Skip to main content
Log in

The spatial distribution of archaeal lipids in a mesoscale subtropical watershed, Southeast China

  • Research Paper
  • Special Topic: Advances in organic proxies for research in climate and environmental changes
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Archaea play an important role in global carbon and nitrogen cycles. Archaeal lipids, such as isoprenoid glycerol diakyl glycerol tetraethers (iGDGTs), are important biomarkers tracing change in archaeal community structure and biogeochemical processes in the natural environments. In this research, the spatial distributions of archaeal lipids in the surface sediments of the Jiulong River (JR) and the Jiulong River estuary (JRE) were examined. GDGT-0 (containing zero cyclopentyl ring) and crenarchaeol were the most abundant iGDGTs in the JR and JRE. From the rivers to the estuary, the total iGDGTs, GDGT-0, crenarchaeol and archaeol concentrations showed significant spatial variation; in particular, GDGT-0 and archaeol in the river may be predominantly derived in situ from methanogens, whereas crenarchaeol in the estuary mainly derived in situ from Thaumarchaeota. We inferred that archaeal community was dominated by methanogens in the Jiulong River and by Thaumarchaeota in the Jiulong River estuary, which are consistent with change in archaeal community structure observed in other estuarine environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Biddle J F, Lipp J S, Lever M A, Lloyd K G, Sørensen K B, Anderson R, Fredricks H F, Elvert M, Kelly T J, Schrag D P, Sogin M L, Brenchley J E, Teske A, House C H, Hinrichs K U. 2006. Heterotrophic archaea dominate sedimentary subsurface ecosystems off Peru. Proc Natl Acad Sci USA, 103: 3846–3851

    Article  Google Scholar 

  • Blaga C I, Reichart G J, Vissers E W, Lotter A F, Anselmetti F S, Sinninghe D J S. 2011. Seasonal changes in glycerol dialkyl glycerol tetraether concentrations and fluxes in a perialpine lake: implications for the use of the TEX86 and BIT proxies. Geochim Cosmochim Acta, 75: 6416–6428

    Article  Google Scholar 

  • Chen B, Zhao Y C, Wang J K. 2007. Modeling on nutrient removal by harvesting water hyacinth from Jiulongjiang River (in Chinese). J Phys Oceanography Taiwan, 26: 327–333

    Google Scholar 

  • Fuhrman J A. 2009. Microbial community structure and its functional implications. Nature, 459: 193–199

    Article  Google Scholar 

  • Harvey H R, Fallon R D, Patton J S. 1986. The effect of organic matter and oxygen on the degradation of bacterial membrane lipids in marine sediments. Geochim Cosmochim Acta, 50: 795–804

    Article  Google Scholar 

  • Hopmans E C, Weijers J W, Schefuß E, Herfort L, Sinninghe Damsté J S, Schouten S. 2004. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet Sci Lett, 224: 107–116

    Article  Google Scholar 

  • Hu A Y, Hou L Y, Yu C P. 2015. Biogeography of Planktonic and Benthic Archaeal Communities in a Subtropical Eutrophic Estuary of China. Microb Ecol, 70: 322–335

    Article  Google Scholar 

  • Hu A Y, Yang X Y, Chen N W, Hou L Y, Ma Y, Yu C P. 2014. Response of bacterial communities to environmental changes in a mesoscale subtropical watershed, Southeast China. Sci Total Environ, 472: 746–756

    Article  Google Scholar 

  • Jia G D, Zhang J, Chen J F, Peng P, Zhang C L. 2012. Archaeal tetraether lipids record subsurface water temperature in the South China Sea. Org Geochem, 50: 68–77

    Article  Google Scholar 

  • Jonge D C, Hopmans E C, Stadnitskaia A, Rijpstra I W C, Hofland R, Tegelaar E, Sinninghe D J S. 2013. Identification of novel penta- and hexamethylated branched glycerol dialkyl glycerol tetraethers in peat using HPLC–MS2, GC–MS and GC–SMB–MS. Org Geochem, 54: 78–82

    Article  Google Scholar 

  • Kim J H, Schouten S, Hopmans E C, Donner B, Sinninghe D J S. 2008. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean. Geochim Cosmochim Acta, 72: 1154–1173

