Skip to main content
Log in

Weakening sensitivity of global vegetation to long-term droughts

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Droughts have dramatic direct and indirect impacts on vegetation and terrestrial ecosystem stability, including decreases in growth and subsequent decreases in CO2 absorption. Although much research has been carried out on the response of vegetation to droughts, it remains unclear whether biomes are becoming more resistant or more vulnerable to drought. In this study, we used the Standardized Precipitation Evapotranspiration Index (SPEI, a multiscalar drought index) and the Normalized Difference Vegetation Index (NDVI, an indicator of vegetation growth) to detect the sensitivity of vegetation growth to droughts across 12–24 month timescales and to detect the change in this sensitivity over recent decades. We found that vegetation growth was most sensitive to 17–18 month droughts in water-limited regions, implying pronounce legacy effects from water conditions in previous years. In addition, we detected reduced coupling between drought and vegetation growth, probably caused by release moisture stress in water limited areas. Meanwhile, we observed a shortening of drought timescale to which vegetation most sensitively responded from an average of 18.1 to 17.2 months, suggesting the weakening of the drought legacy effect on vegetation growth. Results of this study contribute to the overall understanding of the resistance and resilience of ecosystems to drought conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderegg W R L, Plavcová L, Anderegg L D L, Hacke U G, Berry J A, Field C B. 2013. Drought’s legacy: Multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk. Glob Change Biol, 19: 1188–1196

    Article  Google Scholar 

  • Anderegg W R L, Schwalm C, Biondi F, Camarero J J, Koch G, Litvak M, Ogle K, Shaw J D, Shevliakova E, Williams A P, Wolf A, Ziaco E, Pacala S. 2015. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 349: 528–532

    Article  Google Scholar 

  • Bhatt U, Walker D, Raynolds M, Bieniek P, Epstein H, Comiso J, Pinzon J, Tucker C, Polyakov I. 2013. Recent declines in warming and vegetation greening trends over pan-Arctic tundra. Remote Sens, 5: 4229–4254

    Article  Google Scholar 

  • Bonan G B. 2008. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320: 1444–1449

    Article  Google Scholar 

  • Brandt M, Mbow C, Diouf A A, Verger A, Samimi C, Fensholt R. 2015. Ground- and satellite-based evidence of the biophysical mechanisms behind the greening Sahel. Glob Change Biol, 21: 1610–1620

    Article  Google Scholar 

  • Campos G E p, Moran M S, Huete A, Zhang Y, Bresloff C, Huxman T E, Eamus D, Bosch D D, Buda A R, Gunter S A, Scalley T H, Kitchen S G, McClaran M P, McNab W H, Montoya D S, Morgan J A, Peters D P C, Sadler E J, Seyfried M S, Starks P J. 2013. Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature, 494: 349–352

    Article  Google Scholar 

  • Chen T, Werf G R, Jeu R A M, Wang G, Dolman A J. 2013. A global analysis of the impact of drought on net primary productivity. Hydrol Earth Syst Sci, 17: 3885–3894

    Article  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend A D, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival J M, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana J F, Sanz M J, Schulze E D, Vesala T, Valentini R. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437: 529–533

    Article  Google Scholar 

  • Dai A G. 2012. Increasing drought under global warming in observations and models. Nat Clim Change, 3: 52–58

    Article  Google Scholar 

  • Feng X M, Fu B J, Piao S, Wang S H, Ciais P, Zeng Z Z, Lu Y H, Zeng Y, Li Y, Jiang X H, Wu B F. 2016. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat Clim Change, 6: 1019–1022

    Article  Google Scholar 

  • Fensholt R, Langanke T, Rasmussen K, Reenberg A, Prince S D, Tucker C, Scholes R J, Le Q B, Bondeau A, Eastman R, Epstein H, Gaughan A E, Hellden U, Mbow C, Olsson L, Paruelo J, Schweitzer C, Seaquist J, Wessels K. 2012. Greenness in semi-arid areas across the globe 1981–2007—An Earth Observing Satellite based analysis of trends and drivers. Remote Sens Environ, 121: 144–158

    Article  Google Scholar 

  • Gao X J, Giorgi F. 2008. Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Glob Planet Change, 62: 195–209

