Science China Earth Sciences

, Volume 61, Issue 6, pp 804–822 | Cite as

Simulated effects of interactions between ocean acidification, marine organism calcification, and organic carbon export on ocean carbon and oxygen cycles

  • Han Zhang
  • Long Cao
Research Paper


Ocean acidification caused by oceanic uptake of anthropogenic carbon dioxide (CO2) tends to suppress the calcification of some marine organisms. This reduced calcification then enhances surface ocean alkalinity and increases oceanic CO2 uptake, a process that is termed calcification feedback. On the other hand, decreased calcification also reduces the export flux of calcium carbonate (CaCO3), potentially reducing CaCO3-bound organic carbon export flux and CO2 uptake, a process that is termed ballast feedback. In this study, we incorporate a range of different parameterizations of the links between organic carbon export, calcification, and ocean acidification into an Earth system model, in order to quantify the long-term effects on oceanic CO2 uptake that result from calcification and ballast feedbacks. We utilize an intensive CO2 emission scenario to drive the model in which an estimated fossil fuel resource of 5000 Pg C is burnt out over the course of just a few centuries. Simulated results show that, in the absence of both calcification and ballast feedbacks, by year 3500, accumulated oceanic CO2 uptake is 2041 Pg C. Inclusion of calcification feedback alone increases the simulated uptake by 629 Pg C (31%), while the inclusion of both calcification and ballast feedbacks increase simulated uptake by 449–498 Pg C (22–24%), depending on the parameter values used in the ballast feedback scheme. These results indicate that ballast effect counteracts calcification effect in oceanic CO2 uptake. Ballast effect causes more organic carbon to accumulate and decompose in the upper ocean, which in turn leads to decreased oxygen concentration in the upper ocean and increased oxygen at depths. By year 2600, the inclusion of ballast effect would decrease oxygen concentration by 11% at depth of ca. 200 m in tropics. Our study highlights the potentially critical effects of interactions between ocean acidification, marine organism calcification, and CaCO3-bound organic carbon export on the ocean carbon and oxygen cycles.


Ocean carbon cycle Ocean acidification Carbon cycle modeling Carbon cycle-climate feedback 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was supported by the National Natural Science Foundation of China (Grant Nos. 41675063, 41422503 & 41276073), the National Key Basic Research Program of China (Grant No. 2015CB953601), and the Fundamental Research Funds for the Central Universities.


  1. Archer D. 1991. Modeling the calcite lysocline. J Geophys Res, 96: 17037–17050CrossRefGoogle Scholar
  2. Archer D. 1996. A data-driven model of the global calcite lysocline. Glob Biogeochem Cycle, 10: 511–526CrossRefGoogle Scholar
  3. Archer D. 2005. Fate of fossil fuel CO2 in geologic time. J Geophys Res-Oceans, 110: C09S05CrossRefGoogle Scholar
  4. Archer D, Kheshgi H, Maier-Reimer E. 1997. Multiple timescales for neutralization of fossil fuel CO2. Geophys Res Lett, 24: 405–408CrossRefGoogle Scholar
  5. Armstrong R A, Lee C, Hedges J I, Honjo S, Wakeham S G. 2002. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-Sea Res Part II-Top Stud Oceanogr, 49: 219–236CrossRefGoogle Scholar
  6. Armstrong R A, Peterson M L, Lee C, Wakeham S G. 2009. Settling velocity spectra and the ballast ratio hypothesis. Deep-Sea Res Part IITop Stud Oceanogr, 56: 1470–1478CrossRefGoogle Scholar
  7. Balch W M, Bowler B C, Drapeau D T, Poulton A J, Holligan P M. 2010. Biominerals and the vertical flux of particulate organic carbon from the surface ocean. Geophys Res Lett, 37: L22605CrossRefGoogle Scholar
