Skip to main content
Log in

Distribution of glycerol dialkyl glycerol tetraethers in surface soils along an altitudinal transect at cold and humid Mountain Changbai: Implications for the reconstruction of paleoaltimetry and paleoclimate

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Glycerol Dialkyl Glycerol Tetraethers (GDGTs) serve as important tools for the quantitative reconstruction of paleoclimate and paleoecology in both continental and marine environments. Previous studies of GDGTs in the terrestrial environments focused primarily on the soils from the relatively warm-humid or cold-dry regions. However, it is still unclear how GDGTs respond to environmental variables in the cold-humid regions. Here, we collected soils along an altitudinal transect of Mountain (Mt.) Changbai, which has a typical cold-humid climate, to investigate the distribution of GDGTs and the response of GDGT-based proxies to changes in climate along the transect. The shift in the distribution of archaeal isoprenoidal GDGTs (isoGDGTs) revealed that the archaeal community varied significantly along the transect, which can affect the relationship between TEX86 and mean annual air temperature (MAT). In addition, the increased temperature seasonality at higher altitudes exerted a significant impact on TEX86. We proposed a global calibration of TEX86 for the growing season temperature reconstruction in the soil environments: T=85.19×TEX86−46.30 (R2=0.84, p<0.001). The methylation indices for 5-methyl branched GDGTs (brGDGTs) including MBT′5me and MBT5/6, showed correlation with soil water content but no relationship with MAT, indicating that MBT′5meand MBT5/6 from cold-humid environments may be not suitable for temperature and altitude reconstruction. In contrast, the recently developed pH proxies, including MBT′6me (the methylation index for 6-methyl brGDGTs), CBT (Cyclisation index of Branched Tetraethers), IRIIa’ (Isomer ratio of IIa′) and IRIIIa′ (Isomer ratio of IIIa′) exhibited significant correlations with soil pH, suggesting these proxies can still be used for soil pH reconstruction in the coldhumid regions. The combination of MBT′5me and MBT′6me was strongly related to different types of climate (cold-dry, warmhumid, cold-humid, and warm-dry). For example, MBT′5me<0.65 and MBT′6me>0.55 are diagnostic for the cold-humid climate. Thus, the combination of MBT′5me and MBT′6me has the potential as a tool for the identification of different types of paleoclimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson V J, Shanahan T M, Saylor J E, Horton B K, Mora A R. 2014. Sources of local and regional variability in the MBT′/CBT paleotemperature proxy: Insights from a modern elevation transect across the Eastern Cordillera of Colombia. Org Geochem, 69: 42–51

    Article  Google Scholar 

  • Bai Y, Fang X, Jia G, Sun J, Wen R, Ye Y. 2015. Different altitude effect of leaf wax n-alkane δD values in surface soils along two vapor transport pathways, southeastern Tibetan Plateau. Geochim Cosmochim Acta, 170: 94–107

    Article  Google Scholar 

  • Bershaw J, Garzione C N, Higgins P, MacFadden B J, Anaya F, Alvarenga H. 2010. Spatial-temporal changes in Andean plateau climate and elevation from stable isotopes of mammal teeth. Earth Planet Sci Lett, 289: 530–538

    Article  Google Scholar 

  • Besseling M A, Hopmans E C, Sinninghe Damsté J S, Villanueva L. 2017. Benthic Archaea as potential sources of tetraether membrane lipids in sediments across an oxygen minimum zone. Biogeosci Discuss, https://doi.org/10.5194/bg-2017-289

    Google Scholar 

  • Blaga C I, Reichart G J, Heiri O, Sinninghe Damsté J S. 2008. Tetraether membrane lipid distributions in water-column particulate matter and sediments: A study of 47 European lakes along a north-south transect. J Paleolimnol, 41: 523–540

    Article  Google Scholar 

  • Blaga C I, Reichart G J, Vissers E W, Lotter A F, Anselmetti F S, Sinninghe Damsté J S. 2011. Seasonal changes in glycerol dialkyl glycerol tetraether concentrations and fluxes in a perialpine lake: Implications for the use of the TEX86 and BIT proxies. Geochim Cosmochim Acta, 75: 6416–6428

