Skip to main content
Log in

The Grad-Shafranov reconstruction in twenty years: 1996–2016

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

We review and summarize the applications of the Grad-Shafranov (GS) reconstruction technique to space plasma structures in the Earth’s magnetosphere and in the interplanetary space. We organize our presentations following the branches of the “academic family tree” rooted on Prof. Bengt U. Ö. Sonnerup, the inventor of the GS method. Special attentions are paid to validations of the GS reconstruction results via (1) the direct validation by co-spatial in-situ measurements among multiple spacecraft, and (2) indirect validation by implications and interpretations of the physical connection between the structures reconstructed and other related processes. For the latter, the inter-comparison and interconnection between the large-scale magnetic flux ropes (i.e., Magnetic Clouds) in the solar wind and their solar source properties are presented. In addition, we also summarize various GS-type (or -like) reconstruction and an extension of the GS technique to toroidal geometry. In particular, we point to a possible advancement with added complexity of “helical symmetry” and mixed helicity, in the hope of stimulating interest in future development. We close by offering some thoughts on appreciating the scientific merit of GS reconstruction in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Haddad N, Nieves-Chinchilla T, Savani N P, Möstl C, Marubashi K, Hidalgo M A, Roussev I I, Poedts S, Farrugia C J. 2013. Magnetic field configuration models and reconstruction methods for interplanetary coronal mass ejections. Solar Phys, 284: 129

    Article  Google Scholar 

  • Al-Haddad N, Roussev I I, Möstl C, Jacobs C, Lugaz N, Poedts S, Farrugia C J. 2011. On the internal structure of the magnetic field in magnetic clouds and interplanetary coronal mass ejections: Writhe versus twist. Astrophys J, 738: L18

    Article  Google Scholar 

  • Antiochos S K, DeVore C R, Klimchuk J A. 1999. A model for solar coronal mass ejections. Astrophys J, 510: 485–493

    Article  Google Scholar 

  • Berger M A, Field G B. 1984. The topological properties of magnetic helicity. J Fluid Mech, 147: 133–148

    Article  Google Scholar 

  • Cartwright M L, Moldwin M B. 2010. Heliospheric evolution of solar wind small-scale magnetic flux ropes. J Geophys Res, 115: A08102

    Google Scholar 

  • Chen Y. 2013. A review of recent studies on coronal dynamics: Streamers, coronal mass ejections, and their interactions. Chin Sci Bull, 58: 1599–1624

    Article  Google Scholar 

  • Cheng J X, Qiu J. 2016. The nature of CME-flare-associated coronal dimming. Astrophys J, 825: 37

    Article  Google Scholar 

  • Chian A C L, Feng H Q, Hu Q, Loew M H, Miranda R A, Muñoz P R, Sibeck D G, Wu D J. 2016. Genesis of interplanetary intermittent turbulence: A case study of rope-rope magnetic reconnection. Astrophys J, 832: 179

    Article  Google Scholar 

  • Chou Y C, Hau L N. 2012. A statistical study of magnetopause structures: Tangential versus rotational discontinuities. J Geophys Res, 117: A08232

    Article  Google Scholar 

  • De Keyser J, Dunlop M W, Owen C J, Sonnerup B U Ö, Haaland S E, Vaivads A, Paschmann G, Lundin R, Rezeau L. 2005. Magnetopause and boundary layer. Space Sci Rev, 118: 231–320

    Article  Google Scholar 

  • Du D, Wang C, Hu Q. 2007. Propagation and evolution of a magnetic cloud from ACE to Ulysses. J Geophys Res, 112: A09101

    Article  Google Scholar 

  • Eriksson S, Hasegawa H, Teh W L, Sonnerup B U Ö, McFadden J P, Glassmeier K H, Le Contel O, Angelopoulos V, Cully C M, Larson D E, Ergun R E, Roux A, Carlson C W. 2009. Magnetic island formation between large-scale flow vortices at an undulating postnoon magnetopause for northward interplanetary magnetic field. J Geophys Res, 114: A00C17

    Google Scholar 

  • Eriksson S, Newman D L, Lapenta G, Angelopoulos V. 2014. On the signatures of magnetic islands and multiple X-lines in the solar wind as observed by ARTEMIS and WIND. Plasma Phys Control Fusion, 56: 064008

    Article  Google Scholar 

  • Farrugia C J, Berdichevsky D B, Möstl C, Galvin A B, Leitner M, Popecki M A, Simunac K D C, Opitz A, Lavraud B, Ogilvie K W, Veronig A M, Temmer M, Luhmann J G, Sauvaud J A. 2011. Multiple, distant (40°) in situ observations of a magnetic cloud and a corotating interaction region complex. J Atmos Sol-Terr Phys, 73: 1254–1269

    Article  Google Scholar 

  • Feng H Q, Wang J M. 2015. Observations of several unusual plasma compositional signatures within small interplanetary magnetic flux ropes. Astrophys J, 809: 112

    Article  Google Scholar 

  • Feng H Q, Wu D J, Lin C C, Chao J K, Lee L C, Lyu L H. 2008. Interplanetary small-and intermediate-sized magnetic flux ropes during 1995–2005. J Geophys Res, 113: A12105

    Article  Google Scholar 

  • Feng H Q, Zhao G Q, Wang J M. 2015. Counterstreaming electrons in small interplanetary magnetic flux ropes. J Geophys Res-Space Phys, 120: 10175–10184

    Article  Google Scholar 

  • Forbes T G, Linker J A, Chen J, Cid C, Kóta J, Lee M A, Mann G, Mikić Z, Potgieter M S, Schmidt J M, Siscoe G L, Vainio R, Antiochos S K, Riley P. 2006. CME theory and models. Space Sci Rev, 123: 251–302

