Skip to main content
Log in

Evaluation of the carbon isotopic effects of NDIR and CRDS analyzers on atmospheric CO2 measurements

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Non-dispersive infrared (NDIR) and cavity ring-down spectroscopy (CRDS) CO2 analyzers use 12CO2 isotopologue absorption lines and are insensitive to all or part of other CO2-related isotopologues. This may produce biases in CO2 mole fraction measurements of a sample if its carbon isotopic composition deviates from that of the standard gases being used. To evaluate and compare the effects of carbon isotopic composition on NDIR and CRDS CO2 analyzers, we prepared three test sample air cylinders with varying carbon isotopic abundances and calibrated them against five standard cylinders with ambient carbon isotopic composition using CRDS and NDIR systems. We found that the CO2 mole fractions of the sample cylinders measured by G1301 (CRDS) were in good agreement with those measured by LoFlo (NDIR). The CO2 values measured by both instruments were higher than that of a CO2 isotope measured by G2201i (CRDS) analyzer for a test cylinder with depleted carbon isotopic composition δ 13C =-36.828‰, whereas no obvious difference was found for other two test cylinders with δ 13C=-8.630‰ and δ 13C=-15.380‰, respectively. According to the theoretical and experimental results, we concluded that the total CO2 mole fractions of samples with depleted isotopic compositions can be corrected on the basis of their 12CO2 values calibrated by standard gases using LoFlo and G1301 if the δ 13C and δ 18O values are known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andres R J, Fielding D J, Marland G, Boden T A, Kumar N, Kearney A T. 1999. Carbon dioxide emissions from fossil-fuel use, 1751–1950. Tellus B, 51: 759–769

    Article  Google Scholar 

  • Andrews A E, Kofler J D, Trudeau M E, Williams J C, Neff D H, Masarie K A, Chao D Y, Kitzis D R, Novelli P C, Zhao C L, Dlugokencky E J, Lang P M, Crotwell M J, Fischer M L, Parker M J, Lee J T, Baumann D D, Desai A R, Stanier C O, De Wekker S F J, Wolfe D E, Munger J W, Tans P P. 2014. CO2, CO, and CH4 measurements from tall towers in the NOAA Earth System Research Laboratory’s Global Greenhouse Gas Reference Network: Instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts. Atmos Meas Tech, 7: 647–687

    Article  Google Scholar 

  • Brand W A, Assonov S S, Coplen T B. 2010. Correction for the 17O interference in δ13C measurements when analyzing CO2 with stable isotope mass spectrometry (IUPAC Technical Report). Pure Appl Chem, 82: 1719–1733

    Article  Google Scholar 

  • Bakwin P S, Tans P P. 1995. Measurements of carbon dioxide on a very tall tower. Tellus B, 47: 535–549

    Article  Google Scholar 

  • Crosson E R. 2008. A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor. J Appl Phys, 92: 403–408

    Article  Google Scholar 

  • Chen H, Winderlich J, Gerbig C, Hoefer A, Rella C W, Crosson E R, Van Pelt A D, Steinbach J, Kolle O, Beck V, Daube B C, Gottlieb E W, Chow V Y, Santoni G W, Wofsy S C. 2010. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring down spectroscopy (CRDS) technique. Atmos Meas Tech, 3: 375–386

    Article  Google Scholar 

  • Daniel de B R J, Houghton R. 2011. Gross CO2 fluxes from land-use change: implications for reducing global emissions and increasing sinks. Carbon Managem, 2: 41–47

    Google Scholar 

  • Fang S X, Zhou L X, Tans P P, Ciais P, Steinbacher M, Xu L, Luan T. 2014. In situ measurement of atmospheric CO2 at the four WMO/GAW stations in China. Atmos Chem Phys, 14: 2541–2554

    Article  Google Scholar 

  • Griffis T J, Baker J M, Sargent S D, Tanner B D, Zhang J. 2004. Measuring field-scale isotopic CO2 fluxes with tunable diode laser absorption spectroscopy and micrometeorological techniques. Agric For Meteorol, 124: 15–29.

    Article  Google Scholar 

  • Hut G. 1987. Report on a consultants’ group meeting on stable isotopic reference samples for geochemical and hydrological investigations. International Atomic Energy Agency. Vienna, Austria

    Google Scholar 

  • IPCC. 2013. Climate change 2013: The physical science basis. Stockholm, Sweden

    Google Scholar 

  • Ke J, Mc Neil M, Price L, Khanna N Z, Zhou N. 2013. Estimation of CO2 emissions from China’s cement production: Methodologies and Uncertainties. Energy Policy, 57: 172–181

    Article  Google Scholar 

  • Keeling C D. 1960. The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus, 2: 200–203

    Article  Google Scholar 

  • Keeling C D, Bacastow R B, Bainbridge A E, Ekdahl C A, Guenther P R, Waterman L S. 1976. Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii. Tellus, 28: 538–551

    Article  Google Scholar 

  • Lee J Y, Yoo H S, Marti K, Moon D M, Lee J B, Kim J S. 2006. Effect of carbon isotopic variations on measured CO2 abundances in reference gas mixtures. J Geophys Res, 111: 1–8

    Google Scholar 

  • Liu L X, Zhou L X, Xia L J, Zhang F, Gu S. 2012. Gas stable isotopic mass spectrometry for measuring δ13C and δ18O in background atmospheric CO2. Acta Scient Circumstant, 32: 1299–1305

