Skip to main content
Log in

Stagnant low-energy ions in the near cusp region observed by Cluster

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Measuring the low-energy ions in the Earth’s magnetotail lobes is difficult, because a spacecraft becomes positively charged in a sunlit and tenuous plasma environment. Recent studies have introduced a new method, making use of the positive electric potential on the Cluster spacecraft, to measure the low-energy ions (less than a few tens of electronvolts) in the polar caps/magnetotail lobes in the years 2001–2010. With the measured velocities, we are able to study the trajectories of these low-energy ions. Particle tracing has been used in previous studies, confirming that ions of ionospheric origin are the dominant contributor to the ion population in the Earth’s magnetotail lobes. In this work, we continue to study the source of low-energy ions measured in the lobes. We found that not all of the low-energy ions in the lobes come directly from the ionosphere. Particle tracing infers that some of the low-energy ions start to move tailward from the cusp/near-cusp region with a zero parallel velocity. In the following, we refer to these low-energy ions as stagnant low-energy ions. On the other hand, the in situ measurements by Cluster show a population of low-energy ions in the cusp/near-cusp region with pitch angles near 90° (i.e., no significant parallel velocity). The locations of stagnant low-energy ions are determined by particle tracing and in situ measurements. Similar ion energies and spatial distributions determined by these two methods confirm the presence of the stagnant low-energy ion population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • André M, Cully C M. 2012. Low-energy ions: A previously hidden solar system particle population. Geophys Res Lett, 39: L03101

    Article  Google Scholar 

  • André M, Koskinen H, Matson L, Erlandson R. 1988. Local transverse ion energization in and near the polar cusp. Geophys Res Lett, 15: 107–110

    Article  Google Scholar 

  • André M, Li K, Eriksson A I. 2015. Outflow of low-energy ions and the solar cycle. J Geophys Res-Space Phys, 120: 1072–1085

    Article  Google Scholar 

  • Axford W I. 1968. The polar wind and the terrestrial helium budget. J Geophys Res, 73: 6855–6859

    Article  Google Scholar 

  • Balogh A, Dunlop M W, Cowley S W H, Southwood D J, Thomlinson J G, Glassmeier K H, Musmann G, Luhr H, Buchert S, Acuna M H, Fairfield D H, Slavin J A, Riedler W, Schwingenschuh K, Kivelson M G. 1997. The cluster magnetic field investigation. Space Sci Rev, 79: 65–91

    Article  Google Scholar 

  • Banks P M, Holzer T E. 1968. The polar wind. J Geophys Res, 73: 6846–6854

    Article  Google Scholar 

  • Chappell C R, Moore T E, Waite J H. 1987. The ionosphere as a fully adequate source of plasma for the Earth’s magnetosphere. J Geophys Res, 92: 5896–5910

    Article  Google Scholar 

  • Cully C M, Donovan E F, Yau A W, Arkos G G. 2003. Akebono/suprathermal mass spectrometer observations of low-energy ion outflow: Dependence on magnetic activity and solar wind conditions. J Geophys Res, 108: 1093

    Google Scholar 

  • Engwall E, Eriksson A I, André M, Dandouras I, Paschmann G, Quinn J, Torkar K. 2006. Low-energy (order 10 eV) ion flow in the magnetotail lobes inferred from spacecraft wake observations. Geophys Res Lett, 33: L06110

    Google Scholar 

  • Engwall E, Eriksson A I, Cully C M, André M, Puhl-Quinn P A, Vaith H, Torbert R. 2009. Survey of cold ionospheric outflows in the magnetotail. Ann Geophys, 27: 3185–3201

    Article  Google Scholar 

  • Escoubet C P, Bosqued J M, Berchem J, Trattner K J, Taylor M G G T, Pitout F, Laakso H, Masson A, Dunlop M, Reme H, Dandouras I, Fazakerley A. 2006. Temporal evolution of a staircase ion signature observed by Cluster in the mid-altitude polar cusp. Geophys Res Lett, 33: L07108

    Article  Google Scholar 

  • Gustafsson G, André M, Carozzi T, Eriksson A I, Fälthammar C G, Grard R, Holmgren G, Holtet J A, Ivchenko N, Karlsson T, Khotyaintsev Y, Klimov S, Laakso H, Lindqvist P A, Lybekk B, Marklund G, Mozer F, Mursula K, Pedersen A, Popielawska B, Savin S, Stasiewicz K, Tanskanen P, Vaivads A, Wahlund J E. 2001. First results of electric field and density observations by Cluster EFW based on initial months of operation. Ann Geophys, 19: 1219–1240

