Skip to main content
Log in

Subaqueous volcanism in the Paleo-Pacific Ocean based on Jurassic basaltic tuff and pillow basalt in the Raohe Complex, NE China

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

On-land records of subaqueous explosive volcanic eruptions are rarely reported. To understand this phenomenon and discuss its global significance, we studied the geochronology and geochemistry of basaltic tuff and pillow basalt in the Raohe Complex, NE China. The basaltic tuff consists of well-sorted vitreous, crystal (mostly clinopyroxene), and minor lithic fragments. It is characterized by a high MgO (15.7–15.9%) content and zero Eu anomalies (Eu/Eu*=99–102). The tuff erupted at 172±1 Ma based on SHRIMP zircon U-Pb dating, coeval with the previously reported age of the pillow basalt. The pillow basalt has intermediate MgO content and weakly negative Eu anomalies (Eu/Eu*=90–99). Based on immobile trace element discrimination, the basaltic tuff and pillow basalt belong to alkali basalt displaying an OIB-type trace element pattern, and consistent Nd isotope signatures of εNd(t)=4.4–6.2, indicating an identical mantle source. The pillow basalt has coupled Sr-Nd isotopic values, whereas the basaltic tuff has significantly higher initial 87Sr/86Sr values that are similar to synchronous seawater. This indicates that the elemental exchange between the mantle-derived material and seawater most likely occurred in a subaqueous explosive volcanic eruption, rather than in an effusive eruption. Detailed calculations suggest that the high efficiency of the Sr-isotope exchange between seawater and the mantle-derived material triggered by a subaqueous explosive volcanic eruption is likely one of the main reasons for the rapid decrease of the global seawater 87Sr/86Sr value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen S R, Hayward B W, Mathews E. 2007. A facies model for a submarine volcaniclastic apron: The Miocene Manukau Subgroup, New Zealand. Geol Soc A. Bull, 119: 725–742

    Article  Google Scholar 

  • Arculus R. 2011. Submarine volcanism: Deeply explosive. Na. Geosci, 4: 737–738

    Article  Google Scholar 

  • Ballmer M D, Ito G, van Hunen J, Tackley P J. 2010. Small-scale sublithospheric convection reconciles geochemistry and geochronology of ‘Superplume’ volcanism in the western and south Pacific. Earth Planet Sc. Lett, 290: 224–232

    Article  Google Scholar 

  • Black L P, Kamo S L, Allen C M, Aleinikoff J N, Davis D W, Korsch R J, Foudoulis C. 2003. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology. Che. Geol, 200: 155–170

    Article  Google Scholar 

  • Bruckschen P, Bruhn F, Veizer J, Buhl D. 1995. isotopic evolution of Lower Carboniferous seawater: Dinantian of western Europe. Sedimen. Geol, 100: 63–81

    Article  Google Scholar 

  • Buchs D M, Pilet S, Cosca M, Flores K E, Bandini A N, Baumgartner P O. 2013. Low-volume intraplate volcanism in the Early/Middle Jurassic Pacific basin documented by accreted sequences in Costa Rica. Geochem Geophy. Geosyst, 14: 1552–1568

    Article  Google Scholar 

  • Cas RAF. 1992. Submarine volcanism; eruption styles, products, and relevance to understanding the host-rock successions to volcanic-hosted massive sulfide deposits. Economi. Geol, 87: 511–541

    Article  Google Scholar 

  • Cas RAF. 2006. Explosive mafic volcanism. J Volcanol Geotherma. Res, 155: 1–2

    Article  Google Scholar 

  • Censi P, Randazzo L A, Zuddas P, Saiano F, Aricò P, Andò S. 2010. Trace element behaviour in seawater during Etna’s pyroclastic activity in 2001: Concurrent effects of nutrients and formation of alteration minerals. J Volcanol Geother. Res, 193: 106–116

    Article  Google Scholar 

  • Chadwick W W, Cashman K V, Embley R W, Matsumoto H, Dziak R P, de Ronde CEJ, Lau TK, Deardorff N D, Merle S G. 2008. Direct video and hydrophone observations of submarine explosive eruptions at NW Rota-1 volcano, Mariana arc. J Geophys Res-Sol Earth, 113: B08S10

