Advertisement

Science China Earth Sciences

, Volume 61, Issue 6, pp 637–646 | Cite as

Coastal blue carbon: Concept, study method, and the application to ecological restoration

  • Jianwu Tang
  • Shufeng Ye
  • Xuechu Chen
  • Hualei Yang
  • Xiaohong Sun
  • Faming Wang
  • Quan Wen
  • Shaobo Chen
Progress Special Topic: Carbon cycling in the China Seas

Abstract

Coastal blue carbon refers to the carbon taken from atmospheric CO2; fixed by advanced plants (including salt marsh, mangrove, and seagrass), phytoplankton, macroalgae, and marine calcifiers via the interaction of plants and microbes; and stored in nearshore sediments and soils; as well as the carbon transported from the coast to the ocean and ocean floor. The carbon sequestration capacity per unit area of coastal blue carbon is far greater than that of the terrestrial carbon pool. The mechanisms and controls of the carbon sink from salt marshes, mangroves, seagrasses, the aquaculture of shellfish and macroalgae, and the microbial carbon pump need to be further studied. The methods to quantify coastal blue carbon include carbon flux measurements, carbon pool measurements, manipulative experiments, and modeling. Restoring, conserving, and enhancing blue carbon will increase carbon sinks and produce carbon credits, which could be traded on the carbon market. The need to tackle climate change and implement China’s commitment to cut carbon emissions requires us to improve studies on coastal blue carbon science and policy. The knowledge learned from coastal blue carbon improves the conservation and restoration of salt marshes, mangroves, and seagrasses; enhances the function of the microbial carbon pump; and promotes sustainable aquaculture, such as ocean ranching.

Keywords

Coastal Blue carbon Ecological restoration Salt marsh Mangrove Seagrass Microbial carbon pump Aquaculture carbon sink 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank two anonymous reviewers for their valuable comments to improve this paper. Writing of this paper is motivated by the “International forum on Coastal Blue Carbon” held on August 25–27, 2017 in Wenzhou, and “Blue Carbon International Forum” held on November 4, 2017 in Xiamen, where Jianwu Tang made presentations, and benefited from presentations and discussion in these two meetings. This work was supported by the National Natural Science Foundation of China Overseas and Hong Kong-Macao Scholars Collaborative Research Fund (Grant No. 31728003) and the Shanghai University Distinguished Professor (Oriental Scholars) Program (Grant No. JZ2016006).