    Article  Google Scholar 

  • Freidberg J P. 2014. Ideal MHD. Cambridge: Cambridge University Press

    Book  Google Scholar 

  • Gold T, Hoyle F. 1960. On the origin of solar flares. Mon Not Roy Astron Soc, 120: 89–105

    Article  Google Scholar 

  • González, A O, Domingues M O, Mendes O, Kaibara M K, Prestes A. 2015. Grad-Shafranov Reconstruction: Overview and improvement of the numerical solution used in space physics. Braz J Phys, 45: 493–509

    Article  Google Scholar 

  • González A O, Prestes A, Laurindo Sousa A N. 2016. Discussion about the magnetic field dimensionality, invariant axis condition, and coulomb gauge to solve the Grad-Shafranov equation. Braz J Phys, 46: 408–414

    Article  Google Scholar 

  • Gopalswamy N, Yashiro S, Akiyama S, Xie H. 2017. Estimation of reconnection flux using post-eruption arcades and its relevance to magnetic clouds at 1 AU. Sol Phys, 292: 65–82

    Article  Google Scholar 

  • Grad H, Rubin H. 1958. Hydromagnetic equilibria and force-free fields. In: Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy. Vol 31: 190–197. Geneva, United Nations

    Google Scholar 

  • Hara T, Luhmann J G, Halekas J S, Espley J R, Seki K, Brain D A, Hasegawa H, McFadden J P, Mitchell D L, Mazelle C, Harada Y, Livi R, DiBraccio G A, Connerney J E P, Andersson L, Jakosky B M. 2016. MAVEN observations of magnetic flux ropes with a strong field amplitude in the Martian magnetosheath during the ICME passage on 8 March 2015. Geophys Res Lett, 43: 4816–4824

    Article  Google Scholar 

  • Hara T, Mitchell D L, McFadden J P, Seki K, Brain D A, Halekas J S, Harada Y, Espley J R, DiBraccio G A, Connerney J E P, Andersson L, Mazelle C, Jakosky B M. 2015. Estimation of the spatial structure of a detached magnetic flux rope at Mars based on simultaneous MAVEN plasma and magnetic field observations. Geophys Res Lett, 42: 8933–8941

    Article  Google Scholar 

  • Hara T, Seki K, Hasegawa H, Brain D A, Matsunaga K, Saito M H. 2014a. The spatial structure of Martian magnetic flux ropes recovered by the Grad-Shafranov reconstruction technique. J Geophys Res-Space Phys, 119: 1262–1271

    Article  Google Scholar 

  • Hara T, Seki K, Hasegawa H, Brain D A, Matsunaga K, Saito M H, Shiota D. 2014b. Formation processes of flux ropes downstream from Martian crustal magnetic fields inferred from Grad-Shafranov reconstruction. J Geophys Res-Space Phys, 119: 7947–7962

    Article  Google Scholar 

  • Hasegawa H. 2012. Structure and dynamics of the magnetopause and its boundary layers. Monogr Environ Earth Planets, 1: 71–119

    Article  Google Scholar 

  • Hasegawa H, Nakamura R, Fujimoto M, Sergeev V A, Lucek E A, Rème H, Khotyaintsev Y. 2007a. Reconstruction of a bipolar magnetic signature in an earthward jet in the tail: Flux rope or 3D guide-field reconnection? J Geophys Res, 112: A11206

    Article  Google Scholar 

  • Hasegawa H, Sonnerup B U Ö, Dunlop M W, Balogh A, Haaland S E, Klecker B, Paschmann G, Lavraud B, Dandouras I, Rème H. 2004. Reconstruction of two-dimensional magnetopause structures from Cluster observations: Verification of method. Ann Geophys, 22: 1251–1266

    Article  Google Scholar 

  • Hasegawa H, Sonnerup B U Ö, Fujimoto M, Saito Y, Mukai T. 2007b. Recovery of streamlines in the flank low-latitude boundary layer. J Geophys Res, 112: A04213

    Google Scholar 

  • Hasegawa H, Sonnerup B U Ö, Hu Q, Nakamura T. 2014. Reconstruction of an evolving magnetic flux rope in the solar wind: Decomposing spatial and temporal variations from single-spacecraft data. J Geophys Res-Space Phys, 119: 97–114

    Article  Google Scholar 

  • Hasegawa H, Sonnerup B U Ö, Klecker B, Paschmann G, Dunlop M W, Rème H. 2005. Optimal reconstruction of magnetopause structures from Cluster data. Ann Geophys, 23: 973–982

    Article  Google Scholar 

  • Hasegawa H, Sonnerup B U Ö, Nakamura T K M. 2010. Recovery of time evolution of Grad-Shafranov equilibria from single-spacecraft data: Benchmarking and application to a flux transfer event. J Geophys Res, 115: A11219

    Google Scholar 

  • Hasegawa H, Sonnerup B U Ö, Owen C J, Klecker B, Paschmann G, Balogh A, Rème H. 2006. The structure of flux transfer events recovered from Cluster data. Ann Geophys, 24: 603–618

    Article  Google Scholar 

  • Hasegawa H, Retinò A, Vaivads A, Khotyaintsev Y, André M, Nakamura T K M, Teh W L, Sonnerup B U Ö, Schwartz S J, Seki Y, Fujimoto M, Saito Y, Rème H, Canu P. 2009. Kelvin-Helmholtz waves at the Earth’s magnetopause: Multiscale development and associated reconnection. J Geophys Res, 114: A12207