    Article  Google Scholar 

  • Harris I, Jones P D, Osborn T J, Lister D H. 2014. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int J Climatol, 34: 623–642

    Article  Google Scholar 

  • Huang J P, Yu H P, Guan X D, Wang G Y, Guo R X. 2015. Accelerated dryland expansion under climate change. Nat Clim Change, 316: 166–171

    Google Scholar 

  • Huang J P, Yu H P, Dai A G, Wei Y, Kang L T. 2017. Drylands face potential threat under 2°C global warming target. Nat Clim Change, 7: 417–422

    Article  Google Scholar 

  • Huxman T E, Smith M D, Fay P A, Knapp A K, Shaw M R, Loik M E, Smith S D, Tissue D T, Zak J C, Weltzin J F, Pockman W T, Sala O E, Haddad B M, Harte J, Koch G W, Schwinning S, Small E E, Williams D G. 2004. Convergence across biomes to a common rain-use efficiency. Nature, 429: 651–654

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). 2014. Climate Change 2014–Impacts, Adaptation and Vulnerability: Regional Aspects. Cambridge: Cambridge University Press

  • Ivits E, Horion S, Erhard M, Fensholt R. 2016. Assessing European ecosystem stability to drought in the vegetation growing season. Glob Ecol Biogeogr, 25: 1131–1143

    Article  Google Scholar 

  • Kingston D G, Todd M C, Taylor R G, Thompson J R, Arnell N W. 2009. Uncertainty in the estimation of potential evapotranspiration under climate change. Geophys Res Lett, 36: L20403

    Article  Google Scholar 

  • Lewis S L, Brando P M, Phillips O L, van der Heijden G M F, Nepstad D. 2011. The 2010 Amazon drought. Science, 331: 554–554

    Article  Google Scholar 

  • Middleton N, Thomas D. 1997. World Atlas of Desertification. Arnold, Hodder Headline, PLC

    Google Scholar 

  • Nemani R R, Keeling C D, Hashimoto H, Jolly W M, Piper S C, Tucker C J, Myneni R B, Running S W. 2003. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300: 1560–1563

    Article  Google Scholar 

  • Phillips O L, Aragão L E O C, Lewis S L, Fisher J B, Lloyd J, López-González G, Malhi Y, Monteagudo A, Peacock J, Quesada C A, van der Heijden G, Almeida S, Amaral I, Arroyo L, Aymard G, Baker T R, Bánki O, Blanc L, Bonal D, Brando P, Chave J, de Oliveira A C A, Cardozo N D, Czimczik C I, Feldpausch T R, Freitas M A, Gloor E, Higuchi N, Jiménez E, Lloyd G, Meir P, Mendoza C, Morel A, Neill D A, Nepstad D, Patiño S, Peñuela M C, Prieto A, Ramírez F, Schwarz M, Silva J, Silveira M, Thomas A S, Steege H T, Stropp J, Vásquez R, Zelazowski P, Alvarez Dávila E, Andelman S, Andrade A, Chao K J, Erwin T, Di Fiore A, Honorio C E, Keeling H, Killeen T J, Laurance W F, Peña Cruz A, Pitman N C A, Núñez Vargas P, Ramírez-Angulo H, Rudas A, Salamão R, Silva N, Terborgh J, Torres-Lezama A. 2009. Drought sensitivity of the Amazon rainforest. Science, 323: 1344–1347

    Article  Google Scholar 

  • Piao S L, Nan H J, Huntingford C, Ciais P, Friedlingstein P, Sitch S, Peng S S, Ahlstrom A, Canadell J G, Cong N, Levis S, Levy P E, Liu L L, Lomas M R, Mao J F, Myneni R B, Peylin P, Poulter B, Shi X Y, Yin G D, Viovy N, Wang T, Wang X H, Zaehle S, Zeng N, Zeng Z Z, Chen A P. 2014. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat Commun, 5: 5018

    Article  Google Scholar 

  • Reichmann L G, Sala O E, Peters D P C. 2013. Precipitation legacies in desert grassland primary production occur through previous-year tiller density. Ecology, 94: 435–443

