Cao Y, Liu W, Sauer P E, Wang Z, Li Z. 2012. An evaluation of alumina reaction tube conditioning for high-precision 2H/1H isotope measurements via gas chromatography/thermal conversion/isotope ratio mass spectrometry. Rapid Commun Mass Spectrom, 26: 2577–2583CrossRefGoogle Scholar
  7. Cranwell P A, Eglinton G, Robinson N. 1987. Lipids of aquatic organisms as potential contributors to lacustrine sediments—II. Org Geochem, 11: 513–527CrossRefGoogle Scholar
  8. Currie B S, Rowley D B, Tabor N J. 2005. Middle Miocene paleoaltimetry of southern Tibet: Implications for the role of mantle thickening and delamination in the Himalayan orogen. Geology, 33: 181CrossRefGoogle Scholar
  9. Daniels W C, Russell J M, Giblin A E, Welker J M, Klein E S, Huang Y. 2017. Hydrogen isotope fractionation in leaf waxes in the Alaskan Arctic tundra. Geochim Cosmochim Acta, 213: 216–236CrossRefGoogle Scholar
  10. DeCelles P G, Quade J, Kapp P, Fan M, Dettman D L, Ding L. 2007. High and dry in central Tibet during the Late Oligocene. Earth Planet Sci Lett, 253: 389–401CrossRefGoogle Scholar
  11. Dietze E, Wünnemann B, Hartmann K, Diekmann B, Jin H, Stauch G, Yang S, Lehmkuhl F. 2013. Early to mid-Holocene lake high-stand sediments at Lake Donggi Cona, northeastern Tibetan Plateau, China. Quat Res, 79: 325–336CrossRefGoogle Scholar
  12. Duan Y, Wu Y, Cao X, Zhao Y, Ma L. 2014. Hydrogen isotope ratios of individual n-alkanes in plants from Gannan Gahai Lake (China) and surrounding area. Org Geochem, 77: 96–105CrossRefGoogle Scholar
  13. Duan Y, Xu L. 2012. Distributions of n-alkanes and their hydrogen isotopic composition in plants from Lake Qinghai (China) and the surrounding area. Appl Geochem, 27: 806–814CrossRefGoogle Scholar
  14. Eglinton T I, Eglinton G. 2008. Molecular proxies for paleoclimatology. Earth Planet Sci Lett, 275: 1–16CrossRefGoogle Scholar
  15. Feakins S J, Sessions A L. 2010. Controls on the D/H ratios of plant leaf waxes in an arid ecosystem. Geochim Cosmochim Acta, 74: 2128–2141CrossRefGoogle Scholar
  16. Feakins S J, Bentley L P, Salinas N, Shenkin A, Blonder B, Goldsmith G R, Ponton C, Arvin L J, Wu M S, Peters T, West A J, Martin R E, Enquist B J, Asner G P, Malhi Y. 2016. Plant leaf wax biomarkers capture gradients in hydrogen isotopes of precipitation from the Andes and Amazon. Geochim Cosmochim Acta, 182: 155–172CrossRefGoogle Scholar
  17. Ficken K J, Li B, Swain D L, Eglinton G. 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org Geochem, 31: 745–749CrossRefGoogle Scholar
  18. Gao L, Hou J, Toney J, MacDonald D, Huang Y. 2011. Mathematical modeling of the aquatic macrophyte inputs of mid-chain n-alkyl lipids to lake sediments: Implications for interpreting compound specific hydrogen isotopic records. Geochim Cosmochim Acta, 75: 3781–3791CrossRefGoogle Scholar
  19. Gao L, Edwards E J, Zeng Y, Huang Y. 2014. Major evolutionary trends in hydrogen isotope fractionation of vascular plant leaf waxes. Plos One, 9: e112610CrossRefGoogle Scholar
  20. Guenther F, Aichner B, Siegwolf R, Xu B, Yao T, Gleixner G. 2013. A synthesis of hydrogen isotope variability and its hydrological significance at the Qinghai-Tibetan Plateau. Quat Int, 313-314: 3–16CrossRefGoogle Scholar
  21. Henderson A C G, Holmes J A. 2009. Palaeolimnological evidence for environmental change over the past millennium from Lake Qinghai sediments: A review and future research prospective. Quat Int, 194: 134–147CrossRefGoogle Scholar
  22. Henderson A C G, Holmes J A, Leng M J. 2010. Late Holocene isotope hydrology of Lake Qinghai, NE Tibetan Plateau: Effective moisture variability and atmospheric circulation changes. Quat Sci Rev, 29: 2215–2223CrossRefGoogle Scholar