    Article  Google Scholar 

  • Haaland S, Eriksson A, Engwall E, Lybekk B, Nilsson H, Pedersen A, Svenes K, André M, Förster M, Li K, Johnsen C, Østgaard N. 2012a. Estimating the capture and loss of cold plasma from ionospheric outflow. J Geophys Res, 117: A07311

    Article  Google Scholar 

  • Haaland S, Li K, Eriksson A, André M, Engwall E, Förster M, Johnsen C, Lybekk B, Nilsson H, Østgaard N, Pedersen A, Svenes K. 2012b. Cold ion outflow as a source of plasma for the magnetosphere. In: Summers D, ed. Dynamics of the Earth’s Radiation Belts and Inner Magnetosphere. Geophys Monogr Ser,199: 341–353

    Google Scholar 

  • Haaland S, Eriksson A, André M, Maes L, Baddeley L, Barakat A, Chappell R, Eccles V, Johnsen C, Lybekk B, Li K, Pedersen A, Schunk R, Welling D. 2015. Estimation of cold plasma outflow during geomagnetic storms. J Geophys Res-Space Phys, 120: 10622–10639

    Article  Google Scholar 

  • Ho C W, Horwitz J L, Wilson G R. 1997. Dynamics of the H+ and O+ polar wind in the transition region as influenced by ionospheric convection and electron heating. J Geophys Res, 102: 395–406

    Article  Google Scholar 

  • Jacobsen K S, Moen J I, Pedersen A. 2010. Quasistatic electric field structures and field-aligned currents in the polar cusp region. J Geophys Res, 115: A10226

    Google Scholar 

  • King J H, Papitashvili N E. 2005. Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data. J Geophys Res, 110: A02104

    Article  Google Scholar 

  • Kitamura N, Seki K, Nishimura Y, Terada N, Ono T, Hori T, Strangeway R J. 2012. Photoelectron flows in the polar wind during geomagnetically quiet periods. J Geophys Res, 117: A07214

    Google Scholar 

  • Li K, Haaland S, Eriksson A, André M, Engwall E, Wei Y, Kronberg E A, Fränz M, Daly P W, Zhao H, Ren Q Y. 2012. On the ionospheric source region of cold ion outflow. Geophys Res Lett, 39: L18102

    Google Scholar 

  • Li K, Haaland S, Eriksson A, André M, Engwall E, Wei Y, Kronberg E A, Fränz M, Daly P W, Zhao H, Ren Q Y. 2013. Transport of cold ions from the polar ionosphere to the plasma sheet. J Geophys Res-Space Phys, 118: 5467–5477

    Article  Google Scholar 

  • Moore T E, Horwitz J L. 2007. Stellar ablation of planetary atmospheres. Rev Geophys, 45: RG3002

    Article  Google Scholar 

  • Nilsson H, Engwall E, Eriksson A, Puhl-Quinn P A, Arvelius S. 2010. Centrifugal acceleration in the magnetotail lobes. Ann Geophys, 28: 569–576

    Article  Google Scholar 

  • Northrop T G. 1963. The Adiabatic Motion of Charged Particles. Hoboken: John Wiley Inter Science Publisher

    Google Scholar 

  • Paschmann G, Quinn J M, Torbert R B, Vaith H, McIlwain C E, Haerendel G, Bauer O H, Bauer T, Baumjohann W, Fillius W, Förster M, Frey S, Georgescu E, Kerr S S, Kletzing C A, Matsui H, Puhl-Quinn P, Whipple E C. 2001. The electron drift instrument on cluster: Overview of first results. Ann Geophys, 19: 1273–1288