References

  1. Ahmed N, Bunting S W, Glaser M, Flaherty M S, Diana J S. 2017. Can greening of aquaculture sequester blue carbon? Ambio, 46: 468–477CrossRefGoogle Scholar
  2. Armentano T V, Woodwell G M. 1975. Sedimentation rates in a Long Island marsh determined by 210Pb dating. Limnol Oceanogr, 20: 452–456CrossRefGoogle Scholar
  3. Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw K T, Pilegaard K, Schmid H P, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S. 2001. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Amer Meteorol Soc, 82: 2415–2434CrossRefGoogle Scholar
  4. Brannon E Q, Moseman-Valtierra S M, Rella C W, Martin R M, Chen X, Tang J. 2016. Evaluation of laser-based spectrometers for greenhouse gas flux measurements in coastal marshes. Limnol Oceanogr Methods, 14: 466–476CrossRefGoogle Scholar
  5. Charles H, Dukes J S. 2009. Effects of warming and altered precipitation on plant and nutrient dynamics of a New England salt marsh. Ecol Appl, 19: 1758–1773CrossRefGoogle Scholar
  6. Chen X C, Dai W Q, Huang C J, Pan L P, Wu W, You W H. 2017. Design of Compound Ecological Purification System for Preserving Water Quality of Shanghai Yingwuzhou Wetland (in Chinese). China Water Waster Water, 33: 66–70Google Scholar
  7. Chen X C, Gao R F, Tang J W. 2016. Basic views and technological methods of salt marsh restoration and its progress in implementation (in Chinese). Mar Environ Sci, 3: 1–18Google Scholar
  8. Davis J L, Currin C A, O’Brien C, Raffenburg C, Davis A. 2015. Living shorelines: Coastal resilience with a blue carbon benefit. Plos One, 10: e0142595CrossRefGoogle Scholar
  9. Davidson E A, Savage K, Verchot L V, Navarro R. 2002. Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agric For Meteorol, 113: 21–37CrossRefGoogle Scholar
  10. Deegan L A, Johnson D S, Warren R S, Peterson B J, Fleeger J W, Fagherazzi S, Wollheim W M. 2012. Coastal eutrophication as a driver of salt marsh loss. Nature, 490: 388–392CrossRefGoogle Scholar
  11. Donato D C, Kauffman J B, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M. 2011. Mangroves among the most carbon-rich forests in the tropics. Nat Geosci, 4: 293–297CrossRefGoogle Scholar
  12. Duarte C M, Losada I J, Hendriks I E, Mazarrasa I, Marbà N. 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nat Clim Change, 3: 961–968CrossRefGoogle Scholar
  13. Field C B, Behrenfeld M J, Randerson J T, Falkowski P. 1998. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science, 281: 237–240CrossRefGoogle Scholar
  14. Gao Y P, Fang J G, Tang W, Zhang J H, Reng L H, Du M R. 2013. Seagrass meadow carbon sink and amplification of the carbon sink for eelgrass bed in Sanggou Bay (in Chinese). Prog Fish Sci, 1: 17–21Google Scholar
  15. Guan D M. 2012. Coastal Wetland in China (in Chinese). Beijing: Ocean PressGoogle Scholar
  16. Hendrey G R, Ellsworth D S, Lewin K F, Nagy J N. 1999. A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric CO2. Glob Change Biol, 5: 293–309CrossRefGoogle Scholar
  17. Howard J, Sutton-Grier A, Herr D, Kleypas J, Landis E, Mcleod E, Pidgeon E, Simpson S. 2017. Clarifying the role of coastal and marine systems in climate mitigation. Front Ecol Environ, 15: 42–50CrossRefGoogle Scholar
  18. IPCC. 2013. Climate Change 2013: The Physical Science Basis. Cambridge: Cambridge University PressGoogle Scholar
  19. Jardine S L, Siikamäki J V. 2014. A global predictive model of carbon in mangrove soils. Environ Res Lett, 9: 104013CrossRefGoogle Scholar
  20. Jiao N Z, Luo T W, Zhang Y, Zhang R, Tang K, Chen F, Zeng Y H, Zhang Y Y, Zhao Y L, Zheng Q, Li Y L. 2011. Microbial Carbon Pump in the Ocean-from Microbial Ecological Process to Carbon Cycle Mechanism (in Chinese). J Xiamen Univ-Nat Sci, 50: 387–401Google Scholar
  21. Jiao N Z, Robinson C, Azam F, Thomas H, Baltar F, Dang H, Hardman-Mountford N J, Johnson M, Kirchman D L, Koch B P, Legendre L, Li C, Liu J, Luo T, Luo Y W, Mitra A, Romanou A, Tang K, Wang X, Zhang C, Zhang R. 2014. Mechanisms of microbial carbon sequestration in the ocean-future research directions. Biogeosciences, 11: 5285–5306CrossRefGoogle Scholar