    Article  Google Scholar 

  • Hasegawa H, Zhang H, Lin Y, Sonnerup B U Ö, Schwartz S J, Lavraud B, Zong Q G. 2012. Magnetic flux rope formation within a magnetosheath hot flow anomaly. J Geophys Res, 117: A09214

    Article  Google Scholar 

  • Hau L N, Sonnerup B U Ö. 1999. Two-dimensional coherent structures in the magnetopause: Recovery of static equilibria from single-spacecraft data. J Geophys Res, 104: 6899–6917

    Article  Google Scholar 

  • Hidalgo M A. 2016. A global magnetic topology model for magnetic clouds. Iv. Astrophys J, 823: 3

    Article  Google Scholar 

  • Hietala H, Eastwood J P, Isavnin A. 2014. Sequentially released tilted flux ropes in the Earth’s magnetotail. Plasma Phys Control Fusion, 56: 064011

    Article  Google Scholar 

  • Hood A W, Priest E R. 1979. Kink instability of solar coronal loops as the cause of solar flares. Sol Phys, 64: 303–321

    Article  Google Scholar 

  • Hu H, Liu Y D, Wang R, Möstl C, Yang Z. 2016. Sun-to-Earth characteristics of the 2012 July 12 coronal mass ejection and associated geo-effectiveness. Astrophys J, 829: 97

    Article  Google Scholar 

  • Hu Q. 2001. Reconstruction of two-dimensional coherent structures in space plasmas from spacecraft data. Doctoral Dissertation. Hanover: Dartmouth College

    Google Scholar 

  • Hu Q. 2016. On the Grad-Shafranov (GS) reconstruction of toroidal magnetic flux ropes. In: Wang L, Bruno R, Möbius E, Vourlidas A, Zank G, eds. In: International Solar Wind 14 Conference. Volume 1720 of AIP Conf. Series. 040005

    Google Scholar 

  • Hu Q. 2017. The Grad-Shafranov reconstruction of toroidal magnetic flux ropes: Method development and benchmark studies. Sol Phys, doi: 10.1007/11207-017-1134-z

    Google Scholar 

  • Hu Q, Dasgupta B. 2005. Calculation of magnetic helicity of cylindrical flux rope. Geophys Res Lett, 32: L12109

    Google Scholar 

  • Hu Q, Farrugia C J, Osherovich V A, Möstl C, Szabo A, Ogilvie K W, Lepping R P. 2013. Effect of electron pressure on the grad-shafranov reconstruction of interplanetary coronal mass ejections. Sol Phys, 284: 275–291

    Article  Google Scholar 

  • Hu Q, Qiu J, Dasgupta B, Khare A, Webb G M. 2014a. Structures of interplanetary magnetic flux ropes and comparison with their solar sources. Astrophys J, 793: 53

    Article  Google Scholar 

  • Hu Q, Qiu J, Krucker S. 2015. Magnetic field line lengths inside interplanetary magnetic flux ropes. J Geophys Res-Space Phys, 120: 5266–5283

    Article  Google Scholar 

  • Hu Q, Qiu J, Zheng J. 2014b. Characteristics of magnetic flux ropes from the sun to the heliosphere. In: Hu Q, Zank G P, eds. Outstanding Problems in Heliophysics: From Coronal Heating to the Edge of the Heliosphere. Volume 484 of Astronomical Society of the Pacific Conference Series. 78–83

    Google Scholar 

  • Hu Q, Smith C W, Ness N F, Skoug R M. 2003. Double flux-rope magnetic cloud in the solar wind at 1 AU. Geophys Res Lett, 30: 1385

    Google Scholar 

  • Hu Q, Smith C W, Ness N F, Skoug R M. 2004. Multiple flux rope magnetic ejecta in the solar wind. J Geophys Res, 109: A03102

    Google Scholar 

  • Hu Q, Smith C W, Ness N F, Skoug R M. 2005. On the magnetic topology of October/November 2003 events. J Geophys Res, 110: A09S03

    Article  Google Scholar 

  • Hu Q, Sonnerup B U Ö. 2000. Magnetopause transects from two spacecraft: A comparison. Geophys Res Lett, 27: 1443–1446

    Article  Google Scholar 

  • Hu Q, Sonnerup B U Ö. 2001. Reconstruction of magnetic flux ropes in the solar wind. Geophys Res Lett, 28: 467–470

    Article  Google Scholar 

  • Hu Q, Sonnerup B U Ö. 2002. Reconstruction of magnetic clouds in the solar wind: Orientations and configurations. J Geophys Res, 107: 1142

    Article  Google Scholar 

  • Hu Q, Sonnerup B U Ö. 2003. Reconstruction of two-dimensional structures in the magnetopause: Method improvements. J Geophys Res, 108: 1011

    Article  Google Scholar 

  • Isavnin A, Kilpua E K J, Koskinen H E J. 2011. Grad-Shafranov reconstruction of magnetic clouds: Overview and improvements. Sol Phys, 273: 205–219

    Article  Google Scholar 

  • Isavnin A, Vourlidas A, Kilpua E K J. 2013. Three-Dimensional evolution of erupted flux ropes from the Sun (2–20 R) to 1 AU. Sol Phys, 284: 203–215

    Article  Google Scholar 

  • Isavnin A, Vourlidas A, Kilpua E K J. 2014. Three-dimensional evolution of flux-rope cmes and its relation to the local orientation of the heliospheric current sheet. Sol Phys, 289: 2141–2156

    Article  Google Scholar 

  • Jiang C, Wu S T, Feng X, Hu Q. 2016a. Data-driven magnetohydrodynamic modelling of a flux-emerging active region leading to solar eruption. Nat Commun, 7: 11522