    Article  Google Scholar 

  • Blyth A J, Schouten S. 2013. Calibrating the glycerol dialkyl glycerol tetraether temperature signal in speleothems. Geochim Cosmochim Acta, 109: 312–328

    Article  Google Scholar 

  • Blyth A J, Jex C N, Baker A, Khan S J, Schouten S. 2014. Contrasting distributions of glycerol dialkyl glycerol tetraethers (GDGTs) in speleothems and associated soils. Org Geochem, 69: 1–10

    Article  Google Scholar 

  • Cao P, Zhang L M, Shen J P, Zheng Y M, Di H J, He J Z. 2012. Distribution and diversity of archaeal communities in selected Chinese soils. Fems Microbiol Ecol, 80: 146–158

    Article  Google Scholar 

  • Coffinet S, Huguet A, Williamson D, Fosse C, Derenne S. 2014. Potential of GDGTs as a temperature proxy along an altitudinal transect at Mount Rungwe (Tanzania). Org Geochem, 68: 82–89

    Article  Google Scholar 

  • Dang X Y, Xue J T, Yang H, Xie S C. 2016a. Environmental impacts on the distribution of microbial tetraether lipids in Chinese lakes with contrasting pH: Implications for lacustrine paleoenvironmental reconstructions. Sci China Earth Sci, 59: 939–950

    Article  Google Scholar 

  • Dang X, Yang H, Naafs B D A, Pancost R D, Xie S. 2016b. Evidence of moisture control on the methylation of branched glycerol dialkyl glycerol tetraethers in semi-arid and arid soils. Geochim Cosmochim Acta, 189: 24–36

    Article  Google Scholar 

  • De Jonge C, Hopmans E C, Stadnitskaia A, Rijpstra W I C, Hofland R, Tegelaar E, Sinninghe Damsté J S. 2013. Identification of novel pentaand hexamethylated branched glycerol dialkyl glycerol tetraethers in peat using HPLC-MS2, GC-MS and GC-SMB-MS. Org Geochem, 54: 78–82

    Article  Google Scholar 

  • De Jonge C, Hopmans E C, Zell C I, Kim J H, Schouten S, Sinninghe Damsté J S. 2014a. Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: Implications for palaeoclimate reconstruction. Geochim Cosmochim Acta, 141: 97–112

    Article  Google Scholar 

  • De Jonge C, Stadnitskaia A, Hopmans E C, Cherkashov G, Fedotov A, Sinninghe Damsté J S. 2014b. In situ produced branched glycerol dialkyl glycerol tetraethers in suspended particulate matter from the Yenisei River, Eastern Siberia. Geochim Cosmochim Acta, 125: 476–491

    Article  Google Scholar 

  • Deng L, Jia G, Jin C, Li S. 2016. Warm season bias of branched GDGT temperature estimates causes underestimation of altitudinal lapse rate. Org Geochem, 96: 11–17

    Article  Google Scholar 

  • Deng T, Wang S Q, Xie G P, Li Q, Hou S K, Sun B Y. 2011. A mammalian fossil from the Dingqing Formation in the Lunpola Basin, northern Tibet, and its relevance to age and paleo-altimetry. Chin Sci Bull, 57: 261–269

    Article  Google Scholar 

  • Ding S, Xu Y, Wang Y, He Y, Hou J, Chen L, He J S. 2015. Distribution of branched glycerol dialkyl glycerol tetraethers in surface soils of the Qinghai-Tibetan Plateau: Implications of brGDGTs-based proxies in cold and dry regions. Biogeosciences, 12: 3141–3151

    Article  Google Scholar 

  • Elling F J, Könneke M, Nicol G W, Stieglmeier M, Bayer B, Spieck E, de la Torre J R, Becker K W, Thomm M, Prosser J I, Herndl G J, Schleper C, Hinrichs K U. 2017. Chemotaxonomic characterisation of the thaumarchaeal lipidome. Environ Microbiol, 19: 2681–2700