    Article  Google Scholar 

  • Charette M, Smith W. 2010. The Volume of Earth’s Ocean. Oceanography, 23: 112–114

    Article  Google Scholar 

  • Clague D A, Davis A S, Bischoff J L, Dixon J E, Geyer R. 2000. Lava bubble-wall fragments formed by submarine hydrovolcanic explosions on Lo’ihi Seamount and Kilauea Volcano. Bul. Volcanol, 61: 437–449

    Article  Google Scholar 

  • Clague D A, Paduan J B, Davis A S. 2009. Widespread strombolian eruptions of mid-ocean ridge basalt. J Volcanol Geother. Res, 180: 171–188

    Article  Google Scholar 

  • Cole R B, Decelles P G. 1991. Subaerial to submarine transitions in early Miocene pyroclastic flow deposits, southern San Joaquin basin, California. Geol Soc A. Bull, 103: 221–235

    Article  Google Scholar 

  • Embley R W, Chadwick W W, Baker E T, Butterfield D A, Resing J A, de Ronde CEJ, Tunnicliffe V, Lupton J E, Juniper S K, Rubin K H, Stern R J, Lebon G T, Nakamura K I, Merle S G, Hein J R, Wiens D A, Tamura Y. 2006. Long-term eruptive activity at a submarine arc volcano. Nature, 441: 494–497

    Article  Google Scholar 

  • Filippov A N, Kemkin I V. 2003. Clastic rocks from Permian and Triassic cherty sequences in Sikhote Alin and Japan. Lithol Minera. Resour, 38: 36–47

    Article  Google Scholar 

  • Frezzotti M L, Tecce F, Casagli A. 2012. Raman spectroscopy for fluid inclusion analysis. J Geoche. Expl, 112: 1–20

    Article  Google Scholar 

  • Garcia M O, Haskins E H, Stolper E M, Baker M. 2007. Stratigraphy of the Hawai‘i Scientific Drilling Project core (HSDP2): Anatomy of a Hawaiian shield volcano. Geochem Geophy. Geosyst, 8: Q02G20–37

    Article  Google Scholar 

  • Guilbaud M N, Blake S, Thordarson T, Self S. 2007. Role of Syn-eruptive Cooling and Degassing on Textures of Lavas from the AD 1783–1784 Laki Eruption, South Iceland. Petrol, 48: 1265–1294

    Article  Google Scholar 

  • Guo F, Fan W, Gao X, Li C, Miao L, Zhao L, Li H. 2010. Sr-Nd-Pb isotope mapping of Mesozoic igneous rocks in NE China: Constraints on tectonic framework and Phanerozoic crustal growth. Lithos, 120: 563–578

    Article  Google Scholar 

  • HBGMR (Heilongjiang Bureau of Geology and Mineral Resources). 1987a. 1:200 000 Regional Geological Survey Report of Xiaojiahegongshe (L-53-8) and Raohe (L-53-9) (in Chinese). Beijing: Geological Publishing House. 12–39

    Google Scholar 

  • HBGMR (Heilongjiang Bureau of Geology and Mineral Resources). 1987b. 1:200 000 Regional Geological Survey Report of Zhenbaodao (L-53-14) (in Chinese). Beijing: Geological Publishing House. 14–51

    Google Scholar 

  • Head Iii J W, Wilson L. 2003. Deep submarine pyroclastic eruptions: theory and predicted landforms and deposits. J Volcanol Geother. Res, 121: 155–193

    Article  Google Scholar 

  • Helo C, Clague D A, Dingwell D B, Stix J. 2013. High and highly variable cooling rates during pyroclastic eruptions on Axial Seamount, Juan de Fuca Ridge. J Volcanol Geother. Res, 253: 54–64

    Article  Google Scholar 

  • Ichiyama Y, Ishiwatari A. 2005. HFSE-rich picritic rocks from the Mino accretionary complex, southwestern Japan. Contrib Minera. Petrol, 149: 373–387

    Article  Google Scholar 

  • Ichiyama Y, Ishiwatari A, Kimura J I, Senda R, Miyamoto T. 2014. Jurassic plume-origin ophiolites in Japan: Accreted fragments of oceanic plateaus. Contrib Mineral Petrol, 168: 1019