    Article  Google Scholar 

  • Jiang C, Wu S T, Yurchyshyn V, Wang H, Feng X, Hu Q. 2016b. How did a major confined flare occur in super solar active region 12192? Astrophys J, 828: 62

    Article  Google Scholar 

  • Kahler S W, Krucker S, Szabo A. 2011. Solar energetic electron probes of magnetic cloud field line lengths. J Geophys Res, 116: A01104

    Article  Google Scholar 

  • Kazachenko M D, Canfield R C, Longcope D W, Qiu J. 2012. Predictions of energy and helicity in four major eruptive solar flares. Sol Phys, 277: 165–183

    Article  Google Scholar 

  • Khrabrov A V, Sonnerup B U Ö. 1998. DeHoffmann-Teller analysis, in analysis methods for multi-spacecraft data. In: Paschmann G, Daly P W. Chap. 8. 221–248. Int Space Sci Inst, Bern

    Google Scholar 

  • Kilpua E K J, Jian L K, Li Y, Luhmann J G, Russell C T. 2011. Multipoint ICME encounters: Pre-STEREO and STEREO observations. J Atmos Sol-Terr Phys, 73: 1228–1241

    Article  Google Scholar 

  • Larson D E, Lin R P, McTiernan J M, McFadden J P, Ergun R E, McCarthy M, Rème H, Sanderson T R, Kaiser M, Lepping R P, Mazur J. 1997. Tracing the topology of the October 18–20, 1995, magnetic cloud with~0.1–102 keV electrons. Geophys Res Lett, 24: 1911–1914

    Article  Google Scholar 

  • Li H J, Feng X S, Xiang J, Zuo P B. 2013. New approach for solving the inverse boundary value problem of Laplace’s equation on a circle: Technique renovation of the Grad-Shafranov (GS) reconstruction. J Geophys Res-Space Phys, 118: 2876–2881

    Article  Google Scholar 

  • Li H J, Feng X S, Zuo P B, Xie Y Q. 2009a. Inferring interplanetary flux rope orientation with the minimum residue method. J Geophys Res, 114: A03102

    Google Scholar 

  • Li H J, Feng X S, Zuo P B, Xie Y Q. 2009b. Observations of the field-aligned residual flow inside magnetic cloud structure. Sci China Ser E-Tech Sci, 52: 2555–2566

    Article  Google Scholar 

  • Li H J, Li C Y, Feng X S, Xiang J, Huang Y Y, Zhou S D. 2017. Data completion with Hilbert transform over plane rectangle: Technique renovation for the Grad-Shafranov reconstruction. J Geophys Res-Space Phys, 122: 3949–3960

    Article  Google Scholar 

  • Li Z Y, Chen T, Yan G Q. 2016. New method for determining central axial orientation of flux rope embedded within current sheet using multipoint measurements. Sci China Earth Sci, 59: 2037–2052

    Article  Google Scholar 

  • Linton M G, Moldwin M B. 2009. A comparison of the formation and evolution of magnetic flux ropes in solar coronal mass ejections and magnetotail plasmoids. J Geophys Res, 114: A00B09

    Article  Google Scholar 

  • Liu Y, Luhmann J G, Huttunen K E J, Lin R P, Bale S D, Russell C T, Galvin A B. 2008a. Reconstruction of the 2007 May 22 magnetic cloud: How much can we trust the flux-rope geometry of CMEs? Astrophys J, 677: L133–L136

    Article  Google Scholar 

  • Liu Y, Luhmann J G, Müller-Mellin R, Schroeder P C, Wang L, Lin R P, Bale S D, Li Y, Acuña M H, Sauvaud J A. 2008b. A comprehensive view of the 2006 December 13 CME: From the sun to interplanetary space. Astrophys J, 689: 563–571

    Article  Google Scholar 

  • Liu Y, Richardson J D, Belcher J W, Wang C, Hu Q, Kasper J C. 2006. Constraints on the global structure of magnetic clouds: Transverse size and curvature. J Geophys Res, 111: A12S03

    Article  Google Scholar 

  • Liu Y, Thernisien A, Luhmann J G, Vourlidas A, Davies J A, Lin R P, Bale S D. 2010. Reconstructing coronal mass ejections with coordinated imaging and in situ observations: Global structure, kinematics, and implications for space weather forecasting. Astrophys J, 722: 1762–1777

    Article  Google Scholar 

  • Liu Y D, Hu H, Wang C, Luhmann J G, Richardson J D, Yang Z, Wang R. 2016. On sun-to-earth propagation of coronal mass ejections: II. Slow events and comparison with others. Astrophys J Suppl Ser, 222: 23

    Article  Google Scholar 

  • Liu Y D, Hu H, Wang R, Yang Z, Zhu B, Liu Y A, Luhmann J G, Richardson J D. 2015. Plasma and magnetic field characteristics of solar coronal mass ejections in relation to geomagnetic storm intensity and variability. Astrophys J, 809: L34

    Article  Google Scholar 

  • Liu Y D, Luhmann J G, Kajdic P, Kilpua E K J, Lugaz N, Nitta N V, Möstl C, Lavraud B, Bale S D, Farrugia C J, Galvin A B. 2014. Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections. Nat Commun, 5: 3481

    Google Scholar 

  • Longcope D W, Beveridge C. 2007. A quantitative, topological model of reconnection and flux rope formation in a two-ribbon flare. Astrophys J, 669: 621–635

    Article  Google Scholar 

  • Longcope D, Beveridge C, Qiu J, Ravindra B, Barnes G, Dasso S. 2007. Modeling and measuring the flux reconnected and ejected by the tworibbon Flare/CME event on 7 November 2004. Sol Phys, 244: 45–73