  8. Barker S, Elderfield H. 2002. Foraminiferal calcification response to glacial- interglacial changes in atmospheric CO2. Science, 297: 833–836CrossRefGoogle Scholar
  9. Barker S, Higgins J A, Elderfield H. 2003. The future of the carbon cycle: Review, calcification response, ballast and feedback on atmospheric CO2. Philos Trans R Soc A-Math Phys Eng Sci, 361: 1977–1999CrossRefGoogle Scholar
  10. Berelson W M. 2001. Particle settling rates increase with depth in the ocean. Deep-Sea Res Part II-Top Stud Oceanogr, 49: 237–251CrossRefGoogle Scholar
  11. Broecker W S, Peng T H. 1987. The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change. Glob Biogeochem Cycle, 1: 15–29CrossRefGoogle Scholar
  12. Caldeira K, Wickett M E. 2003. Anthropogenic carbon and ocean pH. Nature, 425: 365–365CrossRefGoogle Scholar
  13. Cao L, Zheng M, Caldeira K. 2016. Simulated effect of deep-sea sedimentation and terrestrial weathering on projections of ocean acidification. J Geophys Res-Oceans, 121: 2641–2658CrossRefGoogle Scholar
  14. Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A. 2013. Carbon and other biogeochemical cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate ChangeGoogle Scholar
  15. Cox P M. 2001. Description of the “TRIFFID” dynamic global vegetation model. Hadley Centre technical note, 24: 1–16Google Scholar
  16. Eby M, Zickfeld K, Montenegro A, Archer D, Meissner K J, Weaver A J. 2009. Lifetime of anthropogenic climate change: Millennial time scales of potential CO2 and surface temperature perturbations. J Clim, 22: 2501–2511CrossRefGoogle Scholar
  17. Emerson S, Bender M. 1981. Carbon fluxes at the sediment-water interface of the deep-sea: Calcium-carbonate preservation. J Mar Res, 39: 139–162Google Scholar
  18. Engel A, Thoms S, Riebesell U, Rochelle-Newall E, Zondervan I. 2004. Polysaccharide aggregation as a potential sink of marine dissolved organic carbon. Nature, 428: 929–932CrossRefGoogle Scholar
  19. Feely R A, Sabine C L, Lee K, Berelson W, Kleypas J, Fabry V J, Millero F J. 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science, 305: 362–366CrossRefGoogle Scholar
  20. Francois R, Honjo S, Krishfield R, Manganini S. 2002. Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean. Glob Biogeochem Cycle, 16: 34-1–34-20CrossRefGoogle Scholar
  21. Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews H D, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler K G, Schnur R, Strassmann K, Weaver A J, Yoshikawa C, Zeng N. 2006. Climate-carbon cycle feedback analysis: Results from the C4 MIP model intercomparison. J Clim, 19: 3337–3353CrossRefGoogle Scholar
  22. Ganachaud A. 2003. Large-scale mass transports, water mass formation, and diffusivities estimated from World Ocean Circulation Experiment (WOCE) hydrographic data. J Geophys Res, 108: 3213CrossRefGoogle Scholar
  23. Ganachaud A, Wunsch C. 2000. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data.. Nature, 408: 453–457CrossRefGoogle Scholar
  24. Gangstø R, Joos F, Gehlen M. 2011. Sensitivity of pelagic calcification to ocean acidification. Biogeosciences, 8: 433–458CrossRefGoogle Scholar
  25. Gattuso J P, Frankignoulle M, Bourge I, Romaine S, Buddemeier R W. 1998. Effect of calcium carbonate saturation of seawater on coral calcification. Glob Planet Change, 18: 37–46CrossRefGoogle Scholar
  26. Gehlen M, Bopp L, Aumont O. 2008. Short-term dissolution response of pelagic carbonate sediments to the invasion of anthropogenic CO2: A model study. Geochem Geophys Geosyst, 9: Q02012CrossRefGoogle Scholar
  27. Gehlen M, Bopp L, Emprin N, Aumont O, Heinze C, Ragueneau O. 2006. Reconciling surface ocean productivity, export fluxes and sediment composition in a global biogeochemical ocean model. Biogeosciences, 3: 521–537CrossRefGoogle Scholar