    Article  Google Scholar 

  • Ernst N, Peterse F, Breitenbach S F M, Syiemlieh H J, Eglinton T I. 2013. Biomarkers record environmental changes along an altitudinal transect in the wettest place on Earth. Org Geochem, 60: 93–99

    Article  Google Scholar 

  • Ghosh P, Garzione C N, Eiler J M. 2006. Rapid uplift of the altiplano revealed through 13C-18O bonds in paleosol carbonates. Science, 311: 511–515

    Article  Google Scholar 

  • Hough B G, Fan M, Passey B H. 2014. Calibration of the clumped isotope geothermometer in soil carbonate in Wyoming and Nebraska, USA: Implications for paleoelevation and paleoclimate reconstruction. Earth Planet Sci Lett, 391: 110–120

    Article  Google Scholar 

  • Huguet C, Hopmans E C, Febo-Ayala W, Thompson D H, Sinninghe Damsté J S, Schouten S. 2006. An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org Geochem, 37: 1036–1041

    Article  Google Scholar 

  • Jia G, Wei K, Chen F, Peng P. 2008. Soil n-alkane δD vs. altitude gradients along Mount Gongga, China. Geochim Cosmochim Acta, 72: 5165–5174

    Article  Google Scholar 

  • Kim J H, Schouten S, Hopmans E C, Donner B, Sinninghe Damsté J S. 2008. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean. Geochim Cosmochim Acta, 72: 1154–1173

    Article  Google Scholar 

  • Kim J H, van der Meer J, Schouten S, Helmke P, Willmott V, Sangiorgi F, Koç N, Hopmans E C, Damsté J S S. 2010. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions. Geochim Cosmochim Acta, 74: 4639–4654

    Article  Google Scholar 

  • Lehtovirta L E, Prosser J I, Nicol G W. 2009. Soil pH regulates the abundance and diversity of Group 1.1c Crenarchaeota. Fems Microbiol Ecol, 70: 367–376

    Article  Google Scholar 

  • Lehtovirta L E, Sayavedra-Soto L A, Gallois N, Schouten S, Stein L Y, Prosser J I, Nicol G W. 2016. Identifying potential mechanisms enabling acidophily in the ammonia-oxidizing archaeon “Candidatus Nitrosotalea devanaterra”. Appl Environ Microbiol, 82: 2608–2619

    Article  Google Scholar 

  • Lei Y, Yang H, Dang X, Zhao S, Xie S. 2016. Absence of a significant bias towards summer temperature in branched tetraether-based paleothermometer at two soil sites with contrasting temperature seasonality. Org Geochem, 94: 83–94

    Article  Google Scholar 

  • Li F, Zheng F, Wang Y, Liu W, Zhang C L. 2017. Thermoplasmatales and methanogens: Potential association with the Crenarchaeol oroduction in Chinese soils. Front Microbiol, 8: https://doi.org/10.3389/fmicb.2017.01200

    Google Scholar 

  • Liu W, Wang H, Zhang C L, Liu Z, He Y. 2013. Distribution of glycerol dialkyl glycerol tetraether lipids along an altitudinal transect on Mt. Xiangpi, NE Qinghai-Tibetan Plateau, China. Org Geochem, 57: 76–83

    Google Scholar 

  • Oppermann B I, Michaelis W, Blumenberg M, Frerichs J, Schulz H M, Schippers A, Beaubien S E, Krüger M. 2010. Soil microbial community changes as a result of long-term exposure to a natural CO2 vent. Geochim Cosmochim Acta, 74: 2697–2716

    Article  Google Scholar 

  • Peterse F, van der Meer M T J, Schouten S, Jia G, Ossebaar J, Blokker J, Sinninghe Damsté J S. 2009. Assessment of soil n-alkane δD and branched tetraether membrane lipid distributions as tools for paleoelevation reconstruction. Biogeosciences, 6: 2799–2807