    Article  Google Scholar 

  • Lu S W, Zong Q G, Vogiatzis I, Wang Y F, Tian A M. 2015. Reconstruction of plasmoid and traveling compression region in the near-Earth magnetotail. Sci China Tech Sci, 58: 330–337

    Article  Google Scholar 

  • Lui A T Y. 2011. Grad-Shafranov reconstruction of magnetic flux ropes in the near-earth space. Space Sci Rev, 158: 43–68

    Article  Google Scholar 

  • Lui A T Y, Sibeck D G, Phan T, Angelopoulos V, McFadden J, Carlson C, Larson D, Bonnell J, Glassmeier K H, Frey S. 2008a. Reconstruction of a magnetic flux rope from THEMIS observations. Geophys Res Lett, 35: L17S05

    Article  Google Scholar 

  • Lui A T Y, Sibeck D G, Phan T, McFadden J P, Angelopoulos V, Glassmeier K H. 2008b. Reconstruction of a flux transfer event based on observations from five THEMIS satellites. J Geophys Res, 113: A00C01

    Google Scholar 

  • Marubashi K, Akiyama S, Yashiro S, Gopalswamy N, Cho K S, Park Y D. 2015. Geometrical relationship between interplanetary flux ropes and their solar sources. Sol Phys, 290: 1371–1397

    Article  Google Scholar 

  • Moldwin M B, Ford S, Lepping R, Slavin J, Szabo A. 2000. Small-scale magnetic flux ropes in the solar wind. Geophys Res Lett, 27: 57–60

    Article  Google Scholar 

  • Moore T E, Burch J L, Daughton W S, Fuselier S A, Hasegawa H, Petrinec S M, Pu Z. 2013. Multiscale studies of the three-dimensional dayside X-line. J Atmos Sol-Terr Phys, 99: 32–40

    Article  Google Scholar 

  • Möstl C, Farrugia C J, Biernat H K, Leitner M, Kilpua E K J, Galvin A B, Luhmann J G. 2009a. Optimized Grad - Shafranov reconstruction of a magnetic cloud using STEREO-wind observations. Sol Phys, 256: 427–441

    Article  Google Scholar 

  • Möstl C, Farrugia C J, Kilpua E K J, Jian L K, Liu Y, Eastwood J P, Harrison R A, Webb D F, Temmer M, Odstrcil D, Davies J A, Rollett T, Luhmann J G, Nitta N, Mulligan T, Jensen E A, Forsyth R, Lavraud B, de Koning C A, Veronig A M, Galvin A B, Zhang T L, Anderson B J. 2012. Multipoint shock and flux rope analysis of multiple interplanetary coronal mass ejections around 2010 August 1 in the inner heliosphere. Astrophys J, 758: 10

    Article  Google Scholar 

  • Möstl C, Farrugia C J, Miklenic C, Temmer M, Galvin A B, Luhmann J G, Kilpua E K J, Leitner M, Nieves-Chinchilla T, Veronig A, Biernat H K. 2009b. Multispacecraft recovery of a magnetic cloud and its origin from magnetic reconnection on the Sun. J Geophys Res, 114: A04102

    Article  Google Scholar 

  • Möstl C, Temmer M, Rollett T, Farrugia C J, Liu Y, Veronig A M, Leitner M, Galvin A B, Biernat H K. 2010. STEREO and Wind observations of a fast ICME flank triggering a prolonged geomagnetic storm on 5–7 April 2010. Geophys Res Lett, 37: L24103

    Article  Google Scholar 

  • Osherovich V A, Fainberg J, Stone R G. 1999. Multi-tube model for interplanetary magnetic clouds. Geophys Res Lett, 26: 401–404

    Article  Google Scholar 

  • Paschmann G, Sonnerup B U Ö. 2008. Proper frame determination and Walen test. ISSI Scientific Reports Ser, 8: 65–74

    Google Scholar 

  • Press W H, Teukolsky S A, Vetterling W T, Flannery B P. 2007. Numerical Recipes: The Art of Scientific Computing. New York: Cambridge University Press

    Google Scholar 

  • Priest E R, Longcope D W. 2017. Flux-rope twist in eruptive flares and CMEs: Due to zipper and main-phase reconnection. Sol Phys, 292, 25

    Google Scholar 

  • Priest E R, Longcope D W, Janvier M. 2016. Evolution of magnetic helicity during eruptive flares and coronal mass ejections. Sol Phys, 291: 2017–2036

    Article  Google Scholar 

  • Qiu J. 2009. Observational analysis of magnetic reconnection sequence. Astrophys J, 692: 1110–1124

    Article  Google Scholar 

  • Qiu J, Hu Q, Howard T A, Yurchyshyn V B. 2007. On the magnetic flux budget in low-corona magnetic reconnection and interplanetary coronal mass ejections. Astrophys J, 659: 758–772

    Article  Google Scholar 

  • Qiu J, Longcope D W, Cassak P A, Priest E R. 2017. Elongation of flare ribbons. Astrophys J, 838: 17

    Article  Google Scholar 

  • Riley P, Linker J A, Lionello R, Mikic Z, Odstrcil D, Hidalgo M A, Cid C, Hu Q, Lepping R P, Lynch B J, Rees A. 2004. Fitting flux ropes to a global MHD solution: A comparison of techniques. J Atmos Sol-Terr Phys, 66: 1321–1331

    Article  Google Scholar 

  • Rong Z J, Wan W X, Shen C, Zhang T L, Lui A T Y, Wang Y, Dunlop M W, Zhang Y C, Zong Q G. 2013. Method for inferring the axis orientation of cylindrical magnetic flux rope based on single-point measurement. J Geophys Res-Space Phys, 118: 271–283