    Article  Google Scholar 

  • Rocha A V, Goulden M L. 2010. Drought legacies influence the long-term carbon balance of a freshwater marsh. J Geophys Res, 115: G00H02

    Article  Google Scholar 

  • Roy J, Picon-Cochard C, Augusti A, Benot M L, Thiery L, Darsonville O, Landais D, Piel C, Defossez M, Devidal S, Escape C, Ravel O, Fromin N, Volaire F, Milcu A, Bahn M, Soussana J F. 2016. Elevated CO2 maintains grassland net carbon uptake under a future heat and drought extreme. Proc Natl Acad Sci USA, 113: 6224–6229

    Article  Google Scholar 

  • Saatchi S, Asefi-Najafabady S, Malhi Y, Aragão L E O C, Anderson L O, Myneni R B, Nemani R. 2013. Persistent effects of a severe drought on Amazonian forest canopy. Proc Natl Acad Sci USA, 110: 565–570

    Article  Google Scholar 

  • Sala O E, Gherardi L A, Reichmann L, Jobbágy E, Peters D. 2012. Legacies of precipitation fluctuations on primary production: Theory and data synthesis. Philos Trans R Soc B-Biol Sci, 367: 3135–3144

    Article  Google Scholar 

  • Saleska S R, Didan K, Huete A R, da Rocha H R. 2007. Amazon forests green-up during 2005 drought. Science, 318: 612–612

    Article  Google Scholar 

  • Sugden A M. 2015. Drought effects on carbon cycling. Science, 349: 490

    Article  Google Scholar 

  • Swann A L S, Hoffman F M, Koven C D, Randerson J T. 2016. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc Natl Acad Sci USA, 113: 10019–10024

    Article  Google Scholar 

  • Trenberth K E, Dai A, van der Schrier G, Jones P D, Barichivich J, Briffa K R, Sheffield J. 2014. Global warming and changes in drought. Nat Clim Change, 4: 17–22

    Article  Google Scholar 

  • Tucker C J, Pinzon J E, Brown M E, Slayback D A, Pak E W, Mahoney R, Vermote E F, El Saleous N. 2005. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int J Remote Sens, 26: 4485–4498

    Article  Google Scholar 

  • Ukkola A M, Prentice I C, Keenan T F, van Dijk A I J M, Viney N R, Myneni R B, Bi J. 2016. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat Clim Change, 6: 75–78

    Article  Google Scholar 

  • van der Molen M K, Dolman A J, Ciais P, Eglin T, Gobron N, Law B E, Meir P, Peters W, Phillips O L, Reichstein M, Chen T, Dekker S C, Doubková M, Friedl M A, Jung M, van den Hurk B J J M, de Jeu R A M, Kruijt B, Ohta T, Rebel K T, Plummer S, Seneviratne S I, Sitch S, Teuling A J, van der Werf G R, Wang G. 2011. Drought and ecosystem carbon cycling. Agric For Meteorol, 151: 765–773

    Article  Google Scholar 

  • Vicente-Serrano S M, Beguería S, López-Moreno J I. 2010. A Multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J Clim, 23: 1696–1718

    Article  Google Scholar 

  • Vicente-Serrano S M, Gouveia C, Camarero J J, Beguería S, Trigo R, López-Moreno J I, Azorín-Molina C, Pasho E, Lorenzo-Lacruz J, Revuelto J, Morán-Tejeda E, Sanchez-Lorenzo A. 2013. Response of vegetation to drought time-scales across global land biomes. Proc Natl Acad Sci USA, 110: 52–57

    Article  Google Scholar 

  • Vicente-Serrano S M, Lopez-Moreno J I, Begueria S, Lorenzo-Lacruz J, Sanchez-Lorenzo A, Garcia-Ruiz J M, Azorin-Molina C, Moran-Tejeda E, Revuelto J, Trigo R, Coelho F, Fspejo F. 2014. Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ Res Lett, 9: 044001

    Article  Google Scholar 

  • Williams A P, Allen C D, Macalady A K, Griffin D, Woodhouse C A, Meko D M, Swetnam T W, Rauscher S A, Seager R, Grissino-Mayer H D, Dean J S, Cook E R, Gangodagamage C, Cai M, McDowell N G. 2013. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Clim Change, 3: 292–297