  23. Herzschuh U, Winter K, Wunnemann B, Li S. 2006. A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra. Quat Int, 154-155: 113–121CrossRefGoogle Scholar
  24. He Y, Zhao C, Wang Z, Wang H, Song M, Liu W, Liu Z. 2013. Late Holocene coupled moisture and temperature changes on the northern Tibetan Plateau. Quat Sci Rev, 80: 47–57CrossRefGoogle Scholar
  25. Hou J, D’Andrea W J, MacDonald D, Huang Y. 2007. Hydrogen isotopic variability in leaf waxes among terrestrial and aquatic plants around Blood Pond, Massachusetts (USA). Org Geochem, 38: 977–984CrossRefGoogle Scholar
  26. Li X, Liu W. 2017. Lake evolution and hydroclimate variation at Lake Qinghai (China) over the past 32 ka inferred from ostracods and their stable isotope composition. J Paleolimnol, 58: 299–316CrossRefGoogle Scholar
  27. Lister G S, Kelts K, Zao C K, Yu J Q, Niessen F. 1991. Lake Qinghai, China: Closed-basin like levels and the oxygen isotope record for ostracoda since the latest Pleistocene. Palaeogeogr Palaeoclimatol Palaeoecol, 84: 141–162CrossRefGoogle Scholar
  28. Liu H, Liu W. 2016. n-Alkane distributions and concentrations in algae, submerged plants and terrestrial plants from the Qinghai-Tibetan Plateau. Org Geochem, 99: 10–22CrossRefGoogle Scholar
  29. Liu W, Liu H, Wang Z, An Z, Cao Y. 2017. Hydrogen isotopic compositions of long-chain leaf wax n-alkanes in Lake Qinghai sediments record palaeohydrological variations during the past 12 ka. Quat Int, 449: 67–74CrossRefGoogle Scholar
  30. Liu W, Wang Z, Cui L, Sauer P E, Cao Y. 2012. Variation of compound-specific hydrogen isotope ratios under changing temperature program in gas chromatography/thermal conversion/isotope ratio mass spectrometry. Rapid Commun Mass Spectrom, 26: 1746–1752CrossRefGoogle Scholar
  31. Liu W, Yang H. 2008. Multiple controls for the variability of hydrogen isotopic compositions in higher plant n-alkanes from modern ecosystems. Glob Change Biol, 14: 2166–2177CrossRefGoogle Scholar
  32. Liu W, Yang H, Li L. 2006. Hydrogen isotopic compositions of n-alkanes from terrestrial plants correlate with their ecological life forms. Oecologia, 150: 330–338CrossRefGoogle Scholar
  33. Liu W, Yang H, Wang H, An Z, Wang Z, Leng Q. 2015. Carbon isotope composition of long chain leaf wax n-alkanes in lake sediments: A dual indicator of paleoenvironment in the Qinghai-Tibet Plateau. Org Geochem, 83-84: 190–201CrossRefGoogle Scholar
  34. Liu W G, Yang H, Wang H Y, Yao Y, Wang Z, Cao Y N. 2016. Influence of aquatic plants on the hydrogen isotope composition of sedimentary long-chain n-alkanes in the Lake Qinghai region, Qinghai-Tibet Plateau. Sci China Earth Sci, 59: 1368–1377CrossRefGoogle Scholar
  35. M’boule D, Chivall D, Sinke-Schoen D, Sinninghe Damsté J S, Schouten S, van der Meer M T J. 2014. Salinity dependent hydrogen isotope fractionation in alkenones produced by coastal and open ocean haptophyte algae. Geochim Cosmochim Acta, 130: 126–135CrossRefGoogle Scholar
  36. Mischke S, Aichner B, Diekmann B, Herzschuh U, Plessen B, Wünnemann B, Zhang C. 2010. Ostracods and stable isotopes of a late glacial and Holocene lake record from the NE Tibetan Plateau. Chem Geol, 276: 95–103CrossRefGoogle Scholar
  37. Mügler I, Sachse D, Werner M, Xu B, Wu G, Yao T, Gleixner G. 2008. Effect of lake evaporation on δD values of lacustrine n-alkanes: A comparison of Nam Co (Tibetan Plateau) and Holzmaar (Germany). Org Geochem, 39: 711–729CrossRefGoogle Scholar
  38. Maloney A E, Shinneman A L C, Hemeon K, Sachs J P. 2016. Exploring lipid 2H/1H fractionation mechanisms in response to salinity with continuous cultures of the diatom Thalassiosira pseudonana. Org Geochem, 101: 154–165CrossRefGoogle Scholar