    Article  Google Scholar 

  • Ruzmaikin A, Martin S, Hu Q. 2003. Signs of magnetic helicity in interplanetary coronal mass ejections and associated prominences: Case study. J Geophys Res, 108: 1096

    Article  Google Scholar 

  • Shafranov V D. 1958. Magnetohydrodynamical equilibrium configurations. Sov Phys JETP, 6: 545–554

    Google Scholar 

  • Sharma R, Srivastava N. 2012. Presence of solar filament plasma detected in interplanetary coronal mass ejections by in situ spacecraft. J Space Weather Space Clim, 2: A10

    Article  Google Scholar 

  • Sharma R, Srivastava N, Chakrabarty D, Möstl C, Hu Q. 2013. Interplanetary and geomagnetic consequences of 5 January 2005 CMEs associated with eruptive filaments. J Geophys Res-Space Phys, 118: 3954–3967

    Article  Google Scholar 

  • Song H Q, Zhong Z, Chen Y, Zhang J, Cheng X, Zhao L, Hu Q, Li G. 2016. A statistical study of the average iron charge state distributions inside magnetic clouds for solar cycle 23. Astrophys J Suppl Ser, 224: 27

    Article  Google Scholar 

  • Sonnerup B U Ö, Denton R E, Hasegawa H, Swisdak M. 2013. Axis and velocity determination for quasi two-dimensional plasma/field structures from Faraday’s law: A second look. J Geophys Res-Space Phys, 118: 2073–2086

    Article  Google Scholar 

  • Sonnerup B U Ö, Guo M. 1996. Magnetopause transects. Geophys Res Lett, 23: 3679–3682

    Article  Google Scholar 

  • Sonnerup B U Ö, Hasegawa H. 2010. On slowly evolving Grad-Shafranov equilibria. J Geophys Res, 115: A11218

    Article  Google Scholar 

  • Sonnerup B U Ö, Hasegawa H. 2011. Reconstruction of steady, three-dimensional, magnetohydrostatic field and plasma structures in space: Theory and benchmarking. J Geophys Res, 116: A09230

    Article  Google Scholar 

  • Sonnerup B U Ö, Hasegawa H, Denton R E, Nakamura T K M. 2016. Reconstruction of the electron diffusion region. J Geophys Res-Space Phys, 121: 4279–4290

    Article  Google Scholar 

  • Sonnerup B U Ö, Hasegawa H, Paschmann G. 2004. Anatomy of a flux transfer event seen by Cluster. Geophys Res Lett, 31: L11803

    Article  Google Scholar 

  • Sonnerup B U Ö, Hasegawa H, Teh W L, Hau L N. 2006. Grad-Shafranov reconstruction: An overview. J Geophys Res, 111: A09204

    Google Scholar 

  • Sonnerup B U Ö, Scheible M. 1998. Minimum and maximum variance analysis. In: Paschmann G, Daly P W, eds. Analysis Methods for Multi-Spacecraft Data. Bern: Int Space Sci Inst. 185–220

    Google Scholar 

  • Sonnerup B U Ö, Teh W L. 2008. Reconstruction of two-dimensional coherent MHD structures in a space plasma: The theory. J Geophys Res, 113: A05202

    Google Scholar 

  • Sonnerup B U Ö, Teh W L. 2009. Reconstruction of two-dimensional coherent structures in ideal and resistive Hall MHD: The theory. J Geophys Res, 114: A04206

    Article  Google Scholar 

  • Teh W L, Hau L N. 2004. Evidence for pearl-like magnetic island structures at dawn and dusk side magnetopause. Earth Planet Space, 56: 681–686

    Article  Google Scholar 

  • Teh W L, Hau L N. 2007. Triple crossings of a string of magnetic islands at duskside magnetopause encountered by AMPTE/IRM satellite on 8 August 1985. J Geophys Res, 112: A08207

    Article  Google Scholar 

  • Teh W L, Eriksson S, Sonnerup B U Ö, Ergun R, Angelopoulos V, Glassmeier K H, McFadden J P, Bonnell J W. 2010a. THEMIS observations of a secondary magnetic island within the Hall electromagnetic field region at the magnetopause. Geophys Res Lett, 37: L21102

    Article  Google Scholar 

  • Teh W L, Sonnerup B U Ö. 2008. First results from ideal 2-D MHD reconstruction: magnetopause reconnection event seen by Cluster. Ann Geophys, 26: 2673–2684

    Article  Google Scholar 

  • Teh W L, Sonnerup B U Ö, Birn J, Denton R E. 2010b. Resistive MHD reconstruction of two-dimensional coherent structures in space. Ann Geophys, 28: 2113–2125

    Article  Google Scholar 

  • Teh W L, Sonnerup B U Ö, Hau L N. 2007. Grad-Shafranov reconstruction with field-aligned flow: First results. Geophys Res Lett, 34: L05109

    Article  Google Scholar 

  • Teh W L, Sonnerup B U Ö, Hu Q, Farrugia C J. 2009. Reconstruction of a large-scale reconnection exhaust structure in the solar wind. Ann Geophys, 27: 807–822

    Article  Google Scholar 

  • Teh W L, Sonnerup B U Ö, Paschmann G, Haaland S E. 2011a. Local structure of directional discontinuities in the solar wind. J Geophys Res, 116: A04105

    Google Scholar 

  • Teh W L, Nakamura R, Baumjohann W. 2013. Magnetic field topology of the plasma sheet boundary layer. J Geophys Res-Space Phys, 118: 4059–4065

    Article  Google Scholar 

  • Teh W L, Nakamura R, Karimabadi H, Baumjohann W, Zhang T L. 2014. Correlation of core field polarity of magnetotail flux ropes with the IMFBy: Reconnection guide field dependency. J Geophys Res-Space Phys, 119: 2933–2944