    Article  Google Scholar 

  • Iezzi G, Caso C, Ventura G, Vallefuoco M, Cavallo A, Behrens H, Mollo S, Paltrinieri D, Signanini P, Vetere F. 2014. First documented deep submarine explosive eruptions at the Marsili Seamount (Tyrrhenian Sea, Italy): A case of historical volcanism in the Mediterranean Sea. Gondwan. Res, 25: 764–774

    Article  Google Scholar 

  • Ikeda M, Tada R. 2014. A 70 million year astronomical time scale for the deep-sea bedded chert sequence (Inuyama, Japan): Implications for Triassic–Jurassic geochronology. Earth Planet Sc. Lett, 399: 30–43

    Article  Google Scholar 

  • Jiang S. 1999. Chemical and Rb-Sr, Sm-Nd isotopic systematics of tourmaline from the Dachang Sn-polymetallic ore deposit, Guangxi Province, P. R. China. Chemgeol, 157: 49–67

    Google Scholar 

  • Jiang S Y, Palmer M R, Slack J F, Shaw D R. 1999. Boron isotope systematics of tourmaline formation in the Sullivan Pb-Zn-Ag deposit, British Columbia, Canada. Chemgeol, 158: 131–144

    Google Scholar 

  • Jones C E, Jenkyns H C. 2001. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. Am. Sci, 301: 112–149

    Google Scholar 

  • Kamata Y, Maezawa A, Hara H, Ueno K, Hisada K, Sardsud A, Charoentitirat T, Charusiri P. 2012. Basaltic activity preserved in an Upper Permian radiolarian chert from the Paleo-Tethys in the Inthanon Zone, northern Thailand. J Asian Eart. Sci, 61: 51–61

    Article  Google Scholar 

  • Kano K, Yamamoto T, Ono K. 1996. Subaqueous eruption and emplacement of the Shinjima Pumice, Shinjima (Moeshima) Island, Kagoshima Bay, SW Japan. J Volcanol Geother. Res, 71: 187–206

    Article  Google Scholar 

  • Kimura G, Sakakibara M, Okamura M. 1994. Plumes in central Panthalassa? Deductions from accreted oceanic fragments in Japan. Tectonics, 13: 905–916

    Article  Google Scholar 

  • Kokelaar P, Busby C. 1992. Subaqueous explosive eruption and welding of pyroclastic deposits. Science, 257: 196–201

    Article  Google Scholar 

  • Korte C, Kozur H W, Bruckschen P, Veizer J. 2003. Strontium isotope evolution of Late Permian and Triassic seawater. Geochim Cosmochi. Acta, 67: 47–62

    Article  Google Scholar 

  • Kushiro I. 1960. Si-Al relation in clinopyroxenes from igneous rocks. Am. Sci, 258: 548–554

    Google Scholar 

  • Kutterolf S, Schindlbeck J C, Scudder R P, Murray R W, Pickering K T, Freundt A, Labanieh S, Heydolph K, Saito S, Naruse H, Underwood M B, Wu H. 2014. Large volume submarine ignimbrites in the Shikoku Basin: An example for explosive volcanism in the Western Pacific during the Late Miocene. Geochem Geophy. Geosyst, 15: 1837–1851

    Article  Google Scholar 

  • Le Bas M J. 1962. The role of aluminum in igneous clinopyroxenes with relation to their parentage. Am. Sci, 260: 267–288

    Google Scholar 

  • Ludwig K R. 2001. Squid 1.03 A User’s Manual. Berkeley Geochronol Cent Spec Publ, doi: http://www.bgc.org/isoplot_etc/squid.html

    Google Scholar 

  • Ludwig K R. 2003. User’s Manual for Isoplot 3.0: A geochronological toolkit for Microsoft Excel. Berkeley Geochronol Center Spec Publ, doi: http://www.bgc.org/isoplot_etc/isoplot.html

    Google Scholar 

  • Ma J L, Wei G J, Xu Y G, Long W G, Sun W D. 2007. Mobilization and redistribution of major and trace elements during extreme weathering of basalt in Hainan Island, South China. Geochim Cosmochi. Acta, 71: 3223–3237

