Skip to main content
Log in

Azimuthally pre-stack seismic inversion for orthorhombic anisotropy driven by rock physics

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Based on the long-wavelength approximation, a set of parallel vertical fractures embedded in periodic thin interbeds can be regarded as an equivalent orthorhombic medium. Rock physics is the basis for constructing the relationship between fracture parameters and seismic response. Seismic scattering is an effective way to inverse anisotropic parameters. In this study, we propose a reliable method for predicting the Thomsen’s weak anisotropic parameters and fracture weaknesses in an orthorhombic fractured reservoir using azimuthal pre-stack seismic data. First, considering the influence of fluid substitution in mineral matrix, porosity, fractures and anisotropic rocks, we estimate the orthorhombic anisotropic stiffness coefficients by constructing an equivalent rock physics model for fractured rocks. Further, we predict the logging elastic parameters, Thomsen’s weak parameters, and fracture weaknesses to provide the initial model constraints for the seismic inversion. Then, we derive the P-wave reflection coefficient equation for the inversion of Thomsen’s weak anisotropic parameters and fracture weaknesses. Cauchy-sparse and smoothing-model constraint regularization taken into account in a Bayesian framework, we finally develop a method of amplitude variation with angles of incidence and azimuth (AVAZ) inversion for Thomsen’s weak anisotropic parameters and fracture weaknesses, and the model parameters are estimated by using the nonlinear iteratively reweighted least squares (IRLS) strategy. Both synthetic and real examples show that the method can directly estimate the orthorhombic characteristic parameters from the azimuthally pre-stack seismic data, which provides a reliable seismic inversion method for predicting Thomsen’s weak anisotropic parameters and fracture weaknesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alemie W, Sacchi M D. 2011. High-resolution three-term AVO inversion by means of a Trivariate Cauchy probability distribution. Geophysics, 76: R43–R55

    Article  Google Scholar 

  • Ba J. 2010. Wave propagation theory in double-porosity medium and experimental analysis on seismic responses (in Chinese). Sci China Earth Sci, 40: 1398–1409

    Google Scholar 

  • Bachrach R. 2015. Uncertainty and nonuniqueness in linearized AVAZ for orthorhombic media. Leading Edge, 34: 1048–1056

    Article  Google Scholar 

  • Bachrach R, Sengupta M, Salama A, Miller P. 2009. Reconstruction of the layer anisotropic elastic parameters and high-resolution fracture characterization from P-wave data: A case study using seismic inversion and Bayesian rock physics parameter estimation. Geophys Prospect, 57: 253–262

    Article  Google Scholar 

  • Backus G E. 1962. Long-wave elastic anisotropy produced by horizontal layering. J Geophys Res, 67: 4427–4440

    Article  Google Scholar 

  • Bakulin A, Grechka V, Tsvankin I. 2000a. Estimation of fracture parameters from reflection seismic data—Part I: HTI model due to a single fracture set. Geophysics, 65: 1788–1802

    Article  Google Scholar 

  • Bakulin A, Grechka V, Tsvankin I. 2000b. Estimation of fracture parameters from reflection seismic data—Part II: Fractured models with orthorhombic symmetry. Geophysics, 65: 1803–1817

    Article  Google Scholar 

  • Bakulin A, Grechka V, Tsvankin I. 2002. Seismic inversion for the parameters of two orthogonal fracture sets in a VTI background medium. Geophysics, 67: 292–299

    Article  Google Scholar 

  • Batzle M L, Han D H, Hofmann R. 2006. Fluid mobility and frequencydependent seismic velocity—Direct measurements. Geophysics, 71: N1–N9

    Article  Google Scholar 

  • Biot M A. 1956a. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J Acoust Soc Am, 28: 168–178

    Article  Google Scholar 

  • Biot M A. 1956b. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J Acoust Soc Am, 28: 179–191

    Article  Google Scholar 

  • Brown R J S, Korringa J. 1975. On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid. Geophysics, 40: 608–616

    Article  Google Scholar 

  • Buland A, Omre H. 2003. Bayesian linearized AVO inversion. Geophysics, 68: 185–198

    Article  Google Scholar 

  • Chapman M. 2009. Modeling the effect of multiple sets of mesoscale fractures in porous rock on frequency-dependent anisotropy. Geophysics, 74: D97–D103