    Article  Google Scholar 

  • Rème H, Aoustin C, Bosqued J M, Dandouras I, Lavraud B, Sauvaud J A, Barthe A, Bouyssou J, Camus T, Coeur-Joly O, Cros A, Cuvilo J, Ducay F, Garbarowitz Y, Medale J L, Penou E, Perrier H, Romefort D, Rouzaud J, Vallat C, Alcaydé D, Jacquey C, Mazelle C, Duston C, Möbius E, Kistler L M, Crocker K, Granoff M, Mouikis C, Popecki M, Vosbury M, Klecker B, Hovestadt D, Kucharek H, Kuenneth E, Paschmann G, Scholer M, Sckopke N, Seidenschwang E, Carlson C W, Curtis D W, Ingraham C, Lin R P, McFadden J P, Parks G K, Phan T, Formisano V, Amata E, Bavassano-Cattaneo M B, Baldetti P, Bruno R, Chionchio G, di Lellis A, Marcucci M F, Pallocchia G, Korth A, Daly P W, Graeve B, Rosenbauer H, Vasyliunas V, McCarthy M, Wilber M, Eliasson L, Lundin R, Olsen S, Shelley E G, Fuselier S, Ghielmetti A G, Lennartsson W, Escoubet C P, Balsiger H, Friedel R, Cao J B, Kovrazhkin R A, Papamastorakis I, Pellat R, Scudder J, Sonnerup B. 2001. First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment. Ann Geophys, 19: 1303–1354

    Article  Google Scholar 

  • Su Y J, Horwitz J L, Wilson G R, Richards P G, Brown D G, Ho C W. 1998. Self-consistent simulation of the photoelectron-driven polar wind from 120 km to 9RE altitude. J Geophys Res, 103: 2279–2296

    Article  Google Scholar 

  • Taguchi S, Sugiura M, Winningham J D, Slavin J A. 1993. Characterization of the IMFBy -dependent field-aligned currents in the cleft region based on DE 2 observations. J Geophys Res, 98: 1393–1407

    Article  Google Scholar 

  • Tsyganenko N A. 2002a. A model of the near magnetosphere with a dawndusk asymmetry 1. Mathematical structure. J Geophys Res, 107: SMP 12-1–SMP 12-15

  • Tsyganenko N A. 2002b. A model of the near magnetosphere with a dawndusk asymmetry 2. Parameterization and fitting to observations. J Geophys Res, 107: SMP 10-1–SMP 10-17

  • Walsh B M, Foster J C, Erickson P J, Sibeck D G. 2014. Simultaneous ground- and space-based observations of the plasmaspheric plume and reconnection. Science, 343: 1122–1125

    Article  Google Scholar 

  • Wang C P, Zaharia S G, Lyons L R, Angelopoulos V. 2013. Spatial distributions of ion pitch angle anisotropy in the near-Earth magnetosphere and tail plasma sheet. J Geophys Res-Space Phys, 118: 244–255

    Article  Google Scholar 

  • Wilken B, Axford W I, Daglis I, Daly P, Guttler W, Ip W H, Korth A, Kremser G, Livi S, Vasyliunas V M, Woch J, Baker D, Belian R D, Blake J B, Fennell J F, Lyons L R, Borg H, Fritz T A, Gliem F, Rathje R, Grande M, Hall D, Kecsuemety K, McKenna-Lawlor S, Mursula K, Tanskanen P, Pu Z, Sandahl I, Sarris E T, Scholer M, Schulz M, Sorass F, Ullaland S. 1997. RAPID—The imaging energetic particle spectrometer on cluster. Space Sci Rev, 79: 399–473

    Article  Google Scholar 

Download references

Acknowledgements

The low-energy ion data derived by the wake method is obtained from the corresponding author of the paper by André et al. (2015). The data sets from RAPID, CIS-HIA, and EFW, are available from the Cluster Science Archive at http://www.cosmos.esa.int/web/csa. The authors thank S. Haaland, P. W. Daly, and E. A. Kronberg at the Max Planck Institute for Solar System Research and M. André, A. Eriksson at the Swedish Institute of Space Physics for helpful discussions. The work in Germany was supported by DLR (Grant No. 50 OC 1401). The work in China was supported by the National Natural Science Foundation of China (Grant Nos. 41525016, 41474155, 41661164034) and Lunar and Planetary Science Laboratory, Macau University of Science and Technology-Partner Laboratory of Key Laboratory of Lunar and Deep Space Exploration, Chinese Academy of Sciences (Grant No. 039/2013/A2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Wei, Y. & Wan, W. Stagnant low-energy ions in the near cusp region observed by Cluster. Sci. China Earth Sci. 60, 1299–1309 (2017). https://doi.org/10.1007/s11430-016-9040-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-9040-1

Keywords

Navigation