  22. Jiao N Z, Zhang C L, Chen F, Kan J J, Zhang F. 2008. Frontiers and technological advances in microbial processes and carbon cycling in the ocean. In: Mertens L P, ed. Biological Oceanography Research Trends. New York: Nova Science Publishers Inc. 215–266Google Scholar
  23. Jiao N Z, Zhang C L, Li C, Wang X Y, Dang H Y, Zeng Q L, Zhang R, Zhang Y, Tang K, Zhang Z L, Xu D P. 2013. Controllingmechanisms and climate effects of microbial carbon pump in the ocean (in Chinese). Sci Sin Terr, 43: 1–18Google Scholar
  24. Jin L, Lu C Y, Ye Y, Ye G F. 2013. Carbon Storage and Fixation by Kandelia candel Mangrove in Jiulongjiang Estuary (in Chinese). J Fujian Forest Sci Tech, 4: 7–11Google Scholar
  25. Krause-Jensen D, Duarte C M. 2016. Substantial role of macroalgae in marine carbon sequestration. Nat Geosci, 9: 737–742CrossRefGoogle Scholar
  26. Kroeger K D, Crooks S, Moseman-Valtierra S, Tang J. 2017. Restoring tides to reduce methane emissions in impounded wetlands: A new and potent Blue Carbon climate change intervention. Sci Rep, 7: 11914CrossRefGoogle Scholar
  27. Lechtenfeld O J, Hertkorn N, Shen Y, Witt M, Benner R. 2015. Marine sequestration of carbon in bacterial metabolites. Nat Commun, 6: 6711CrossRefGoogle Scholar
  28. Legendre L, Rivkin R B, Weinbauer M G, Guidi L, Uitz J. 2015. The microbial carbon pump concept: Potential biogeochemical significance in the globally changing ocean. Prog Oceanography, 134: 432–450CrossRefGoogle Scholar
  29. Li S, Fan H Q, Qiu G L, Shi Y J. 2010. Review on research of seagrass beds restoration (in Chinese). Acta Ecol Sin, 30: 2443–2453CrossRefGoogle Scholar
  30. Li X G, Guo K, Feng X H, Liu X J. 2017. Carbon storage of soil-vegetation system under different land use patterns in saline coastal regions (in Chinese). Chin J Eco-Agricul, 25: 1580–1590Google Scholar
  31. Liang C, Schimel J P, Jastrow J D. 2017. The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol, 2: 17105CrossRefGoogle Scholar
  32. Lin P. 2001. A review on the mangrove research (in Chinese). J Xiamen Univ-Nat Sci, 40: 592–603Google Scholar
  33. Livingston G P, Hutchinson G L. 1995. Enclosure-based measurement of trace gas exchange: applications and sources of error. In: Matson P A, Harris R C, eds. Biogenic Trace Gases: Measuring Emissions From Soil and Water. Oxford: Blackwell Science Ltd. 14–51Google Scholar
  34. Macreadie P I, Trevathan-Tackett S M, Skilbeck C G, Sanderman J, Curlevski N, Jacobsen G, Seymour J R. 2015. Losses and recovery of organic carbon from a seagrass ecosystem following disturbance. Proc R Soc B, 282: 20151537CrossRefGoogle Scholar
  35. Marbà N, Duarte C M, Agustí S. 2007. Allometric scaling of plant life history. Proceedings of the National Academy of Sciences of the United States of America, 104: 15777–15780CrossRefGoogle Scholar
  36. Mcleod E, Chmura G L, Bouillon S, Salm R, Björk M, Duarte C M, Lovelock C E, Schlesinger W H, Silliman B R. 2011. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ, 9: 552–560CrossRefGoogle Scholar
  37. Melillo J M, Butler S, Johnson J, Mohan J, Steudler P, Lux H, Burrows E, Bowles F, Smith R, Scott L, Vario C, Hill T, Burton A, Zhou Y M, Tang J. 2011. Soil warming, carbon-nitrogen interactions, and forest carbon budgets. Proc Natl Acad Sci USA, 108: 9508–9512CrossRefGoogle Scholar
  38. Melillo J M, Steudler P A, Aber J D, Newkirk K, Lux H, Bowles F P, Catricala C, Magill A, Ahrens T, Morrisseau S. 2002. Soil warming and carbon-cycle feedbacks to the climate system. Science, 298: 2173–2176CrossRefGoogle Scholar
  39. Morris J T, Barber D C, Callaway J C, Chambers R, Hagen S C, Hopkinson C S, Johnson B J, Megonigal P, Neubauer S C, Troxler T, Wigand C. 2016. Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state. Earth’s Future, 4: 110–121CrossRefGoogle Scholar