    Article  Google Scholar 

  • Teh W L, Nakamura R, Sonnerup B U Ö, Eastwood J P, Volwerk M, Fazakerley A N, Baumjohann W. 2011b. Evidence of the origin of the Hall magnetic field for reconnection: Hall MHD reconstruction results from Cluster observations. J Geophys Res, 116: A11218

    Google Scholar 

  • Tian A M, Shi Q Q, Zong Q G, Du J, Fu S Y, Dai Y N. 2014. Analysis of magnetotail flux rope events by ARTEMIS observations. Sci China Tech Sci, 57: 1010–1019

    Article  Google Scholar 

  • Tian H, Yao S, Zong Q, He J, Qi Y. 2010. Signatures of magnetic reconnection at boundaries of interplanetary small-scale magnetic flux ropes. Astrophys J, 720: 454–464

    Article  Google Scholar 

  • Tian A M, Zong Q G. 2009. Study of magnetotail plasma sheet vortices with GS velocity field reconstruction method. Chin J Geophys, 52: 743–753

    Article  Google Scholar 

  • Tian A M, Zong Q G, Shi Q Q. 2012. Reconstruction of morningside plasma sheet compressional ULF Pc5 wave. Sci China Tech Sci, 55: 1092–1100

    Article  Google Scholar 

  • Tian A M, Zong Q G, Wang Y F, Shi Q Q, Fu S Y, Pu Z Y. 2010. A series of plasma flow vortices in the tail plasma sheet associated with solar wind pressure enhancement. J Geophys Res, 115: A09204

    Article  Google Scholar 

  • Trenchi L, Bruno R, Telloni D, D’amicis R, Marcucci M F, Zurbuchen T H, Weberg M. 2013. Solar energetic particle modulations associated with coherent magnetic structures. Astrophys J, 770: 11

    Article  Google Scholar 

  • Trenchi L, Fear R C, Trattner K J, Mihaljcic B, Fazakerley A N. 2016. A sequence of flux transfer events potentially generated by different generation mechanisms. J Geophys Res-Space Phys, 121: 8624–8639

    Article  Google Scholar 

  • van Ballegooijen A A, Martens P C H. 1989. Formation and eruption of solar prominences. Astrophys J, 343: 971–984

    Article  Google Scholar 

  • Vemareddy P, Möstl C, Amerstorfer T, Mishra W, Farrugia C, Leitner M. 2016. Comparison of magnetic properties in a magnetic cloud and its solar source on 2013 April 11–14. Astrophys J, 828: 12

    Article  Google Scholar 

  • Vogiatzis I I, Isavnin A, Zong Q G, Sarris E T, Lu S W, Tian A M. 2015. Dipolarization fronts in the near-Earth space and substorm dynamics. Ann Geophys, 33: 63–74

    Article  Google Scholar 

  • Walthour D W, Sonnerup B U Ö. 1995. Remote sensing of 2D magnetopause structures. Washington DC: American Geophysical Union. Geophys Monograph Ser, 90: 247

    Google Scholar 

  • Walthour D W, Sonnerup B U O, Paschmann G, Luehr H, Klumpar D, Potemra T. 1993. Remote sensing of two-dimensional magnetopause structures. J Geophys Res, 98: 1489–1504

    Article  Google Scholar 

  • Wang J, Dunlop M W, Pu Z Y, Zhou X Z, Zhang X G, Wei Y, Fu S Y, Xiao C J, Fazakerley A, Laakso H, Taylor M G G T, Bogdanova Y, Pitout F, Davies J, Zong Q G, Shen C, Liu Z X, Carr C, Perry C, Rème H, Dandouras I, Escoubet P, Owen C J. 2007. TC1 and Cluster observation of an FTE on 4 January 2005: A close conjunction. Geophys Res Lett, 34: L03106

    Google Scholar 

  • Wang W S, Liu R, Wang Y M, Hu Q, Shen C L, Jiang C W, Zhu C M. 2017. Formation of a highly twisted magnetic flux rope during the course of a solar eruption. Nature Communications, submitted

    Google Scholar 

  • Wang Y M, Zhang Q H, Liu J J, Shen C L, Shen F, Yang Z C, Zic T, Vrsnak B, Webb D F, Liu R, Wang S, Zhang J, Hu Q, Zhuang B. 2016a. On the propagation of a geoeffective coronal mass ejection during 15–17 Marc. 2015. J Geophys Res-Space Phys, 121: 7423–7434

    Article  Google Scholar 

  • Wang Y M, Zhuang B, Hu Q, Liu R, Shen C L, Chi Y T. 2016b. On the twists of interplanetary magnetic flux ropes observed at 1 AU. J Geophys Res-Space Phys, 121: 9316–9339

    Article  Google Scholar 

  • Webb D F, Möstl C, Jackson B V, Bisi M M, Howard T A, Mulligan T, Jensen E A, Jian L K, Davies J A, de Koning C A, Liu Y, Temmer M, Clover J M, Farrugia C J, Harrison R A, Nitta N, Odstrcil D, Tappin S J, Yu H S. 2013. Heliospheric imaging of 3D density structures during the multiple coronal mass ejections of late July to early August 2010. Sol Phys, 285: 317–348

    Article  Google Scholar 

  • Webb G M, Hu Q, Dasgupta B, Zank G P. 2010. Homotopy formulas for the magnetic vector potential and magnetic helicity: The Parker spiral interplanetary magnetic field and magnetic flux ropes. J Geophys Res, 115: A10112