    Article  Google Scholar 

  • Wu D H, Zhao X, Liang S L, Zhou T, Huang K C, Tang B J, Zhao W Q. 2015. Time-lag effects of global vegetation responses to climate change. Glob Change Biol, 21: 3520–3531

    Article  Google Scholar 

  • Wolf S, Keenan T F, Fisher J B, Baldocchi D D, Desai A R, Richardson A D, Scott R L, Law B E, Litvak M E, Brunsell N A, Peters W, van der Laan-Luijkx I T. 2016. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc Natl Acad Sci USA, 113: 5880–5885

    Article  Google Scholar 

  • Yuan W P, Cai W W, Xia J Z, Chen J Q, Liu S G, Dong W J, Merbold L, Law B, Arain A, Beringer J, Bernhofer C, Black A, Blanken P D, Cescatti A, Chen Y, Francois L, Gianelle D, Janssens I A, Jung M, Kato T, Kiely G, Liu D, Marcolla B, Montagnani L, Raschi A, Roupsard O, Varlagin A, Wohlfahrt G. 2014a. Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database. Agric For Meteorol, 192-193: 108–120

    Article  Google Scholar 

  • Yuan W P, Liu S G, Dong W J, Liang S L, Zhao S Q, Chen J M, Xu W F, Li X L, Barr A, Black T A, Yan W D, Goulden M L, Kulmala L, Lindroth A, Margolis H A, Matsuura Y, Moors E, van M M, Ohta T, Pilegaard K, Varlagin A, Vesala T. 2014b. Differentiating moss from higher plants is critical in studying the carbon cycle of the boreal biome. Nat Commun, 5: 4270

    Google Scholar 

  • Yuan W P, Liu S, Zhou G S, Zhou G Y, Tieszen L L, Baldocchi D, Bernhofer C, Gholz H, Goldstein A H, Goulden M L, Hollinger D Y, Hu Y, Law B E, Stoy P C, Vesala T, Wofsy S C. 2007. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agric For Meteorol, 143: 189–207

    Article  Google Scholar 

  • Zhang X, Moran M S, Zhao X, Liu S H, Zhou T, Ponce-Campos G E, Liu F. 2014. Impact of prolonged drought on rainfall use efficiency using MODIS data across China in the early 21st century. Remote Sens Environ, 150: 188–197

    Article  Google Scholar 

  • Zhang Y L, Song C H, Band L E, Sun G, Li J X. 2017. Reanalysis of global terrestrial vegetation trends from MODIS products: Browning or greening? Remote Sens Environ, 191: 145–155

    Article  Google Scholar 

  • Zhao M S, Running S W. 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329: 940–943

    Article  Google Scholar 

  • Zhu Z C, Piao S L, Myneni R B, Huang M T, Zeng Z Z, Canadell J G, Ciais P, Sitch S, Friedlingstein P, Arneth A, Cao C X, Cheng L, Kato E, Koven C, Li Y, Lian X, Liu Y W, Liu R G, Mao J F, Pan Y Z, Peng S S, Penuelas J, Poulter B, Pugh T A M, Stocker B D, Viovy N, Wang X H, Wang Y P, Xiao Z Q, Yang H, Zaehle S, Zeng N. 2016. Greening of the Earth and its drivers. Nat Clim Change, 6: 791–795

    Article  Google Scholar 

Download references

Acknowledgements

All data used in the paper are presented in the paper and/or the Supplementary Materials. We thank Dr. Wenping Yuan for providing NPP dataset over 1981–2010. We also thank Aifeng Lv for analyses and discussions, Haiyan Wang for helpful suggestions on the manuscript. This work was supported by the National Natural Science Foundation of China (Grant No. 41671083), the National Key R&D Program of China (Grant Nos. 2017YFA0603601 & 2015CB953600) and the Fundamental Research Funds for the Central Universities (Grant No. 312231103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin He.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, B., Huang, L., Chen, Z. et al. Weakening sensitivity of global vegetation to long-term droughts. Sci. China Earth Sci. 61, 60–70 (2018). https://doi.org/10.1007/s11430-016-9119-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-9119-8

Keywords

Navigation