    Article  Google Scholar 

  • Chen H Z, Yin X Y, Gao J H, Liu B Y, Zhang G Z. 2015. Seismic inversion for underground fractures detection based on effective anisotropy and fluid substitution. Sci China Earth Sci, 58: 805–814

    Article  Google Scholar 

  • Chen H Z, Zhang G Z, Ji Y X, Yin X Y. 2017. Azimuthal seismic amplitude difference inversion for fracture weakness. Pure Appl Geophys, 174: 279–291

    Article  Google Scholar 

  • Cheng C H. 1978. Seismic velocities in porous rocks: Direct and inverse problems. Dissertation for Doctoral Degree. Cambridge: Massachusetts Institute of Technology

    Google Scholar 

  • Cheng C H. 1993. Crack models for a transversely isotropic medium. J Geophys Res, 98: 675–684

    Article  Google Scholar 

  • Chichinina T, Obolentseva I, Gik L, Bobrov B, Ronquillo-Jarillo G. 2009. Attenuation anisotropy in the linear-slip model: Interpretation of physical modeling data. Geophysics, 74: WB165–WB176

    Article  Google Scholar 

  • Daubechies I, De Vore R, Fornasier M, Güntürk C S. 2010. Iteratively reweighted least squares minimization for sparse recovery. Comm Pure Appl Math, 63: 1–38

    Article  Google Scholar 

  • Downton J E, Roure B. 2015. Interpreting azimuthal Fourier coefficients for anisotropic and fracture parameters. Interpretation, 3: ST9–ST27

    Article  Google Scholar 

  • Dvorkin J, Nur A. 1993. Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms. Geophysics, 58: 524–533

    Article  Google Scholar 

  • Gassmann F. 1951. Uber die elastizitat poroser medien. Vier der Natur Gesellschaft in Zurich, 96: 1–23

    Google Scholar 

  • Gurevich B. 2003. Elastic properties of saturated porous rocks with aligned fractures. J Appl Geophys, 54: 203–218

    Article  Google Scholar 

  • Hornby B E, Schwartz L M, Hudson J A. 1994. Anisotropic effectivemedium modeling of the elastic properties of shales. Geophysics, 59: 1570–1583

    Article  Google Scholar 

  • Hsu C J, Schoenberg M. 1993. Elastic waves through a simulated fractured medium. Geophysics, 58: 964–977

    Article  Google Scholar 

  • Huang L, Stewart R R, Sil S, Dyaur N. 2015. Fluid substitution effects on seismic anisotropy. J Geophys Res-Solid Earth, 120: 850–863

    Article  Google Scholar 

  • Hudson J A. 1981. Wave speeds and attenuation of elastic waves in material containing cracks. Geophys J Int, 64: 133–150

    Article  Google Scholar 

  • Liu E, Martinez A. 2012. Seismic Fracture Characterization. Amsterdam: EAGE Publication

    Google Scholar 

  • Mallick S, Craft K L, Meister L J, Chambers R E. 1998. Determination of the principal directions of azimuthal anisotropy from P-wave seismic data. Geophysics, 63: 692–706

    Article  Google Scholar 

  • Mavko G, Mukerji T, Dvorkin J. 2009. The Rock Physics Handbook Tools for Seismic Analysis of Porous Media. 2nd ed. New York: Cambridge University Press

    Book  Google Scholar 

  • Parra J O. 1997. The transversely isotropic poroelastic wave equation including the Biot and the squirt mechanisms: Theory and application. Geophysics, 62: 309–318

    Article  Google Scholar 

  • Pšenčík I, Martins J L. 2001. Properties of weak contrast PP reflection/transmission coefficients for weakly anisotropic elastic media. Studia Geophys Geod, 45: 176–199

    Article  Google Scholar 

  • Rüger A. 1996. Reflection coefficients and azimuthal AVO analysis in anisotropic media. Dissertation for Doctoral Degree. Golden: Colorado School of Mines

    Google Scholar 

  • Schoenberg M. 1980. Elastic wave behavior across linear slip interfaces. J Acoust Soc Am, 68: 1516–1521

