Skip to main content
Log in

Spatial variability and long-term change in pollen diversity in Nam Co catchment (central Tibetan Plateau): Implications for alpine vegetation restoration from a paleoecological perspective

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Pollen diversity offers abundant clues into the floristic diversity and history of vegetation change. Few palynological studies investigated modern pollen diversity or the past floristic diversity on the Tibetan Plateau (TP). Based on modern pollen assemblages from 37 topsoils and 63 surface lake sediments in the Nam Co catchment on the central TP, this study quantitatively explored spatial distribution of modern pollen diversity using Shannon-Wiener index (H) and palynological richness (E(T n ), n=600). Pollen diversity indices showed spatial variability among vegetation types, reflecting the differences in terrestrial floristic diversity in the lake catchment. Their values were high in the southeastern region of the lake catchment which is covered by alpine steppe, while values were low for alpine meadow and marsh meadow. The pollen diversity in lacustrine pollen assemblage could be an effective proxy to document past floristic diversity. The past floristic diversity in the lake catchment, recovered from a fossil pollen record of NMLC-1, showed a long-term change of ascending overlaid by several rapid diversity changes during the last 8400 years due to the downward shift of altitudinal vegetation belt driven by a general climatic cooling. The results imply that under the environmental challenge of climate warming and vegetation degradation, alpine vegetation restoration in the Nam Co catchment and the central TP should pay attention to altitudinal vegetation belt and zonal vegetation of alpine steppe, and use the long-term change of floristic diversity as a historical analogue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berger A, Loutre M F. 1991. Insolation values for the climate of the last 10 million years. Quat Sci Rev, 10: 297–317

    Article  Google Scholar 

  • Berglund B E, Gaillard M J, Björkman L, Persson T. 2008. Long-term changes in floristic diversity in southern Sweden: Palynological richness, vegetation dynamics and land-use. Veg Hist Archaeobot, 17: 573–583

    Article  Google Scholar 

  • Birks H J B. 1973. Modern pollen rain studies in some arctic and alpine environments. In: Birks H J B, West R G, eds. Quaternary Plant Ecology. Oxford: Blackwell Scientific Publications. 143–168

    Google Scholar 

  • Birks H J B, Felde V A, Bjune A E, Grytnes J A, Seppä H, Giesecke T. 2016. Does pollen-assemblage richness reflect floristic richness? A review of recent developments and future challenges. Rev Palaeobot Palynol, 228: 1–25

    Article  Google Scholar 

  • Birks H J B, Line J M. 1992. The use of rarefaction analysis for estimating palynological richness from Quaternary pollen-analytical data. Holocene, 2: 1–10

    Article  Google Scholar 

  • Chen S Y. 2015. Dynamics of grassland vegetation and lake, and their relationship on Tibetan Plateau (in Chinese). Dissertation for Master Degree. Lanzhou: Lan Zhou University

    Google Scholar 

  • Colwell R K. 2013. Estimate: Statistical estimation of species richness and shared species from samples. Version 9. User’s Guide and application published at: http://purl.oclc.org/estimates

    Google Scholar 

  • Cour P, Zheng Z, Duzer D, Calleja M, Yao Z. 1999. Vegetational and climatic significance of modern pollen rain in northwestern Tibet. Rev Palaeobot Palynol, 104: 183–204

    Article  Google Scholar 

  • Daut G, Mäusbacher R, Baade J, Gleixner G, Kroemer E, Mügler I, Wallner J, Wang J, Zhu L P. 2010. Late Quaternary hydrological changes inferred from lake level fluctuations of Nam Co (Tibetan Plateau, China). Quat Int, 218: 86–93

    Article  Google Scholar 

  • Davis M B, Brubaker L B. 1973. Differential sedimentation of pollen grains in lakes. Limnol Oceanogr, 18: 635–646

    Article  Google Scholar 

  • Dimitriou K, Kassomenos P. 2014. Indicators reflecting local and transboundary sources of PM 2.5 and PM COARSE in Rome—Impacts in air quality. Atmos Environ, 96: 154–162

    Article  Google Scholar 

  • Dorji T, Moe S R, Klein J A, Totland Ø. 2014. Plant species richness, evenness, and composition along environmental gradients in an alpine meadow grazing ecosystem in Central Tibet, China. Arct Antarct Alp Res, 46: 308–326