    Article  Google Scholar 

  • Kim J H, Zell C, Moreira T P, Pérez M A P, Abril G, Mortillaro J M, Weijers J W H, Meziane T, Sinninghe D J S. 2012. Tracing soil organic carbon in the lower Amazon River and its tributaries using GDGT distributions and bulk organic matter properties. Geochim Cosmochim Acta, 90: 163–180

    Article  Google Scholar 

  • Koga Y, Akagawamatsushita M, Ohga M, Nishihara M. 1993. Taxonomic significance of the distribution of component parts of polar ether lipids in methanogens. Syst Appl Microbiol, 16: 342–351

    Article  Google Scholar 

  • Koga Y, Morii H. 2005. Recent advances in structural research on ether lipids from Archaea including comparative and physiological aspects. Biosci Biotechnol Biochem, 69: 2019–2034

    Article  Google Scholar 

  • Koga Y, Nishihara M, Morii H, Matsushita A M. 1993. Ether polar lipids of methanogenic bacteria: Structures, comparative aspects, and biosynthesis. Microbiol Rev, 57: 164–182

    Google Scholar 

  • Kuypers M M M, Blokker P, Erbacher J, Kinkel H, Pancost R D, Schouten S, Sinninghe D J S. 2001. Massive expansion of marine archaea during a mid-Cretaceous oceanic anoxic event. Science, 293: 92–95

    Article  Google Scholar 

  • Li F Y, Zhang C L, Dong H L, Li W J, Williams A. 2013. Environmental controls on the distribution of archaeal lipids in Tibetan hot springs: Insight into the application of organic proxies for biogeochemical processes. Env Microbiol Rep, 5: 868–882

    Article  Google Scholar 

  • Lipp J S, Morono Y, Inagaki F, Hinrichs K U. 2008. Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature, 454: 991–994

    Article  Google Scholar 

  • Liu X L, Zhu C, Stuart G, Hinrichs K U. 2014. In situ production of branched glycerol dialkyl glycerol tetraethers in anoxic marine water columns. Mar Chem, 166: 1–8

    Article  Google Scholar 

  • Logemann J, Graue J, Köster J, Engelen B, Rullkötter J, Cypionka H. 2011. A laboratory experiment of intact polar lipid degradation in sandy sediments. Biogeosciences, 8: 2547–2560

    Article  Google Scholar 

  • Pancost R D, Hopmans E C, Damsté J S S. 2001. Archaeal lipids in Mediterranean cold seeps: Molecular proxies for anaerobic methane oxidation. Geochim Cosmochim Acta, 65: 1611–1627

    Article  Google Scholar 

  • Peterse F, Kim J H, Schouten S, Kristensenb D K, Koç N, Damsté J S S. 2009. Constraints on the application of the MBT/CBT palaeothermometer at high latitude environments (Svalbard, Norway). Org Geochem, 40: 692–699

    Article  Google Scholar 

  • Peterse F, Meer J V D, Schouten S, Weijers J W H, Fierer N, Jackson R B, Kim J H, Damsté J S S. 2012. Revised calibration of the MBT–CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils. Geochim Cosmochim Acta, 96: 215–229

    Article  Google Scholar 

  • Peterse F, Moy C M, Eglinton T I. 2015. A laboratory experiment on the behaviour of soil-derived core and intact polar GDGTs in aquatic environments. Biogeosciences, 12: 933–943

    Article  Google Scholar 

  • Petsch S T, Eglinton T I, Edwards K J. 2001. 14C dead living biomass: Evidence for microbial assimilation of ancient organic carbon during shale weathering. Science, 292: 1127–1131

    Article  Google Scholar 

  • Rossel P E, Lipp J S, Fredricks H F, Arnds J, Boetius A, Elvert M, Hinrichs K U. 2008. Intact polar lipids of anaerobic methanotrophic archaea and associated bacteria. Org Geochem, 39: 992–999

    Article  Google Scholar 

  • Schleper C, Jurgens G, Jonuscheit M. 2005. Genomic studies of uncultivated archaea. Nat Rev Microbiol, 3: 479–488

    Article  Google Scholar 

  • Schouten S, Hopmans E C, Baas M, Boumann H, Standfest S, Knneke M, Stahl D A, Damsté J S S. 2008. Intact membrane lipids of ‘Candidatus Nitrosopumilus maritimus’ a cultivated representative of the cosmopolitan mesophilic group I crenarchaeota. Appl Environ Microbiol, l74: 2433–2440