  40. Nahlik A M, Fennessy M S. 2016. Carbon storage in US wetlands. Nat Commun, 7: 13835CrossRefGoogle Scholar
  41. Norman J M, Garcia R, Verma S B. 1992. Soil surface CO2 fluxes and the carbon budget of a grassland. J Geophys Res, 97: 18845–18853CrossRefGoogle Scholar
  42. Nellemann C, Corcoran E, Duarte C M, Valdés L, De Young C, Fonseca L, Grimsditch G. 2009. Blue Carbon: A Rapid Response Assessment. United Nations Environment ProgrammeGoogle Scholar
  43. Osterholz H, Niggemann J, Giebel H A, Simon M, Dittmar T. 2015. Inefficient microbial production of refractory dissolved organic matter in the ocean. Nat Commun, 6: 7422CrossRefGoogle Scholar
  44. Peng C J, Qian J W, Guo X D, Zhao H W, Hu N X, Yang Q, Chen C P, Chen L Z. 2016. Vegetation carbon stocks and net primary productivity of the mangrove forests in Shenzhen, China (in Chinese). Chin J Appl Ecol, 27: 2059–2065Google Scholar
  45. Qiu G L, Lin X Z, Li Z S, Fan H Q, Zhou H L, Liu G H. 2014. Seagrass ecosystems: Contributions to and mechanisms of carbon sequestration (in Chinese). Chin J Appl Ecol, 25:1825–1832Google Scholar
  46. Shao X X, Li W H, Wu M, Yang W Y, Jiang K Y, Ye X Q. 2013. Dynamics of carbon, nitrogen and phosphorus storage of three dominant marsh Plants in Hangzhou Bay coastal wetland (in Chinese). Environ Sci, 34: 3451–3457Google Scholar
  47. Tang Q S, Liu H. 2016. Strategy for Carbon Sink and Its Amplification in Marine Fisheries (in Chinese). Eng Sci, 18: 68–73CrossRefGoogle Scholar
  48. Wang S Q, Wang H Q, Fang Y, Li K. 2014. Ability of plant carbon fixation in the coastal wetland of Chongming Island (in Chinese). Chin J Ecol, 33: 915–921Google Scholar
  49. Xie L P, Wang M, Wang B D, Shi X Y, Xin M, Wei Q S, He X P, Guo F. 2017. Distribution pattern and influencing factors of vegetation carbon storage of Tamarix chinense in the coastal wetland of Laizhou Bay, China (in Chinese). Chin J Appl Ecol, 28: 1103–1111Google Scholar
  50. Zhang H B, Luo Y M, Liu X H, Fu C C. 2015. Current researches and prospects on the coastal blue carbon (in Chinese). Scientia Sinica Terrae, 45: 1641–1648CrossRefGoogle Scholar
  51. Zhang J H, Fang J G, Tang Q S. 2005. The contribution of shellfish and seaweed mariculture in China to the carbon cycle of coastal ecosystem (in Chinese). Adv Earth Sci, 20: 359–365Google Scholar
  52. Zhang L, Guo Z H, Li Z Y. 2013. Carbon storage and carbon sink of mangrove wetland: Research progress (in Chinese). Chin J Appl Ecol, 24: 1153–1159Google Scholar
  53. Zhang X L, Zhang C H, Xu Z J, Hou X J, Cai Q F. 2012. On the relation between carbon storage and reinforced fixation of the coastal wetland vegetation in the Yellow River delta area (in Chinese). J Safety Environ, 12: 145–149Google Scholar
  54. Zhang Y, Zhao M X, Cui Q, Fan W, Qi J G, Chen Y, Zhang Y Y, Gao K S, Fan J F, Wang G Y, Yan C L, Lu H L, Luo Y W, Zhang Z L, Zheng Q, Xiao W, Jiao N Z. 2017. Processes of coastal ecosystem carbon sequestration and approaches for increasing carbon sink. Sci China Earth Sci, 60: 809–820CrossRefGoogle Scholar
  55. Zheng Y M, Niu Z G, Gong P, Dai Y J, ShangGuan W. 2013. Preliminary estimation of the organic carbon pool in China’s wetlands (in Chinese). Chin Sci Bull, 58: 170–180Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jianwu Tang
    • 1
    • 2
  • Shufeng Ye
    • 3
  • Xuechu Chen
    • 2
  • Hualei Yang
    • 2
  • Xiaohong Sun
    • 4
  • Faming Wang
    • 1
  • Quan Wen
    • 5
  • Shaobo Chen
    • 6
  1. 1.Marine Biological LaboratoryWoods HoleUSA
  2. 2.College of Ecology and Environmental ScienceEast China Normal University; State Key Laboratory of Estuarine and Coastal Research; Shanghai Key Lab for Urban Ecological Processes and Eco-RestorationShanghaiChina
  3. 3.East China Sea Branch of State Oceanic AdministrationShanghaiChina
  4. 4.Marine CollegeShandong University (Weihai)WeihaiChina
  5. 5.Environmental Monitoring CenterState Oceanic AdministrationDalianChina
  6. 6.Zhejiang Mariculture Research InstituteWenzhouChina

Personalised recommendations