    Article  Google Scholar 

  • Schoenberg M. 1983. Reflection of elastic waves from periodically stratified media with interfacial slip. Geophys Prospect, 31: 265–292

    Article  Google Scholar 

  • Schoenberg M, Helbig K. 1997. Orthorhombic media: Modeling elastic wave behavior in a vertically fractured earth. Geophysics, 62: 1954–1974

    Article  Google Scholar 

  • Shaw R K, Sen M K. 2004. Born integral, stationary phase and linearized reflection coefficients in weak anisotropic media. Geophys J Int, 158: 225–238

    Article  Google Scholar 

  • Shaw R K, Sen M K. 2006. Use of AVOA data to estimate fluid indicator in a vertically fractured medium. Geophysics, 71: C15–C24

    Article  Google Scholar 

  • Stolt R H, Weglein A B. 2012. Seismic Imaging and Inversion: Application of Linear Inverse Theory. New York: Cambridge University Press

    Google Scholar 

  • Tang X M. 2011. A unified theory for elastic wave propagation through porous media containing cracks—An extension of Biot’s poroelastic wave theory. Sci China Earth Sci, 54: 1441–1452

    Article  Google Scholar 

  • Thomsen L. 1986. Weak elastic anisotropy. Geophysics, 51: 1954–1966

    Article  Google Scholar 

  • Thomsen L. 1995. Elastic anisotropy due to aligned cracks in porous rock1. Geophys Prospect, 43: 805–829

    Article  Google Scholar 

  • Thomsen L. 2002. Understanding seismic anisotropy in exploration and exploitation. SEG 2010 Distinguished Instructor Short Course

    Book  Google Scholar 

  • Tsvankin I. 1997. Anisotropic parameters and P-wave velocity for orthorhombic media. Geophysics, 62: 1292–1309

    Article  Google Scholar 

  • Wood A W. 1955. A Textbook of Sound. New York: McMillan Co

    Google Scholar 

  • Wu R S, Aki K. 1985. Scattering characteristics of elastic waves by an elastic heterogeneity. Geophysics, 50: 582–595

    Article  Google Scholar 

  • Xu S, White R E. 1995. A new velocity model for clay-sand mixtures. Geophys Prospect, 43: 91–118

    Article  Google Scholar 

  • Xue J, Gu H M, Cai C G. 2015. General fracture weaknesses for quasistatic porous fractured media (in Chinese). OGP, 50: 1146–1153

    Google Scholar 

  • Yang D H, Zhang Z J. 2000. Effects of the Biot and the squirt-flow coupling interaction on anisotropic elastic waves. Chin Sci Bull, 45: 2130–2138

    Article  Google Scholar 

  • Yang D H, Zhang Z J. 2002. Poroelastic wave equation including the Biot/squirt mechanism and the solid/fluid coupling anisotropy. Wave Motion, 35: 223–245

    Article  Google Scholar 

  • Yin X Y, Zong Z Y, Wu G C. 2014. Seismic wave scattering inversion for fluid factor of heterogeneous media. Sci China Earth Sci, 57: 542–549

    Article  Google Scholar 

  • Zhang G Z, Chen H Z, Wang Q, Yin X Y. 2013. Estimation of S-wave velocity and anisotropic parameters using fractured carbonate rock physics model (in Chinese). Chin J Geophys, 56: 1707–1715

    Google Scholar 

  • Zong Z Y, Yin X Y, Wu G C. 2012. Fluid identification method based on compressional and shear modulus direct inversion (in Chinese). Chin J Geophys, 55: 284–292

    Article  Google Scholar 

  • Zong Z Y, Yin X Y, Wu G C. 2015a. Complex seismic amplitude inversion for P-wave and S-wave quality factors. Geophys J Int, 202: 564–577

    Article  Google Scholar 

  • Zong Z Y, Yin X Y, Wu G C, Wu Z P. 2015b. Elastic inverse scattering for fluid variation with time-lapse seismic data. Geophysics, 80: WA61–WA67

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangzhi Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Zhang, G. & Yin, X. Azimuthally pre-stack seismic inversion for orthorhombic anisotropy driven by rock physics. Sci. China Earth Sci. 61, 425–440 (2018). https://doi.org/10.1007/s11430-017-9124-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9124-6

Keywords

Navigation