    Article  Google Scholar 

  • Draxler R R, Hess G D. 1998. An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition. Aust Meteor Mag, 47: 295–308

    Google Scholar 

  • Fægri K, Iversen J. 1989. Textbook of pollen analysis. 4th ed. London: John Wiley and Sons

    Google Scholar 

  • Felde V A, Peglar S M, Bjune A E, Grytnes J A, Birks H J B. 2016. Modern pollen-plant richness and diversity relationships exist along a vegetational gradient in southern Norway. Holocene, 26: 163–175

    Article  Google Scholar 

  • Francis A P, Currie D J. 2003. A globally consistent richness-climate relationship for angiosperms. Am Natist, 161: 523–536

    Article  Google Scholar 

  • Frenzel P, Wrozyna C, Xie M P, Zhu L P, Schwalb A. 2010. Palaeo-water depth estimation for a 600-year record from Nam Co (Tibet) using an ostracod-based transfer function. Quat Int, 218: 157–165

    Article  Google Scholar 

  • Gasse F, Arnold M, Fontes J C, Fort M, Gibert E, Huc A, Li B Y, Li Y F, Liu Q, Mélières F, Campo E V, Wang F B, Zhong Q S. 1991. A 13000-year climate record from western Tibet. Nature, 353: 742–745

    Article  Google Scholar 

  • Gaston K J. 1996. Species richness: Measure and measurement. In: Gaston K J, ed. Biodiversity-A Biology of Numbers and Differences. Oxford: Blackwell Science Ltd. 77–113

    Google Scholar 

  • Giesecke T, Wolters S, Jahns S, Brande A. 2012. Exploring Holocene changes in palynological richness in northern Europe-did postglacial immigration matter? Plos One, 7: e51624

    Article  Google Scholar 

  • Hammer Ø, Harper D A T, Ryan P D. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeonto Electro, 4: 9

    Google Scholar 

  • Harper D A T. 1999. Numerical Palaeobiology. New York: John Wiley & Sons

    Google Scholar 

  • Herrmann M, Lu X M, Berking J, Schütt B, Yao T D, Mosbrugger V. 2009. Reconstructing Holocene vegetation and climate history of Nam Co area (Tibet), using pollen and other palynomorphs. Quat Int, 218: 45–57

    Article  Google Scholar 

  • Herzschuh U, Birks H J B, Mischke S, Zhang C, Böhner J. 2010. A modern pollen-climate calibration set based on lake sediments from the Tibetan Plateau and its application to a Late Quaternary pollen record from the Qilian Mountains. J Biogeogr, 37: 752–766

    Article  Google Scholar 

  • Herzschuh U, Winter K, Wunnemann B, Li S. 2006. A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra. Quat Int, 154–155: 113–121

    Article  Google Scholar 

  • Hou X Y. 2001. Vegetation Atlas of China (in Chinese). Beijing: Science Press

    Google Scholar 

  • Hurlbert S H. 1971. The nonconcept of species diversity: A critique and alternative parameters. Ecology, 52: 577–586

    Article  Google Scholar 

  • Institute of Botany, the Chinese Academy of Sciences. 1976. Sporae Pterido-Phytorum Sinicorum (in Chinese). Beijing: Science Press

    Google Scholar 

  • Jiang W Y, Cheng, Y F, Yang X X, Yang S L. 2013. Chinese Loess Plateau vegetation since the Last Glacial Maximum and its implications for vegetation restoration. J Appl Ecol, 50: 440–448

    Article  Google Scholar 

  • Kang S C. 2011. Modern environmental processes and changes in the Nam Co basin, Tibetan Plateau (in Chinese). Beijing: China Meteorological Press. 1–418

    Google Scholar 

  • Kasper T, Haberzettl T, Doberschütz S, Daut G, Wang J B, Zhu L P, Nowaczyk N, Mäusbacher R. 2012. Indian Ocean Summer Monsoon (IOSM)-dynamics within the past 4 ka recorded in the sediments of Lake Nam Co, central Tibetan Plateau (China). Quat Sci Rev, 39: 73–85

    Article  Google Scholar 

  • Klein J A, Harte J, Zhao X Q. 2004. Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecol Lett, 7: 1170–1179

