Science China Earth Sciences

, Volume 61, Issue 4, pp 494–498 | Cite as

Tectonomicrobiology: A new paradigm for geobiological research

Forum
  • 14 Downloads

Abstract

Geomicrobiology is a sub-discipline of geobiology and emphasizes the interaction between microorganisms and their environment on Earth. There is a need to explicitly emphasize the biogeochemical processes performed by microorganisms associated with Earth’s tectonic activities, especially under the framework of the modern theory of plate tectonics. Tectonomicrobiology aims to create a better synergy between microbial and active tectonic processes. This explicit synergy should also foster better communications between solid Earth scientists and life scientists in terms of holistic Earth system dynamics at both tectonic and micro-scales.

Keywords

Geobiology Geomicrobiology Tectonomicrobiology Tectonic activities Microbial evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This writing was inspired and made possible by discussions with Benchun Duan, Mian Liu, Zhigang Peng, Shufeng Yang, Hongfu Yin, Peizhen Zhang, and Yuanqing Zhu. Special thanks are due to Mian Liu and Tommy Phelps who provided valuable comments that significantly improved the quality of the paper. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41530105, 41373072, 91628301 & U1606401), the Chinese Academy of Sciences (Grant Nos. Y4SL021001 & QYZDY-SSW-DQC005), and the Southern University of Science and Technology (Grant No. Y01316209).