    Article  Google Scholar 

  • McBirney A R. 1963. Factors governing the nature of submarine volcanism. Bul. Volcanol, 26: 455–469

    Article  Google Scholar 

  • Mielke P, Nehler M, Bignall G, Sass I. 2015. Thermo-physical rock properties and the impact of advancing hydrothermal alteration — A case study from the Tauhara geothermal field, New Zealand. J Volcanol Geother. Res, 301: 14–28

    Article  Google Scholar 

  • Mizutani S, Kojima S. 1992. Mesozoic radiolarian biostratigraphy of Japan and collage tectonics along the eastern continental margin of Asia. Palaeogeogr Palaeoclimato. Palaeoecol, 96: 3–22

    Article  Google Scholar 

  • Muller R D, Dutkiewicz A, Seton M, Gaina C. 2013. Seawater chemistry driven by supercontinent assembly, breakup, and dispersal. Geology, 41: 907–910

    Article  Google Scholar 

  • Nelson D R, Myers J S, Nutman A P. 1995. Chronology and evolution of the Middle Proterozoic Albany-Fraser Orogen, Western Australia. Australian J Eart. Sci, 42: 481–495

    Article  Google Scholar 

  • Pallister J S, Budahn J R, Murchey B L. 1989. Pillow basalts of the Angayucham terrane: Oceanic plateau and island crust accreted to the Brooks Range. J Geophy. Res, 94: 15901–15923

    Article  Google Scholar 

  • Porreca M, Cifelli F, Soriano C, Giordano G, Romano C, Conticelli S, Mattei M. 2014. Hyaloclastite fragmentation below the glass transition: An example from El Barronal submarine volcanic complex (Spain). Geology, 42: 87–90

    Article  Google Scholar 

  • Resing J A, Rubin K H, Embley R W, Lupton J E, Baker E T, Dziak R P, Baumberger T, Lilley M D, Huber J A, Shank T M, Butterfield D A, Clague D A, Keller N S, Merle S G, Buck N J, Michael P J, Soule A, Caress D W, Walker S L, Davis R, Cowen J P, Reysenbach A L, Thomas H. 2011. Active submarine eruption of boninite in the northeastern Lau Basin. Na. Geosci, 4: 799–806

    Article  Google Scholar 

  • Richter F M, Rowley D B, Depaolo D J. 1992. Sr isotope evolution of seawater: The role of tectonics. Earth Planet Sc. Lett, 109: 11–23

    Article  Google Scholar 

  • Safonova I Y, Santosh M. 2014. Accretionary complexes in the Asia- Pacific region: Tracing archives of ocean plate stratigraphy and tracking mantle plumes. Gondwan. Res, 25: 126–158

    Article  Google Scholar 

  • Safonova I Y, Utsunomiya A, Kojima S, Nakae S, Tomurtogoo O, Filippov A N, Koizumi K. 2009. Pacific superplume-related oceanic basalts hosted by accretionary complexes of Central Asia, Russian Far East and Japan. Gondwan. Res, 16: 587–608

    Article  Google Scholar 

  • Schneider J L. 2000. Volcaniclastic sedimentation in submarine settings: products and processes. In: Leyrit H, Montenat C, eds. Volcaniclastic Rocks From Magmas to Sediments. Amsterdam: Gordon and Breach Science Publishers. 175–192

    Google Scholar 

  • Sheridan M F, Wohletz K H. 1981. Hydrovolcanic Explosions: The Systematics of Water-Pyroclast Equilibration. Science, 212: 1387–1389

    Article  Google Scholar 

  • Shervais J W. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet Sc. Lett, 59: 101–118

    Article  Google Scholar 

  • Sohn R A, Willis C, Humphris S, Shank T M, Singh H, Edmonds H N, Kunz C, Hedman U, Helmke E, Jakuba M, Liljebladh B, Linder J, Murphy C, Nakamura K I, Sato T, Schlindwein V, Stranne C, Tausenfreund M, Upchurch L, Winsor P, Jakobsson M, Soule A. 2008. Explosive volcanism on the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature, 453: 1236–1238