    Article  Google Scholar 

  • Kreft H, Jetz W, Mutke J, Kier G, Barthlott W. 2008. Global diversity of island floras from a macroecological perspective. Ecol Lett, 11: 116–127

    Google Scholar 

  • Li Q, Lu H Y, Shen C M, Zhao Y, Ge Q S. 2016. Vegetation successions in response to Holocene climate changes in the central Tibetan Plateau. J Arid Environ, 125: 136–144

    Article  Google Scholar 

  • Li Q, Lu H Y, Zhu L P, Wu N Q, Wang J B, Lu X M. 2011. Pollen-inferred climate changes and vertical shifts of alpine vegetation belts on the northern slope of the Nyainqentanglha Mountains (central Tibetan Plateau) since 8.4 kyr BP. Holocene, 21: 939–950

    Article  Google Scholar 

  • Lin X, Zhu L P, Wang Y, Wang J B, Xie M P, Ju J T, Mäusbacher R, Schwalb A. 2008. Environmental changes reflected by n-alkanes of lake core in Nam Co on the Tibetan Plateau since 8.4 kaB.P.. Chin Sci Bull, 53: 3051–3057

    Google Scholar 

  • Lu H Y, Wu N Q, Liu K B, Zhu L P, Yang X D, Yao T D, Wang L, Li Q, Liu X Q, Shen C M, Li X Q, Tong G B, Jiang H. 2011. Modern pollen distributions in Qinghai-Tibetan Plateau and the development of transfer functions for reconstructing Holocene environmental changes. Quat Sci Rev, 30: 947–966

    Article  Google Scholar 

  • Lu H Y, Wu N Q, Yang X D, Shen C M, Zhu L P, Wang L, Li Q, Xu D K, Tong G B, Sun X J. 2008. Spatial pattern of Abies and Picea surface pollen distribution along the elevation gradient in the Qinghai-Tibetan Plateau and Xinjiang, China. Boreas, 37: 254–262

    Article  Google Scholar 

  • Lu X M, Herrmann M, Mosbrugger V, Yao T D, Zhu L P. 2010. Airborne pollen in the Nam Co Basin and its implication for palaeoenvironmental reconstruction. Rev Palaeobot Palynol, 163: 104–112

    Article  Google Scholar 

  • Ludwig J A, Reynolds J F. 1988. Statistical Ecology A Primer on Methods and Computing. New York: J Wiley & Sons

    Google Scholar 

  • Luly J G. 1997. Modern pollen dynamics and surficial sedimentary processes at Lake Tyrrell, semi-arid northwestern Victoria, Australia. Rev Palaeobot Palynol, 97: 301–318

    Article  Google Scholar 

  • Matthias I, Semmler M S, Giesecke T. 2015. Pollen diversity captures landscape structure and diversity. J Ecol, 103: 880–890

    Article  Google Scholar 

  • Miehe G, Miehe S, Kaiser K, Reudenbach C, Behrendes L, La Duo L, Schlütz F. 2009. How old is pastoralism in Tibet? An ecological approach to the making of a Tibetan landscape. Palaeogeogr Palaeoclimatol Palaeoecol, 276: 130–147

    Article  Google Scholar 

  • Miehe G, Miehe S, Schlütz F, Kaiser K, Duo L. 2006. Palaeoecological and experimental evidence of former forests and woodlands in the treeless desert pastures of Southern Tibet (Lhasa, A.R. Xizang, China). Palaeogeogr Palaeoclimatol Palaeoecol, 242: 54–67

    Article  Google Scholar 

  • Montagna P A, Sadovski A L, King S A, Nelson K K, Palmer T A, Dunton K H. 2017. Modeling the effect of water level on the Nueces Delta marsh community. Wetlands Ecol Manage, 25: 731–742

    Article  Google Scholar 

  • Odgaard B V. 1999. Fossil pollen as a record of past biodiversity. J Biogeogr, 26: 7–17

    Article  Google Scholar 

  • Odgaard B V. 2008. Species richness of the past is elusive-evenness may not be. Terra Nostra, 2: 209

    Google Scholar 

  • Pounds J A, Bustamante M R, Coloma L A, Consuegra J A, Fogden M P L, Foster P N, La Marca E, Masters K L, Merino-Viteri A, Puschendorf R, Ron S R, Sánchez-Azofeifa G A, Still C J, Young B E. 2006. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature, 439: 161–167