  28. Gent P R, Mcwilliams J C. 1990. Isopycnal mixing in ocean circulation models. J Phys Oceanogr, 20: 150–155CrossRefGoogle Scholar
  29. Gerdes R, Köberle C, Willebrand J. 1991. The influence of numerical advection schemes on the results of ocean general circulation models. Clim Dyn, 5: 211–226CrossRefGoogle Scholar
  30. Gregory J M, Dixon K W, Stouffer R J, Weaver A J, Driesschaert E, Eby M, Fichefet T, Hasumi H, Hu A, Jungclaus J H, Kamenkovich I V, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Sokolov A P, Thorpe R B. 2005. A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys Res Lett, 32: L12703CrossRefGoogle Scholar
  31. Heinze C. 2004. Simulating oceanic CaCO3 export production in the greenhouse. Geophys Res Lett, 31: L16308CrossRefGoogle Scholar
  32. Hofmann M, Schellnhuber H J. 2009. Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes. Proc Natl Acad Sci USA, 106: 3017–3022CrossRefGoogle Scholar
  33. Howard M T, Winguth A M E, Klaas C, Maier-Reimer E. 2006. Sensitivity of ocean carbon tracer distributions to particulate organic flux parameterizations. Glob Biogeochem Cycle, 20: GB3011CrossRefGoogle Scholar
  34. Ilyina T, Zeebe R E. 2012. Detection and projection of carbonate dissolution in the water column and deep-sea sediments due to ocean acidification. Geophys Res Lett, 39: L06606CrossRefGoogle Scholar
  35. Iversen M H, Ploug H. 2010. Ballast minerals and the sinking carbon flux in the ocean: Carbon-specific respiration rates and sinking velocity of marine snow aggregates. Biogeosciences, 7: 2613–2624CrossRefGoogle Scholar
  36. Jin X, Gruber N, Dunne J P, Sarmiento J L, Armstrong R A. 2006. Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions. Glob Biogeochem Cycle, 20: GB2015CrossRefGoogle Scholar
  37. Joos F, Plattner G K, Stocker T F, Marchal O, Schmittner A. 1999. Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science, 284: 464–467CrossRefGoogle Scholar
  38. Key R M, Kozyr A, Sabine C L, Lee K, Wanninkhof R, Bullister J L, Feely R A, Millero F J, Mordy C, Peng T H. 2004. A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Glob Biogeochem Cycle, 18: GB4031CrossRefGoogle Scholar
  39. Klaas C, Archer D E. 2002. Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio. Glob Biogeochem Cycle, 16: 63-1–63-14CrossRefGoogle Scholar
  40. Langdon C, Takahashi T, Sweeney C, Chipman D, Goddard J, Marubini F, Aceves H, Barnett H, Atkinson M J. 2000. Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Glob Biogeochem Cycle, 14: 639–654CrossRefGoogle Scholar
  41. Lima I D, Lam P J, Doney S C. 2014. Dynamics of particulate organic carbon flux in a global ocean model. Biogeosciences, 11: 1177–1198CrossRefGoogle Scholar
  42. Lumpkin R, Speer K. 2003. Large-scale vertical and horizontal circulation in the North Atlantic Ocean. J Phys Oceanogr, 33: 1902–1920CrossRefGoogle Scholar
  43. Meissner K J, Weaver A J, Matthews H D, Cox P M. 2003. The role of land surface dynamics in glacial inception: A study with the UVic Earth System Model. Clim Dyn, 21: 515–537CrossRefGoogle Scholar
  44. Moore J K, Doney S C, Lindsay K. 2004. Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochem Cy, 18: GB4028CrossRefGoogle Scholar
  45. Najjar R G, Jin X, Louanchi F, Aumont O, Caldeira K, Doney S C, Dutay J C, Follows M, Gruber N, Joos F, Lindsay K, Maier-Reimer E, Matear R J, Matsumoto K, Monfray P, Mouchet A, Orr J C, Plattner G K, Sarmiento J L, Schlitzer R, Slater R D, Weirig M F, Yamanaka Y, Yool A. 2007. Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean: Results from Phase II of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2). Glob Biogeochem Cycle, 21: GB3007CrossRefGoogle Scholar