    Article  Google Scholar 

  • Stanton R J, Alderson J M. 2013. Limestone interbedded with submarine volcanics: the Early–Middle Miocene Conejo Volcanics, California. Facies, 59: 467–480

    Article  Google Scholar 

  • Stern R A. 2001. A new isotopic and trace-element standard for the ion microprobe: preliminary thermal ionization mass spectrometry (TIMS) U-Pb and electron-microprobe data. Rediogenic Age and Isotopic Studies: Report 14. Geol Surv Canada Curr Res, 2001-F1: 1–11

    Chapter  Google Scholar 

  • Sun M D, Xu Y G, Wilde S A, Chen H L. 2015. Provenance of Cretaceous trench slope sediments from the Mesozoic Wandashan Orogen, NE China: Implications for determining ancient drainage systems and tectonics of the Paleo-Pacific. Tectonics, 34: 1269–1289

    Article  Google Scholar 

  • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geol Soc Spec Publ London. 313–345

    Google Scholar 

  • Timm C, Hoernle K, Werner R, Hauff F, van den Bogaard P, Michael P, Coffin M F, Koppers A. 2011. Age and geochemistry of the oceanic Manihiki Plateau, SW Pacific: New evidence for a plume origin. Earth Planet Sc. Lett, 304: 135–146

    Article  Google Scholar 

  • Utsunomiya A, Suzuki N, Ota T. 2008. Preserved paleo-oceanic plateaus in accretionary complexes: Implications for the contributions of the Pacific superplume to global environmental change. Gondwan. Res, 14: 115–125

    Article  Google Scholar 

  • Wakita K. 2012. Mappable features of mélanges derived from Ocean Plate Stratigraphy in the Jurassic accretionary complexes of Mino and Chichibu terranes in Southwest Japan. Tectonophysics, 568-569: 74–85

    Article  Google Scholar 

  • Wang Z H, Ge W C, Yang H, Zhang Y L, Bi J H, Tian D X, Xu W L. 2015. Middle Jurassic oceanic island igneous rocks of the Raohe accretionary complex, northeastern China: Petrogenesis and tectonic implications. J Asian Eart. Sci, 111: 120–137

    Article  Google Scholar 

  • White JDL, Smellie J L, Clague D A. 2003. Explosive Subaqueous Volcanism. American Geophysical Union. 1–20

    Google Scholar 

  • Wierzbowski H, Anczkiewicz R, Bazarnik J, Pawlak J. 2012. Strontium isotope variations in Middle Jurassic (Late Bajocian–Callovian) seawater: Implications for Earth’s tectonic activity and marine environments. Che. Geol, 334: 171–181

    Article  Google Scholar 

  • Wohletz K H, Sheridan M F. 1983. Hydrovolcanic explosions. 2. Evolution of basaltic tuff rings and tuff cones. Am. Sci, 283: 385–413

    Google Scholar 

  • Wright I C. 2001. In situ modification of modern submarine hyaloclastic/pyroclastic deposits by oceanic currents: An example from the Southern Kermadec arc (SW Pacific). Ma. Geol, 172: 287–307

    Article  Google Scholar 

  • Xenophontos C, Osozawa S. 2004. Travel time of accreted igneous assemblages in western Pacific orogenic belts and their associated sedimentary rocks. Tectonophysics, 393: 241–261

    Article  Google Scholar 

  • Xu Y G, Ma J L, Frey F A, Feigenson M D, Liu J F. 2005. Role of lithosphere—Asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Che. Geol, 224: 247–271

    Article  Google Scholar 

  • Zhou J B, Cao J L, Wilde S A, Zhao G C, Zhang J J, Wang B. 2014. Paleo-Pacific subduction-accretion: Evidence from Geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China. Tectonics, 33: 2444–2466

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MingDao Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Xu, Y. & Chen, H. Subaqueous volcanism in the Paleo-Pacific Ocean based on Jurassic basaltic tuff and pillow basalt in the Raohe Complex, NE China. Sci. China Earth Sci. 61, 1042–1056 (2018). https://doi.org/10.1007/s11430-017-9154-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9154-0

Keywords

Navigation