    Article  Google Scholar 

  • Schouten S, Hopmans E C, Damsté J S S. 2013. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review. Org Geochem, 54: 19–61

    Article  Google Scholar 

  • Schouten S, Hopmans E C, Pancost R D, Damsté J S S. 2000. Widespread occurrence of structurally diverse tetraether membrane lipids: Evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles. Proc Natl Acad Sci USA, 97: 14421–14426

    Article  Google Scholar 

  • Schouten S, Hopmans E C, Schefuss E, Damsté J S S. 2002. Distributional variations in marine crenarchaeotal membrane lipids: A new tool for reconstructing ancient sea water temperatures? Earth Planet Sci Lett, 204: 265–274

    Article  Google Scholar 

  • Schouten S, Rijpstra W I C, Durisch K E, Schubert C J, Damsté J S S. 2012. Distribution of glycerol dialkyl glycerol tetraether lipids in the water column of Lake Tanganyika. Org Geochem, 53: 34–37

    Article  Google Scholar 

  • Sinninghe D J S, Hopmans E C, Pancost R D, Schouten, S, Geenevasen J A J. 2000. Newly discovered non-isoprenoid dialkyl diglycerol tetraether lipids in sediments. Chem Commun, 23: 1683–1684

    Google Scholar 

  • Sinninghe D J S, Rijpstra W, Irene C, Hopmans E C, Weijers J W H, Foesel B U, Overmann J, Dedysh S N. 2011. 13, 16-Dimethyl octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of acidobacteria subdivisions 1 and 3. Appl Environ Microbiol, 77: 4147–4154

    Article  Google Scholar 

  • Sinninghe D J S, Schouten S, Hopmans E C, Duin V A C T, Geenevasen J A J. 2002. Crenarchaeol: The characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. J Lipid Res, 43: 1641–1651

    Article  Google Scholar 

  • Smith R W, Bianchi T S, Li X. 2012. A re-evaluation of the use of branched GDGTs as terrestrial biomarkers: Implications for the BIT Index. Geochim Cosmochim Acta, 80: 14–29

    Article  Google Scholar 

  • Strapoc D, Picardal F W, Turich C, Irene S, Jennifer M L, Lipp J S, Lin Y S, Tobias E F, Florence S, Hinrichs K U, Mastalerz M, Schimmelmann A. 2008. Methane-producing microbial community in a coal bed of the Illinois basin. Appl Environ Microbiol, 74: 2424–2432

    Article  Google Scholar 

  • Sturt H F, Summons R E, Smith K, Elvert M, Hinrichs K U. 2004. Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry—New biomarkers for biogeochemistry and microbial ecology. Rapid Common Mass Spectrom, 18: 617–628

    Article  Google Scholar 

  • Tierney J E, Russell J M. 2009. Distributions of branched GDGTs in a tropical lake system: Implications for lacustrine application of the MBT/CBT paleoproxy. Org Geochem, 40: 1032–1036

    Article  Google Scholar 

  • Wang H, Liu W, Zhang C L, Liu Z, He Y. 2013. Branched and isoprenoid tetraether (BIT) index traces water content along two marsh-soil transects surrounding Lake Qinghai: Implications for paleo-humidity variation. Org Geochem, 59: 75–81

    Article  Google Scholar 

  • Wang J X, Wei Y L, Wang P, Hong G Y, Zhang C L. 2015. Unusually low TEX86 values in the transitional zone between Pearl River estuary and coastal South China Sea: Impact of changing archaeal community composition. Chem Geol, 402: 18–29

    Article  Google Scholar 

  • Weijers J W H, Schouten S, Hopmans E C, Geenevasen J A J, David O R P, Coleman J M, Pancost R D, Sinninghe Damsté J S. 2006b. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits. Environ Microbiol, 8: 648–657

    Article  Google Scholar 

  • Weijers J W H, Schouten S, Spaargaren O C, Damsté J S S. 2006a. Occurrence and distribution of tetraether membrane lipids in soils: Implications for the use of the TEX86 proxy and the BIT index. Org Geochem, 37: 1680–1693

    Article  Google Scholar 

  • Weijers J W H., Schouten S, Van Den Donker J C, Hopmans E C, Damsté J S S. 2007. Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochim Cosmochim Acta, 71: 703–713