    Google Scholar 

  • Maher D T, Santos I R, Tait D R. 2014. Mapping methane and carbon dioxide mole fractions and δ13C values in the atmosphere of two Australian coal seam gas fields. Water Air Soil Pollut, 225: 2216, doi: 10.1007/s11270-014-2216-2

    Article  Google Scholar 

  • Nara H, Tanimoto H, Tohjima Y, Mukai H, Nojiri Y, Katsumata K, Rella C W. 2012. Effect of air composition (N2, O2, Ar and H2O) on CO2 and CH4 measurement by wavelength-scanned cavity ring-down spectroscopy: Calibration and measurement strategy. Atmos Meas Tech, 5: 2689–2701

    Article  Google Scholar 

  • Richardson S J, Miles N, Davis K J, Crosson E R, Rella C W, Andrew A E. 2012. Field testing of Cavity Ring-Down Spectroscopy analyzers measuring carbon dioxide and water vapor. Am Meteorol Soc, 29: 397–406

    Google Scholar 

  • Rothman L S, Jacquemart D, Barbe A, Benner D C, Birk M, Brown L R, Carleer M R, Chackerian C, Coudert L H, Dana V, Devi V M, Flaud J M, Gamache R R, Goldman A, Hartmann J M, Jucks K W, Maki A G, Mandin J Y, Massie S T, Orphal J, Perrin A, Rinsland C P, Smith M A H, Tennyson J, Tolchenov R N, Toth R A, Auwera Vander J, Varanasi P, 2005. The HITRAN 2004 molecular spectroscopic database. J Quant Spectrosc Radiat Transf, 96: 139–204

    Article  Google Scholar 

  • Stephens B B, Miles N L, Richardson S J, Watt A S. 2011. Atmospheric CO2 monitoring with single-cell NDIR-based analyzers. Atmos Meas Tech, 4: 2737–2748

    Article  Google Scholar 

  • Tohjima Y, Kubo M, Minejima C, Mukai H, Tanimoto H, Ganshin A, Maksyutov S, Katsumata K, Machida T, Kita K. 2014. Temporal changes in the emissions of CH4 and CO from China estimated from CH4/CO2 and CO/CO2 correlations observed at Hateruma Island. Atmos Chem Phys, 14: 1663–1677

    Article  Google Scholar 

  • Tohjima Y, Katsumata K, Morino I, Mukai H, Machida T, Akama I, Amari T, Tsunogai U. 2009. Theoretical and experimental evaluation of the isotope effect of NDIR analyzer on atmospheric CO2 measurement. J Geophys Res, 114: 1–12

    Article  Google Scholar 

  • van der Schoot M V, Steele L P, Francey R J, Spencer D A, Wastine B, Schmidt M, Porter L W, Baly S B, Krummel P B, Richard C. 2005. Performance of the LoFlo continuous CO2 analyser: Baseline and urban air monitoring; diagnostic capability, and potential for enhanced CO2 calibration. Technical Report. Carbon Dioxide and Related Tracer Measurement Techniques. Boulder, USA

    Google Scholar 

  • van der Schoot M V, Steele L P, Spencer D A, Krummel P B, Francey R J, Wastine B, Ramonet M, Schmidt M. 2007. Calibration and network monitoring performance of the CSIRO LoFlo continuous CO2 analyzer. Technical Report. Carbon Dioxide and Related Tracer Measurement Techniques. Helsinki, Finland

    Google Scholar 

  • Vardag S N, Hammer S, O’Doherty S, Spain T G, Wastine B, Jordan A, Levin I. 2014. Comparisons of continuous atmospheric CH4, CO2 and N2O measurements-results from a travelling instrument campaign at Mace Head. Atmos Chem Phys, 14: 8403–8418

    Article  Google Scholar 

  • WMO. 2014. 17th WMO/IAEA meeting of experts on carbon dioxide, other greenhouses and related tracers measurement techniques (GGMT-2013). GAW Report No. 213, Beijing, China

    Google Scholar 

  • Werner R A, Brand W A. 2001. Referencing strategies and techniques in stable isotope ratio analysis. Rapid Commun Mass Spectrom, 15: 501–519

    Article  Google Scholar 

  • Winderlich J, Chen H, Gerbig C, Seifert T, Kolle O, Lavric J V, Kaiser C, Höfer A, Heimann M. 2010. Continuous low maintenance CO2/CH4/H2O measurements at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia. Atmos Meas Tech, 3: 1113–1128

    Article  Google Scholar 

  • Yao B, Huang J Q, Zhou L X, Fang S X, Liu L X, Xia L J, Li P C, Wang H Y. 2013. Preparation of mixed standards for high accuracy CO2/CH4/CO measurements. Environ Chem, 32: 307–312

    Google Scholar 

  • Zang K P, Zhou L X, Fang S X, Wen Y P, Yao B, Zhang F, Liu L X. 2011. A new system for calibration and propagation of mixed CO2 and CH4 standards. Environ Chem, 30: 511–516

    Google Scholar 

  • Zhang X, Nakazawa T, Ishizawa M. 2007. Temporal variations of atmospheric carbon dioxide in the southernmost part of Japan. Tellus, 59: 654–663

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LingXi Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, L., Zhou, L., van der Schoot, M.V. et al. Evaluation of the carbon isotopic effects of NDIR and CRDS analyzers on atmospheric CO2 measurements. Sci. China Earth Sci. 59, 1299–1307 (2016). https://doi.org/10.1007/s11430-016-5294-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-5294-8

Keywords

Navigation