References

  1. Baas-Becking L G M. 1934. Geobiologie of Inleiding tot de Milieukunde. The Hague: W.P. Van Stockum & Zoon (in Dutch)Google Scholar
  2. Burton S K, Lappin-Scott H M. 2005. Geomicrobiology, the hidden depths of the biosphere. Trends Microbiol, 13: 401CrossRefGoogle Scholar
  3. DeLong E F. 1992. Archaea in coastal marine environments.. Proc Natl Acad Sci USA, 89: 5685–5689CrossRefGoogle Scholar
  4. Dong H. 2008. Microbial life in extreme environments: Linking geological and microbiological processes. In: Dilek Y, Furnes H, Muehlenbachs K, eds. Links between Geological Processes, Microbial Activities, and Evolution of Life. Dordrecht: Springer. 237–280CrossRefGoogle Scholar
  5. Ehrlich H L, Newman D K, Kappler A. 2015. Ehrlich’s Geomicrobiology. 6th ed. London: CRC PressCrossRefGoogle Scholar
  6. Fryer P. 2012. Serpentinite mud volcanism: Observations, processes, and implications. Annu Rev Mar Sci, 4: 345–373CrossRefGoogle Scholar
  7. Hinrichs K U, Hayes J M, Sylva S P, Brewer P G, DeLong E F. 1999. Methane-consuming archaebacteria in marine sediments. Nature, 398: 802–805CrossRefGoogle Scholar
  8. Jiao N, Herndl G J, Hansell D A, Benner R, Kattner G, Wilhelm S W, Kirchman D L, Weinbauer M G, Luo T, Chen F, Azam F. 2010. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nat Rev Microbiol, 8: 593–599CrossRefGoogle Scholar
  9. Kawagucci S, Yoshida Y T, Noguchi T, Honda M C, Uchida H, Ishibashi H, Nakagawa F, Tsunogai U, Okamura K, Takaki Y, Nunoura T, Miyazaki J, Hirai M, Lin W, Kitazato H, Takai K. 2012. Disturbance of deep-sea environments induced by the M9.0 Tohoku Earthquake. Sci Rep, 2: 270CrossRefGoogle Scholar
  10. Knoll A H, Canfield D E, Konhauser K O. 2012. Fundamentals of Geobiology. Chichester: Wiley-Blackwell. 443CrossRefGoogle Scholar
  11. Liu M, Cui X, Liu F. 2004. Cenozoic rifting and volcanism in eastern China: A mantle dynamic link to the Indo-Asian collision? Tectonophysics, 393: 29–42CrossRefGoogle Scholar
  12. Liu S V, Zhou J, Zhang C, Cole D R, Gajdarziska-Josifovska M, Phelps T J. 1997. Thermophilic Fe(III)-reducing bacteria from the deep subsurface: The evolutionary implications. Science, 277: 1106–1109CrossRefGoogle Scholar
  13. Newman D K, Banfield J F. 2002. Geomicrobiology: How molecular-scale interactions underpin biogeochemical systems. Science, 296: 1071–1077CrossRefGoogle Scholar
  14. Onstott T C. 2016. Deep Life. Princeton: Princeton University Press. 470Google Scholar
  15. Onstott T C, Phelps T J, Colwell F S, Ringelberg D, White D C, Boone D R, Mckinley J P, Stevens T O, Long P E, Balkwill D L, Griffin W T, Kieft T. 1998. Observations pertaining to the origin and ecology of microorganisms recovered from the deep subsurface of Taylorsville Basin, Virginia. Geomicrobiol J, 15: 353–385CrossRefGoogle Scholar
  16. Pearson A, Huang Z, Ingalls A E, Romanek C S, Wiegel J, Freeman K H, Smittenberg R H, Zhang C L. 2004. Nonmarine Crenarchaeol in Nevada hot springs. Appl Environ Microbiol, 70: 5229–5237CrossRefGoogle Scholar
  17. Phelps T J, Murphy E M, Pfiffner S M, White D C. 1994. Comparison between geochemical and biological estimates of subsurface microbial activities. Microbial Ecol, 28: 335–349CrossRefGoogle Scholar
  18. Reysenbach A L, Shock E. 2002. Merging genomes with geochemistry in hydrothermal ecosystems. Science, 296: 1077–1082CrossRefGoogle Scholar
  19. Riedinger N, Strasser M, Harris R N, Klockgether G, Lyons T W, Screaton E J. 2015. Deep subsurface carbon cycling in the Nankai Trough (Japan)— Evidence of tectonically induced stimulation of a deep microbial biosphere. Geochem Geophys Geosyst, 16: 3257–3270CrossRefGoogle Scholar
  20. Schleper C, Jurgens G, Jonuscheit M. 2005. Genomic studies of uncultivated archaea. Nat Rev Microbiol, 3: 479–488CrossRefGoogle Scholar
  21. Schrenk M O, Huber J A, Edwards K J. 2010. Microbial provinces in the subseafloor. Annu Rev Mar Sci, 2: 279–304CrossRefGoogle Scholar
  22. Sugisaki R. 1985. Relation between hydrogen emission and seismic activities. Pure Appl Geophys, 122: 175–184CrossRefGoogle Scholar
  23. Voosen P. 2017. Deep in a mine, earthquake gold awaits. Science, 356: 891–892CrossRefGoogle Scholar
  24. Xie S C, Yang H, Luo G M, Huang X Y, Liu D, Wang Y B, Gong Y M, Xu R. 2012. Geomicrobial functional groups: A window on the interaction between life and environments. Chin Sci Bull, 57: 2–19CrossRefGoogle Scholar
  25. Yin H F, Xie S C. 2015. Geobiology (in Chinese). Beijing: Science Press. 368Google Scholar
  26. Zhang C L, Li Y, Wall J D, Larsen L, Sassen R, Huang Y, Wang Y, Peacock A, White D C, Horita J, Cole D R. 2002. Lipid and carbon isotopic evidence of methane-oxidizing and sulfate-reducing bacteria in association with gas hydrates from the Gulf of Mexico. Geology, 30: 239–242CrossRefGoogle Scholar
  27. Zhang C L, Fouke B W, Bonheyo G T, Peacock A D, White D C, Huang Y, Romanek C S. 2004. Lipid biomarkers and carbon-isotopes of modern travertine deposits (Yellowstone National Park, USA): Implications for biogeochemical dynamics in hot-spring systems. Geochim Cosmochim Acta, 68: 3157–3169CrossRefGoogle Scholar
  28. Zhang C L, Pearson A, Li Y L, Mills G, Wiegel J. 2006. Thermophilic temperature optimum for crenarchaeol synthesis and its implication for archaeal evolution. Appl Environ Microbiol, 72: 4419–4422CrossRefGoogle Scholar
  29. Zhang C L, Xie W, Martin-Cuadrado A B, Rodriguez-Valera F. 2015. Marine Group II Archaea, potentially important players in the global ocean carbon cycle. Front Microbiol, 6: 1108Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Ocean Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
  2. 2.Woods Hole Oceanographic InstitutionWoods HoleUSA
  3. 3.Institute of Marine GeodynamicsOcean University of ChinaQingdaoChina
  4. 4.State Key Laboratory of Biogeology and Environmental GeologyChina University of GeosciencesBeijingChina
  5. 5.Department of Geology and Environmental Earth ScienceMiami UniversityOxfordUSA
  6. 6.State Key Laboratory of Microbial Metabolism and State Key Laboratory of Ocean EngineeringShanghai Jiao Tong UniversityShanghaiChina
  7. 7.State Key Laboratory of Biogeology and Environmental GeologyChina University of GeosciencesWuhanChina

Personalised recommendations