  46. Oka A, Kato S, Hasumi H. 2008. Evaluating effect of ballast mineral on deep-ocean nutrient concentration by using an ocean general circulation model. Glob Biogeochem Cycle, 22: GB3004CrossRefGoogle Scholar
  47. Orr J C, Najjar R, Sabine C L, Joos F. 1999. Design of OCMIP-2 simulations of chlorofluorocarbons, the solubility pump and common biogeochemistry. Internal OCMIP ReportGoogle Scholar
  48. Pachauri R K, Meyer L A, Barros V R, Broome J, Cramer W, Christ R. 2014. Synthesis report: Summary for policymakers. In: Pachauri R K, Meyer L A, eds. Climate Change 2014: Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, 4Google Scholar
  49. Pilskaln C H, Lehmann C, Paduan J B, Silver M W. 1998. Spatial and temporal dynamics in marine aggregate abundance, sinking rate and flux: Monterey Bay, central California. Deep-Sea Res Part II-Top Stud Oceanogr, 45: 1803–1837CrossRefGoogle Scholar
  50. Pinsonneault A J, Matthews H D, Galbraith E D, Schmittner A. 2012. Calcium carbonate production response to future ocean warming and acidification. Biogeosciences, 9: 2351–2364CrossRefGoogle Scholar
  51. Plattner G K, Joos F, Stocker T F, Marchal O. 2001. Feedback mechanisms and sensitivities of ocean carbon uptake under global warming. Tellus B, 53: 564–592Google Scholar
  52. Ragueneau O, Schultes S, Bidle K, Claquin P, Moriceau B. 2006. Si and C interactions in the world ocean: Importance of ecological processes and implications for the role of diatoms in the biological pump. Glob Biogeochem Cycle, 20: GB4S02CrossRefGoogle Scholar
  53. Ridgwell A, Hargreaves J C. 2007. Regulation of atmospheric CO2 by deep-sea sediments in an Earth system model. Glob Biogeochem Cycle, 21: GB2008CrossRefGoogle Scholar
  54. Ridgwell A, Hargreaves J C, Edwards N R, Annan J D, Lenton T M, Marsh R, Yool A, Watson A. 2007b. Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling. Biogeosciences, 4: 87–104CrossRefGoogle Scholar
  55. Ridgwell A, Schmidt D N, Turley C, Brownlee C, Maldonado M T, Tortell P, Young J R. 2009. From laboratory manipulations to Earth system models: Scaling calcification impacts of ocean acidification. Biogeosciences, 6: 2611–2623CrossRefGoogle Scholar
  56. Ridgwell A, Zondervan I, Hargreaves J C, Bijma J, Lenton T M. 2007a. Assessing the potential long-term increase of oceanic fossil fuel CO2 uptake due to CO2-calcification feedback. Biogeosciences, 4: 481–492CrossRefGoogle Scholar
  57. Riebesell U, Körtzinger A, Oschlies A. 2009. Sensitivities of marine carbon fluxes to ocean change. Proc Natl Acad Sci USA, 106: 20602–20609CrossRefGoogle Scholar
  58. Riebesell U, Zondervan I, Rost B, Tortell P D, Zeebe R E, Morel F M M. 2000. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature, 407: 364–367CrossRefGoogle Scholar
  59. Sarmiento J L, Gruber N. 2006. Ocean Biogeochemical Dynamics. Princeton and Oxford: Princeton University Press. 73–394Google Scholar
  60. Schartau M, Engel A, Schröter J, Thoms S, Völker C, Wolf-Gladrow D. 2007. Modelling carbon overconsumption and the formation of extracellular particulate organic carbon. Biogeosciences, 4: 433–454CrossRefGoogle Scholar
  61. Schmittner A, Oschlies A, Giraud X, Eby M, Simmons H L. 2005. A global model of the marine ecosystem for long-term simulations: Sensitivity to ocean mixing, buoyancy forcing, particle sinking, and dissolved organic matter cycling. Glob Biogeochem Cycle, 19: GB3004CrossRefGoogle Scholar
  62. Schmittner A, Oschlies A, Matthews H D, Galbraith E D. 2008. Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD. Glob Biogeochem Cycle, 22: GB1013CrossRefGoogle Scholar