  39. Opitz S, Wünnemann B, Aichner B, Dietze E, Hartmann K, Herzschuh U, IJmker J, Lehmkuhl F, Li S, Mischke S, Plotzki A, Stauch G, Diekmann B. 2012. Late Glacial and Holocene development of Lake Donggi Cona, north-eastern Tibetan Plateau, inferred from sedimentological analysis. Palaeogeogr Palaeoclimatol Palaeoecol, 337-338: 159–176CrossRefGoogle Scholar
  40. Polissar P J, Freeman K H, Rowley D B, McInerney F A, Currie B S. 2009. Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers. Earth Planet Sci Lett, 287: 64–76CrossRefGoogle Scholar
  41. Qiang M, Chen F, Zhang J, Gao S, Zhou A. 2005. Climatic changes documented by stable isotopes of sedimentary carbonate in Lake Sugan, northeastern Tibetan Plateau of China, since 2 ka BP. Chin Sci Bull, 50: 1930–1939CrossRefGoogle Scholar
  42. Qiang M, Liu Y, Jin Y, Song L, Huang X, Chen F. 2014. Holocene record of eolian activity from Genggahai Lake, northeastern Qinghai-Tibetan Plateau, China. Geophys Res Lett, 41: 589–595CrossRefGoogle Scholar
  43. Qiang M, Song L, Chen F, Li M, Liu X, Wang Q. 2013. A 16-ka lake-level record inferred from macrofossils in a sediment core from Genggahai Lake, northeastern Qinghai-Tibetan Plateau (China). J Paleolimnol, 49: 575–590CrossRefGoogle Scholar
  44. Rao Z, Jia G, Qiang M, Zhao Y. 2014. Assessment of the difference between mid- and long chain compound specific δD n-alkanes values in lacustrine sediments as a paleoclimatic indicator. Org Geochem, 76: 104–117CrossRefGoogle Scholar
  45. Rao Z, Zhu Z, Jia G, Henderson A C G, Xue Q, Wang S. 2009. Compound specific δD values of long chain n-alkanes derived from terrestrial higher plants are indicative of the δD of meteoric waters: Evidence from surface soils in eastern China. Org Geochem, 40: 922–930CrossRefGoogle Scholar
  46. Sachs J P, Maloney A E, Gregersen J, Paschall C. 2016. Effect of salinity on 2H/1H fractionation in lipids from continuous cultures of the coccolithophorid Emiliania huxleyi. Geochim Cosmochim Acta, 189: 96–109CrossRefGoogle Scholar
  47. Sachse D, Billault I, Bowen G J, Chikaraishi Y, Dawson T E, Feakins S J, Freeman K H, Magill C R, McInerney F A, van der Meer M T J, Polissar P, Robins R J, Sachs J P, Schmidt H L, Sessions A L, White J W C, West J B, Kahmen A. 2012. Molecular paleohydrology: Interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annu Rev Earth Planet Sci, 40: 221–249CrossRefGoogle Scholar
  48. Sachse D, Radke J, Gleixner G. 2006. δD values of individual n-alkanes from terrestrial plants along a climatic gradient—Implications for the sedimentary biomarker record. Org Geochem, 37: 469–483CrossRefGoogle Scholar
  49. Schouten S, Ossebaar J, Schreiber K, Kienhuis M V M, Langer G, Benthien A, Bijma J. 2006. The effect of temperature, salinity and growth rate on the stable hydrogen isotopic composition of long chain alkenones produced by Emiliania huxleyi and Gephyrocapsa oceanica. Biogeosciences, 3: 113–119CrossRefGoogle Scholar
  50. Sessions A L, Sylva S P, Summons R E, Hayes J M. 2004. Isotopic exchange of carbon-bound hydrogen over geologic timescales. Geochim Cosmochim Acta, 68: 1545–1559CrossRefGoogle Scholar
  51. Smith F A, Freeman K H. 2006. Influence of physiology and climate on δD of leaf wax n-alkanes from C3 and C4 grasses. Geochim Cosmochim Acta, 70: 1172–1187CrossRefGoogle Scholar
  52. Sternberg L. 1988. D/H ratios of environmental water recorded by D/H ratios of plant lipids. Nature, 333: 59–61CrossRefGoogle Scholar
  53. Tuo J, Wu C, Zhang M, Chen R. 2011. Distribution and carbon isotope composition of lipid biomarkers in Lake Erhai and Lake Gahai sediments on the Tibetan Plateau. J Great Lakes Res, 37: 447–455CrossRefGoogle Scholar
  54. Wang Y, Zhu L, Wang J, Ju J, Peng P, Lin X, Hu J, Nishimura M. 2016. Paleohydrological processes revealed by n-alkane δD in lacustrine sediments of Lake Pumoyum Co, southern Tibetan Plateau, and their response to climate changes during the past 18.5 cal ka. J Paleolimnol, 56: 223–238CrossRefGoogle Scholar