    Article  Google Scholar 

  • White D C, Davis W M, Nickels J S, King J D, Bobbie R J. 1979. Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia, 40: 51–62

    Article  Google Scholar 

  • Wu W C, Ruan J P, Ding S, Zhao L, Xu Y P, Ding W H, Pei Y D. 2014. Source and distribution of glycerol dialkyl glycerol tetraethers along lower Yellow River-estuary-coast transect. Mar Chem, 158: 17–26

    Article  Google Scholar 

  • Xie S, Pancost R D, Chen L, Evershed R, Yang H, Zhang K X. 2012. Microbial lipid records of highly alkaline deposits and enhanced aridity associated with significant uplift of the Tibetan Plateau in the Late Miocene. Geology, 40: 291–294

    Article  Google Scholar 

  • Xie W, Zhang C L, Ma C L. 2015. Temporal variation in community structure and lipid composition of Thaumarchaeota from subtropical soil: Insight into proposing a new soil pH proxy. Org Geochem, 83–84: 54–64

    Article  Google Scholar 

  • Yang G, Zhang C L, Xie S, Chen Z H, Gao M L, Ge Z L, Yang Z. 2013. Microbial glycerol dialkyl glycerol tetraethers from river water and soil near the Three Gorges Dam on the Yangtze River. Org Geochem, 56: 40–50

    Article  Google Scholar 

  • Yang H, Ding W H, Wang J X, Jin C S, He G Q, Qin Y M, Xie S C. 2012. Soil pH impact on microbial tetraether lipids and terrestrial input index (BIT) in China. Sci China Earth Sci, 55: 236–245

    Article  Google Scholar 

  • Zell C, Kim J H, Moreira T P, Abril G, Hopmans E C, Bonnet M P, Rodrigo L S, Sinninghe D J S. 2013. Disentangling the origins of branched tetraether lipids and crenarchaeol in the lower Amazon River: Implications for GDGT-based proxies. Limnol Oceanogr, 58: 343–353

    Article  Google Scholar 

  • Zhang C L, Pearson A, Li Y L, Mills G, Wiegel J. 2006. Thermophilic temperature optimum for crenarchaeol synthesis and its implication for archaeal evolution. Appl Environ Microbiol, 72: 4419–4422

    Article  Google Scholar 

  • Zhang C L, Wang J X, Jeremy A D, Amanda J W, Zhu C, Hinrichs K U, Zheng F F, Hedlund B P. 2013. In situ production of branched glycerol dialkyl glycerol tetraethers in a great basin hot spring (USA). Front Microbio, 4: 1–12

    Google Scholar 

  • Zhang C L, Wang J X, Wei Y L, Zhu C, Huang L Q, Dong H L. 2012. Production of branched tetraether lipids in the lower Pearl River and estuary: Effects of extraction methods and impact on bGDGT proxies. Front Microbio, 2: 1–18

    Article  Google Scholar 

  • Zhang J. 1997. The geochemistry of Jiulong River Estuary. In: Zhang J, ed. The Biogeochemistry of Major Chinese Estuaries-transport of Chemical Materials and Environment. Beijing: China Ocean Press. 54–67

    Google Scholar 

  • Zhang Y G, Zhang C L, Liu X L, Li L, Hinrichs K U, Noakes J E. 2011. Methane Index: A tetraether archaeal lipid biomarker indicator for detecting the instability of marine gas hydrates. Earth Planet Sci Lett, 307: 525–534

    Article  Google Scholar 

  • Zhu C, Wagner T, Talbot H M, Weijers J W H, Pan J M, Pancost R D. 2013. Mechanistic controls on diverse fates of terrestrial organic components in the East China Sea. Geochim Cosmochim Acta, 117: 129–143

    Article  Google Scholar 

  • Zhu C, Weijers J W H, Wagner T, Pan J M, Chen J F, Pancost R D. 2011. Sources and distributions of tetraether lipids in surface sediments across a large river dominated continental margin. Org Geochem, 42: 376–386

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChuanLun Zhang.

Additional information

SPECIAL TOPIC: Advances in organic proxies for research in climate and environmental changes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zheng, F., Chen, Y. et al. The spatial distribution of archaeal lipids in a mesoscale subtropical watershed, Southeast China. Sci. China Earth Sci. 59, 1317–1328 (2016). https://doi.org/10.1007/s11430-016-5303-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-5303-y

Keywords

Navigation