    Article  Google Scholar 

  • Shannon C E, Weaver W J. 1949. The mathematical theory of communication. Urbana: University of Illinois Press

    Google Scholar 

  • Shen C M. 2003. Millennial-scale variations and centennial scale events in the Southwest Asian monsoon: Pollen evidence from Tibet. Doctoral Dissertation. Baton Rouge: Louisiana State University

    Google Scholar 

  • Shen C M, Liu K B, Morrill C, Overpeck J T, Peng J L, Tang L Y. 2008. Ecotone shift and major droughts during the mid-late Holocene In the central Tibetan Plateau. Ecology, 89: 1079–1088

    Article  Google Scholar 

  • Shen C M, Liu K B, Tang L Y, Overpeck J T. 2006. Quantitative relationships between modern pollen rain and climate in the Tibetan Plateau. Rev Palaeobot Palynol, 140: 61–77

    Article  Google Scholar 

  • Stanisci A, Pelino G, Blasi C. 2005. Vascular plant diversity and climate change in the alpine belt of the central Apennines (Italy). Biodivers Conserv, 14: 1301–1318

    Article  Google Scholar 

  • Stein A F, Draxler R R, Rolph G D, Stunder B J B, Cohen M D, Ngan F. 2015. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull Amer Meteorol Soc, 96: 2059–2077

    Article  Google Scholar 

  • Sugita S. 1993. A model of pollen source area for an entire lake surface. Quat Res, 39: 239–244

    Article  Google Scholar 

  • Tang L Y, Shen C M, Li C H, Peng J L, Liu H, Liu K B, Morrill C, Overpeck J T, Coel J E, Yang B. 2009. Pollen-inferred vegetation and environmental changes in the central Tibetan Plateau since 8200 yr BP. Sci China Ser D-Earth Sci, 52: 1104–1114

    Article  Google Scholar 

  • Thomas C D, Cameron A, Green R E, Bakkenes M, Beaumont L J, Collingham Y C, Erasmus B F N, de Siqueira M F, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld A S, Midgley G F, Miles L, Ortega-Huerta M A, Townsend Peterson A, Phillips O L, Williams S E. 2004. Extinction risk from climate change. Nature, 427: 145–148

    Article  Google Scholar 

  • Van Campo E, Cour P, Sixuan H. 1996. Holocene environmental changes in Bangong Co basin (Western Tibet). Part 2: The pollen record. Palaeogeogr Palaeoclimatol Palaeoecol, 120: 49–63

    Article  Google Scholar 

  • Wang F X, Chien N F, Zhang Y L, Yang H Q. 1997. Pollen Flora of China. 2nd ed (in Chinese). Beijing: Science Press

    Google Scholar 

  • Wang J B, Zhu L P, Wang Y, Ju J T, Daut G, Li M H. 2015. Spatial variability and the controlling mechanisms of surface sediments from Nam Co, central Tibetan Plateau, China. Sedimentary Geol, 319: 69–77

    Article  Google Scholar 

  • Wang Y, Herzschuh U, Shumilovskikh L S, Mischke S, Birks H J B, Wischnewski J, Böhner J, Schlütz F, Lehmkuhl F, Diekmann B, Wünnemann B, Zhang C. 2014. Quantitative reconstruction of precipitation changes on the NE Tibetan Plateau since the Last Glacial Maximum—Extending the concept of pollen source area to pollen-based climate reconstructions from large lakes. Clim Past, 10: 21–39

    Article  Google Scholar 

  • Wilmshurst J M, McGlone M S. 2005. Origin of pollen and spores in surface lake sediments: Comparison of modern palynomorph assemblages in moss cushions, surface soils and surface lake sediments. Rev Palaeobot Palynol, 136: 1–15

    Article  Google Scholar 

  • Wu Y S, Xiao J Y. 1995. A preliminary study on modern pollen rain of Zabuye Salt Lake area, Xizang (in Chinese). Acta Botan Yunnan, 17 (1): 72–78

    Google Scholar 

  • Xi Y Z, Ning J C. 1994. Study on pollen morphology of plants from dry and semidry area in China (in Chinese). Yushania, 11: 119–191