    Article  Google Scholar 

  • Peterse F, van der Meer J, Schouten S, Weijers J W H, Fierer N, Jackson R B, Kim J H, Sinninghe Damsté J S. 2012. Revised calibration of the MBT-CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils. Geochim Cosmochim Acta, 96: 215–229

    Article  Google Scholar 

  • Pitcher A, Rychlik N, Hopmans E C, Spieck E, Rijpstra W I C, Ossebaar J, Schouten S, Wagner M, Sinninghe Damsté J S. 2010. Crenarchaeol dominates the membrane lipids of Candidatus Nitrososphaera gargensis, a thermophilic Group I.1b Archaeon. Isme J, 4: 542–552

    Article  Google Scholar 

  • Powers L A, Werne J P, Johnson T C, Hopmans E C, Sinninghe Damsté J S, Schouten S. 2004. Crenarchaeotal membrane lipids in lake sediments: A new paleotemperature proxy for continental paleoclimate reconstruction? Geology, 32: 613

    Article  Google Scholar 

  • Powers L, Werne J P, Vanderwoude A J, Sinninghe Damsté J S, Hopmans E C, Schouten S. 2010. Applicability and calibration of the TEX86 paleothermometer in lakes. Org Geochem, 41: 404–413

    Article  Google Scholar 

  • Schouten S, Hopmans E C, Schefuß E, Sinninghe Damsté J S. 2002. Distributional variations in marine crenarchaeotal membrane lipids: A new tool for reconstructing ancient sea water temperatures? Earth Planet Sci Lett, 204: 265–274

    Article  Google Scholar 

  • Schouten S, Hopmans E C, Sinninghe Damsté J S. 2013. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review. Org Geochem, 54: 19–61

    Article  Google Scholar 

  • Sinninghe Damsté J S, Ossebaar J, Schouten S, Verschuren D. 2008. Altitudinal shifts in the branched tetraether lipid distribution in soil from Mt. Kilimanjaro (Tanzania): Implications for the MBT/CBT continental palaeothermometer. Org Geochem, 39: 1072–1076

    Google Scholar 

  • Sinninghe Damsté J S, Rijpstra W I C, Hopmans E C, Jung M Y, Kim J G, Rhee S K, Stieglmeier M, Schleper C. 2012. Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids of group I.1a and I.1b thaumarchaeota in soil. Appl Environ Microbiol, 78: 6866–6874

    Article  Google Scholar 

  • Sun J, Xu Q, Liu W, Zhang Z, Xue L, Zhao P. 2014. Palynological evidence for the latest Oligocene-early Miocene paleoelevation estimate in the Lunpola Basin, central Tibet. Palaeogeogr Palaeoclimatol Palaeoecol, 399: 21–30

    Article  Google Scholar 

  • Wang H, Liu W, Zhang C L. 2014. Dependence of the cyclization of branched tetraethers (CBT) on soil moisture in the Chinese Loess Plateau and the adjacent areas: Implications for palaeorainfall reconstructions. Biogeosci Discuss, 11: 10015–10043

    Article  Google Scholar 

  • Wang H, Liu W, Lu H. 2016. Appraisal of branched glycerol dialkyl glycerol tetraether-based indices for North China. Org Geochem, 98: 118–130

    Article  Google Scholar 

  • Wang M D, Liang J, Hou J Z, Hu L. 2016. Distribution of GDGTs in lake surface sediments on the Tibetan Plateau and its influencing factors. Sci China Earth Sci, 59: 961–974

    Article  Google Scholar 

  • Weijers J W H, Schouten S, Hopmans E C, Geenevasen J A J, David O R P, Coleman J M, Pancost R D, Sinninghe Damsté J S. 2006. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits. Environ Microbiol, 8: 648–657

    Article  Google Scholar 

  • Weijers J W H, Schouten S, van den Donker J C, Hopmans E C, Sinninghe Damsté J S. 2007. Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochim Cosmochim Acta, 71: 703–713