  55. Wang Z, Liu W, Liu Z, Wang H, He Y, Zhang F. 2013. A 1700-year n-alkanes hydrogen isotope record of moisture changes in sediments from Lake Sugan in the Qaidam Basin, northeastern Tibetan Plateau. Holocene, 23: 1350–1354CrossRefGoogle Scholar
  56. Wischnewski J, Mischke S, Wang Y, Herzschuh U. 2011. Reconstructing climate variability on the northeastern Tibetan Plateau since the last Lateglacial—A multi-proxy, dual-site approach comparing terrestrial and aquatic signals. Quat Sci Rev, 30: 82–97CrossRefGoogle Scholar
  57. Xie Y, Xu B Q, Wu G J, Lin S B. 2012. Influence of variation in precipitation on the δD values of terrestrial n-alkanes on the southern Tibetan Plateau. Chin Sci Bull, 57: 2140–2147CrossRefGoogle Scholar
  58. Yang H, Liu W, Leng Q, Hren M T, Pagani M. 2011. Variation in n-alkane δD values from terrestrial plants at high latitude: Implications for paleoclimate reconstruction. Org Geochem, 42: 283–288CrossRefGoogle Scholar
  59. Yao T, Masson-Delmotte V, Gao J, Yu W, Yang X, Risi C, Sturm C, Werner M, Zhao H, He Y, Ren W, Tian L, Shi C, Hou S. 2013. A review of climatic controls on δ 18O in precipitation over the Tibetan Plateau: Observations and simulations. Rev Geophys, 51: 525–548CrossRefGoogle Scholar
  60. Yu G, Tang L, Yang X, Ke X, Harrison S P. 2001. Modern pollen samples from alpine vegetation on the Tibetan Plateau. Glob Ecol Biogeogr, 10: 503–519CrossRefGoogle Scholar
  61. Zhang X, Xu B, Günther F, Mügler I, Lange M, Zhao H, Li J, Gleixner G. 2017. Hydrogen isotope ratios of terrestrial leaf wax n-alkanes from the Tibetan Plateau: Controls on apparent enrichment factors, effect of vapor sources and implication for altimetry. Geochim Cosmochim Acta, 211: 10–27CrossRefGoogle Scholar
  62. Zhao C, Yu Z, Zhao Y, Ito E. 2009. Possible orographic and solar controls of Late Holocene centennial-scale moisture oscillations in the northeastern Tibetan Plateau. Geophys Res Lett, 36: L21705CrossRefGoogle Scholar
  63. Zhao C, Yu Z, Zhao Y, Ito E, Kodama K P, Chen F. 2010. Holocene millennial-scale climate variations documented by multiple lake-level proxies in sediment cores from Hurleg Lake, Northwest China. J Paleolimnol, 44: 995–1008CrossRefGoogle Scholar
  64. Zhao Y, Yu Z, Chen F, Ito E, Zhao C. 2007. Holocene vegetation and climate history at Hurleg Lake in the Qaidam Basin, northwest China. Rev Palaeobot Palynology, 145: 275–288CrossRefGoogle Scholar
  65. Zhao Y, Yu Z, Chen F, Liu X, Ito E. 2008. Sensitive response of desert vegetation to moisture change based on a near-annual resolution pollen record from Gahai Lake in the Qaidam Basin, northwest China. Glob Planet Change, 62: 107–114CrossRefGoogle Scholar
  66. Zhao Y, Yu Z, Liu X, Zhao C, Chen F, Zhang K. 2010. Late holocene vegetation and climate oscillations in the Qaidam Basin of the northeastern Tibetan Plateau. Quat Res, 73: 59–69CrossRefGoogle Scholar
  67. Zhu J, Chen H, Gong G. 2015. Hydrogen and oxygen isotopic compositions of precipitation and its water vapor sources in Eastern Qaidam Basin (in Chinese with English abstract). Environ Sci, 36: 2784–2790Google Scholar
  68. Zhuang G, Brandon M T, Pagani M, Krishnan S. 2014. Leaf wax stable isotopes from Northern Tibetan Plateau: Implications for uplift and climate since 15 Ma. Earth Planet Sci Lett, 390: 186–198CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Loess and Quaternary Geology, Institute of Earth EnvironmentChinese Academy of SciencesXi’anChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Laboratory for Terrestrial Environments, Department of Science and Technology, College of Arts and SciencesBryant UniversitySmithfieldUSA

Personalised recommendations