    Google Scholar 

  • Xiao X Y, Shen J, Wang S M, Xiao H F, Tong G B. 2008. The plant diversity and its relationship with paleoenvironment since 2.78 Ma revealed by pollen records in the Heqing deep drilling core. Chin Sci Bull, 53: 3686–3698

    Article  Google Scholar 

  • Xie M P, Zhu L P, Peng P, Wang J B, Wang Y, Schwalb A. 2009. Ostracod assemblages and their environmental significance from the lake core of the Nam Co on the Tibetan Plateau 8.4 kaBP. J Geogr Sci, 19: 387–402

    Article  Google Scholar 

  • Xu Q H, Li Y C, Yang X L, Xiao J L, Liang W D, Peng Y J. 2005. Source and distribution of pollen in the surface sediment of Daihai Lake, inner Mongolia. Quat Int, 136: 33–45

    Article  Google Scholar 

  • Yao T D, Pu J C, Lu A X, Wang Y Q, Yu W S. 2007. Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions. Arct Antarct Alp Res, 39: 642–650

    Article  Google Scholar 

  • Yu G, Tang L Y, Yang X D, Ke X K, Harrison S P. 2001. Modern pollen samples from alpine vegetation on the Tibetan Plateau. Glob Ecol Biogeogr, 10: 503–519

    Article  Google Scholar 

  • Zhang B, Wu Y, Zhu L, Wang J, Li J, Chen D. 2011. Estimation and trend detection of water storage at Nam Co Lake, central Tibetan Plateau. J Hydrol, 405: 161–170

    Article  Google Scholar 

  • Zhao S J, Ding Z L. 2014. Changes in plant diversity on the Chinese Loess Plateau since the Last Glacial Maximum. Chin Sci Bull, 59: 4096–4100

    Article  Google Scholar 

  • Zhao Y, Herzschuh U. 2009. Modern pollen representation of source vegetation in the Qaidam Basin and surrounding mountains, north-eastern Tibetan Plateau. Veg Hist Archaeobot, 18: 245–260

    Article  Google Scholar 

  • Zhu D G, Meng X G, Zhao X T, Shao Z G, Feng X Y, Yang C B, Zheng D X, Ma Z B, Wu Z H, Wang J, Wang J P, Zang W S. 2004. On the Quaternary environmental evolution of the Nam Co area, Tibet (in Chinese). Beijing: Geological Publishing House. 159–171

    Google Scholar 

  • Zhu L P, Lü X M, Wang J B, Peng P, Kasper T, Daut G, Haberzettl T, Frenzel P, Li Q, Yang R M, Schwalb A, Mäusbacher R. 2015. Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM. Sci Rep, 5: 13318

    Article  Google Scholar 

  • Zhu L P, Wu Y H, Wang J B, Lin X, Ju J T, Xie M P, Li M H, Mäusbacher R, Schwalb A, Daut G. 2008. Environmental changes since 8.4 ka reflected in the lacustrine core sediments from Nam Co, central Tibetan Plateau, China. Holocene, 18: 831–839

    Article  Google Scholar 

  • Zhu L P, Xie M P, Wu Y H. 2010. Quantitative analysis of lake area variations and the influence factors from 1971 to 2004 in the Nam Co basin of the Tibetan Plateau. Chin Sci Bull, 55: 1294–1303

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks Prof. Houyuan Lu, Prof. Liping Zhu, Prof. Yan Zhao, and Dr. Junbo Wang for discussions, and Dr. Jianting Ju for field assistance. The author acknowledges the NOAA Air Resources Laboratory (ARL) for the provision of HYSPLIT transport and dispersion model used in this study. This study was supported by the National Natural Science Foundation of China (Grant Nos. 41471169, 41690113, 41271226, 41571189 & 41330105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Li.

Electronic supplementary material

Table S1

List of topsoils and surface lake sediments from Nam Co catchment, central Tibetan Plateau

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q. Spatial variability and long-term change in pollen diversity in Nam Co catchment (central Tibetan Plateau): Implications for alpine vegetation restoration from a paleoecological perspective. Sci. China Earth Sci. 61, 270–284 (2018). https://doi.org/10.1007/s11430-017-9133-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9133-0

Keywords

Navigation