    Article  Google Scholar 

  • Weijers J W H, Wiesenberg G L B, Bol R, Hopmans E C, Pancost R D. 2010. Carbon isotopic composition of branched tetraether membrane lipids in soils suggest a rapid turnover and a heterotrophic life style of their source organism(s). Biogeosciences, 7: 2959–2973

    Article  Google Scholar 

  • Yang H, Ding W, He G, Xie S. 2010. Archaeal and bacterial tetraether membrane lipids in soils of varied altitudes in Mt. Jianfengling in South China. J Earth Sci, 21 (Suppl): 277–280

    Article  Google Scholar 

  • Yang H, Pancost R D, Dang X, Zhou X, Evershed R P, Xiao G, Tang C, Gao L, Guo Z, Xie S. 2014a. Correlations between microbial tetraether lipids and environmental variables in Chinese soils: Optimizing the paleo-reconstructions in semi-arid and arid regions. Geochim Cosmochim Acta, 126: 49–69

    Article  Google Scholar 

  • Yang H, Xiao W, Jia C, Xie S. 2014b. Paleoaltimetry proxies based on bacterial branched tetraether membrane lipids in soils. Front Earth Sci, 9: 13–25

    Article  Google Scholar 

  • Yang H, Lü X, Ding W, Lei Y, Dang X, Xie S. 2015. The 6-methyl branched tetraethers significantly affect the performance of the methylation index (MBT′) in soils from an altitudinal transect at Mount Shennongjia. Org Geochem, 82: 42–53

    Article  Google Scholar 

  • Yang H, Pancost R D, Jia C, Xie S. 2016. The response of archaeal tetraether membrane lipids in surface soils to temperature: A potential paleothermometer in paleosols. Geomicrobiol J, 33: 98–109

    Article  Google Scholar 

  • Zang J, Lei Y Y, Yang H. 2018. Distribution of archaeal and bacterial tetraether lipids in the surface soil of Turpan: Implications for the use of tetraether-based proxies in hot and dry regions. Front Earth Sci, unpublished

    Google Scholar 

  • Zheng F F, Zhang C L, Chen Y F, Li F Y, Ma C L, Pu Y, Zhu Y Q, Wang Y L, Liu W G. 2016. Branched tetraether lipids in Chinese soils: Evaluating the fidelity of MBT/CBT proxies as paleoenvironmental proxies. Sci China Earth Sci, 59: 1353–1367

    Article  Google Scholar 

  • Zhou H, Hu J, Spiro B, Peng P, Tang J. 2014. Glycerol dialkyl glycerol tetraethers in surficial coastal and open marine sediments around China: Indicators of sea surface temperature and effects of their sources. Palaeogeogr Palaeoclimatol Palaeoecol, 395: 114–121

    Article  Google Scholar 

  • Zhuang G, Brandon M T, Pagani M, Krishnan S. 2014. Leaf wax stable isotopes from Northern Tibetan Plateau: Implications for uplift and climate since 15 Ma. Earth Planet Sci Lett, 390: 186–198

    Article  Google Scholar 

  • Zhuang G, Pagani M, Chamberlin C, Strong D, Vandergoes M. 2015. Altitudinal shift in stable hydrogen isotopes and microbial tetraether distribution in soils from the Southern Alps, NZ: Implications for paleoclimatology and paleoaltimetry. Org Geochem, 79: 56–64

    Article  Google Scholar 

Download references

Acknowledgements

We thank Jia Juan from the Institute of Botany, Chinese Academy of Sciences, for providing some soil samples. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41602189 & 41330103) and the Cradle Plan of China University of Geosciences (Grant No. CUGL170403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhao, S., Pei, H. et al. Distribution of glycerol dialkyl glycerol tetraethers in surface soils along an altitudinal transect at cold and humid Mountain Changbai: Implications for the reconstruction of paleoaltimetry and paleoclimate. Sci. China Earth Sci. 61, 925–939 (2018). https://doi.org/10.1007/s11430-017-9168-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9168-9

Keywords

Navigation