    Article  Google Scholar 

  • Wei F, Schwenn R, Hu Q. 1997. Magnetic reconnection events in the interplanetary space. Sci China Ser E-Tech Sci, 40: 463–471

    Article  Google Scholar 

  • Wood B E, Rouillard A P, Möstl C, Battams K, Savani N P, Marubashi K, Howard R A, Socker D G. 2012. Connecting coronal mass ejections and magnetic clouds: A case study using an event from 22 June 2009. Sol Phys, 16: 369–389

    Google Scholar 

  • Yang Y Y, Shen C, Zhang Y C, Rong Z J, Li X, Dunlop M, Ma Y H, Liu Z X, Carr C M, Rème H. 2014. The force-free configuration of flux ropes in geomagnetotail: Cluster observations. J Geophys Res-Space Phys, 119: 6327–6341

    Article  Google Scholar 

  • Yu W, Farrugia C J, Lugaz N, Galvin A B, J. Kilpua E K, Kucharek H, Möstl C, Leitner M, Torbert R B, C. Simunac K D, Luhmann J G, Szabo A, Wilson Iii L B, Ogilvie K W, Sauvaud J A. 2014. A statistical analysis of properties of small transients in the solar wind 2007–2009: STEREO and Wind observations. J Geophys Res-Space Phys, 119: 689–708

    Article  Google Scholar 

  • Yurchyshyn V, Hu Q, Abramenko V. 2005. Structure of magnetic fields in NOAA active regions 0486 and 0501 and in the associated interplanetary ejecta. Space Weather, 3: S08C02

    Article  Google Scholar 

  • Zank G P, le Roux J A, Webb G M, Dosch A, Khabarova O. 2014. Particle acceleration via reconnection processes in the supersonic solar wind. Astrophys J, 797: 28

    Article  Google Scholar 

  • Zhang T L, Baumjohann W, Teh W L, Nakamura R, Russell C T, Luhmann J G, Glassmeier K H, Dubinin E, Wei H Y, Du A M, Lu Q M, Wang S, Balikhin M. 2012. Giant flux ropes observed in the magnetized ionosphere at Venus. Geophys Res Lett, 39: L23103

    Google Scholar 

  • Zhang Y C, Shen C, Liu Z X, Rong Z J, Zhang T L, Marchaudon A, Zhang H, Duan S P, Ma Y H, Dunlop M W, Yang Y Y, Carr C M, Dandouras I. 2013. Two different types of plasmoids in the plasma sheet: Cluster multisatellite analysis application. J Geophys Res-Space Phys, 118: 5437–5444

    Article  Google Scholar 

  • Zhang Y C, Shen C, Liu Z X, Narita Y. 2010. Magnetic helicity of a flux rope in the magnetotail: THEMIS results. Ann Geophys, 28: 1687–1693

    Article  Google Scholar 

  • Zhang Y C, Liu Z X, Shen C, Fazakerley A, Dunlop M, Réme H, Lucek E, Walsh A P, Yao L. 2007. The magnetic structure of an earthwardmoving flux rope observed by Cluster in the near-tail. Ann Geophys, 25: 1471–1476

    Article  Google Scholar 

  • Zheng J L, Hu Q. 2016. Observations and analysis of small-scale magnetic flux ropes in the solar wind. J Phys-Conf Ser, 767: 012028

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the invitation by Drs. Feng XueShang and Wan WeiXing for this review. The author’s first scientific publication appeared in this journal nearly twenty years ago. As a point of reflection on the author’s own professional career, I am grateful for the mentorship, friendship, and companionship, offered by numerous mentors, colleagues, and families. In particular, the towering figures of Prof. Wei FengSi, Prof. Bengt Sonnerup, Drs. Charles Smith and Norman Ness, Prof. Gary Zank, and Prof. Wu Shi-Tsan, have provided invaluable guidance along the way during my past years as a graduate student, a postdoc, and a professional researcher, up to the present time. I am most indebted to Prof. Sonnerup and Prof. Hau Lin-Ni who laid down the foundation for and led me down the path of the GS reconstruction. I thank numerous colleagues and co-authors in shaping and enriching my professional development and growth. In particular, I benefited tremendously from the collaboration with Prof. Qiu Jiong, which has spanned one decade, and two sub-disciplines in space physics, i.e., solar physics and interplanetary physics. In addition, I have benefited greatly from collaborations with many other Chinese colleagues who have been so prolific that all their works could not possibly be included. I have been inspired by their work ethics and formidable spirit. I am particularly grateful to Prof. Chen Yao and colleagues at Shandong University, Weihai, for their hospitality and support. I wish to thank the reviewers for their enthusiastic review and knowledgeable comments that help improve the manuscript. Upon the completion of this manuscript, we were all saddened by the sudden passing of Dr. Shi-Tsan Wu, with whom the author has been working closely in the past decade or so, till the very last day. Together with many colleagues in China and around the world, we mourn the loss of such an inspirational figure in the field of solar-terrestrial physics. We will miss ST’s wisdom, his mentorship, and his passion for science. The best way to carry on ST’s legacy is to continue to encourage and inspire future generations, as ST always did. I hope this piece of writing will contribute to that noble cause. The author’s work summarized herein has been supported by National Aeronautics and Space Administration (NASA) and National Science Foundation (NSF) (Grants Nos. AGS-1062050, NNG04GF47G, NNG06GD41G, NNX12AF97G, NNX12AH50G, NNH13ZDA001N, and NNX14AF41G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q. The Grad-Shafranov reconstruction in twenty years: 1996–2016. Sci. China Earth Sci. 60, 1466–1494 (2017). https://doi.org/10.1007/s11430-017-9067-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9067-2

Keywords

Navigation