  63. Schneider B, Bopp L, Gehlen M, Segschneider J, Frölicher T L, Cadule P, Friedlingstein P, Doney S C, Behrenfeld M J, Joos F. 2008. Climateinduced interannual variability of marine primary and export production in three global coupled climate carbon cycle models. Biogeosciences, 5: 597–614CrossRefGoogle Scholar
  64. Simmons H L, Jayne S R, Laurent L C S, Weaver A J. 2004. Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Model, 6: 245–263CrossRefGoogle Scholar
  65. Smethie Jr W M, Fine R A. 2001. Rates of North Atlantic Deep Water formation calculated from chlorofluorocarbon inventories. Deep-Sea Res Part I-Oceanogr Res Pap, 48: 189–215CrossRefGoogle Scholar
  66. Stouffer R J, Yin J, Gregory J M, Dixon K W, Spelman M J, Hurlin W, Weaver A J, Eby M, Flato G M, Hasumi H, Hu A, Jungclaus J H, Kamenkovich I V, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Peltier W R, Robitaille D Y, Sokolov A, Vettoretti G, Weber S L. 2006. Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim, 19: 1365–1387CrossRefGoogle Scholar
  67. Sundquist E T. 1990. Influence of deep-sea benthic processes on atmospheric CO2. Philos Trans R Soc A-Math Phys Eng Sci, 331: 155–165CrossRefGoogle Scholar
  68. Takahashi T, Sutherland S C, Wanninkhof R, Sweeney C, Feely R A, Chipman D W, Hales B, Friederich G, Chavez F, Sabine C, Watson A, Bakker D C E, Schuster U, Metzl N, Yoshikawa-Inoue H, Ishii M, Midorikawa T, Nojiri Y, Körtzinger A, Steinhoff T, Hoppema M, Olafsson J, Arnarson T S, Tilbrook B, Johannessen T, Olsen A, Bellerby R, Wong C S, Delille B, Bates N R, de Baar H J W. 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Res Part II-Top Stud Oceanogr, 56: 554–577CrossRefGoogle Scholar
  69. Talley L D, Reid J L, Robbins P E. 2003. Data-based meridional overturning streamfunctions for the global ocean. J Clim, 16: 3213–3226CrossRefGoogle Scholar
  70. Thorpe S A. 2007. An Introduction to Ocean Turbulence Preface. Cambridge, New York: Cambridge University Press. 28CrossRefGoogle Scholar
  71. Weaver A J, Eby M, Wiebe E C, Bitz C M, Duffy P B, Ewen T L, Fanning A F, Holland M M, MacFadyen A, Matthews H D, Meissner K J, Saenko O, Schmittner A, Wang H, Yoshimori M. 2001. The UVic earth system climate model: Model description, climatology, and applications to past, present and future climates. Atmosphere-Ocean, 39: 361–428CrossRefGoogle Scholar
  72. Weber S L, Drijfhout S S, Abe-Ouchi A, Crucifix M, Eby M, Ganopolski A, Murakami S, Otto-Bliesner B, Peltier W R. 2007. The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations. Clim Past, 3: 51–64CrossRefGoogle Scholar
  73. Zhai W, de Zhao H. 2016. Quantifying air–sea re-equilibration-implied ocean surface CO2 accumulation against recent atmospheric CO2 rise. J Oceanogr, 72: 651–659CrossRefGoogle Scholar
  74. Zhang H, Cao L. 2016. Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification. Sci Rep, 6: 20284CrossRefGoogle Scholar
  75. Zickfeld K, Eby M, Weaver A J, Alexander K, Crespin E, Edwards N R, Eliseev AV, Feulner G, Fichefet T, Forest C E, Friedlingstein P, Goosse H, Holden P B, Joos F, Kawamiya M, Kicklighter D, Kienert H, Matsumoto K, Mokhov I I, Monier E, Olsen S M, Pedersen J O P, Perrette M, Philippon-Berthier G, Ridgwell A, Schlosser A, Schneider Von Deimling T, Shaffer G, Sokolov A, Spahni R, Steinacher M, Tachiiri K, Tokos K S, Yoshimori M, Zeng N, Zhao F. 2013. Long-term climate change commitment and reversibility: An EMIC intercomparison. J Clim, 26: 5782–5809CrossRefGoogle Scholar
  76. Zondervan I, Zeebe R E, Rost B, Riebesell U. 2001. Decreasing marine biogenic calcification: A negative feedback on rising atmospheric pCO2. Glob Biogeochem Cycle, 15: 507–516CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Atmospheric Sciences, School of Earth SciencesZhejiang UniversityHangzhouChina

Personalised recommendations