Skip to main content
Log in

Influence of (FeO+TiO2) abundance on the microwave thermal emissions of lunar regolith

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

One of the essential controls on the microwave thermal emissions (MTE) of the lunar regolith is the abundance of FeO and TiO2, known as the (FeO+TiO2) abundance (FTA). In this paper, a radiative transfer simulation is employed first to study the change in the brightness temperature (T B ) with FTA under a range of frequencies and surface temperatures. Then, we analyze the influence of FTA on the MTE of the lunar regolith using microwave sounder (CELMS) data from the Chang’E-2 lunar orbiter, Clementine UV-VIS data, and lunar samples recovered from the Apollo and Surveyor projects. We conclude that: (1) FTA strongly influences the MTE of the lunar regolith, but it is not the decisive control, and (2) FTA decreases slightly with depth. This research plays an essential role in appropriately inverting CELMS data to obtain lunar regolith parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Christian W, Alexey B, Richard E. 2011. Estimation of elemental abundances of the lunar regolith using Clementine UVVIS+NIR data. Planet Space Sci, 59: 92–110

    Article  Google Scholar 

  • Fa W Z, Wieczorek M A. 2012. Regolith thickness over the lunar nearside: Results from Earth-based 70-cm Arecibo radar observations. Icarus, 218: 772–787

    Article  Google Scholar 

  • Fa W Z, Jin Y Q. 2007. Inversion of lunar regolith layer thickness using microwave radiance simulation of three layer model and clementine UV-VIS data. Chin J Space Sci, 27: 55–65

    Google Scholar 

  • Feldman W C, Gasnault O, Maurice S, Lawrence D J, Elphic R C, Lucey P G,Binder A B. 2002. Global distribution of lunar composition: New results from Lunar Prospector. J Geophys Res, 107, doi: 10.1029/2001JE001506

  • Feng J Q, Su Y, Liu J J, Zheng L, Tan X, Dai S, Li J D, Xing S G. 2013. Data processing and result analysis of CE-2 MRM (in Chinese). Earth Sci—J China Univ Geosci, 38: 898–906

    Google Scholar 

  • Gillis J J, Jolliff B L, Elphic R C. 2003. A revised algorithm for calculating TiO2 from Clementine UVVIS data: A synthesis of rock, soil, and remotely sensed TiO2 concentrations. J Geophys Res, 108: 5009, doi: 10.1029/2001JE001515

    Article  Google Scholar 

  • Hagfors T, Johnson R G, Power R A. 1971. Simultaneous observation of proton precipitation and auroral radar echoes. J Geophys Res, 76: 6093. doi: 10.1029/JA076i025p06093

    Article  Google Scholar 

  • Heiken G H, Vaniman D T, French B M. 1991. Lunar Sourcebook: A User’S Guide to the Moon. Cambridge: Cambridge University Press

    Google Scholar 

  • Jiang J S, Wang Z Z, Li Y. 2008. Study on theory and application of CE-1 microwave sounding lunar surface (in Chinese). Eng Sci, 10: 16–22

    Google Scholar 

  • Jin Y Q, Fa W Z. 2011. The modelling analysis of microwave emission from stratified media of nonuniform lunar crater terrain surface for Chinese Chang’E-1 observation. Chin Sci Bull, 56: 1165–1171

    Article  Google Scholar 

  • Jin Y Q, Yan F H, Liang Z C. 2003. Simulation of brightness temperature from the lunar surface using multi-channels microwave radiometers (in Chinese). Chin J Radio Sci, 18: 477–486

    Google Scholar 

  • Keihm S J. 1984. Interpretation of the lunar microwave brightness temperature spectrum: Feasibility of orbital heat flow mapping. Icarus, 60: 568–589

    Article  Google Scholar 

  • Keihm S J, Langseth M G. 1975. Microwave emission spectrum of the Moon: Mean global heat flow and average depth of the regolith. Science, 187: 64–66

    Article  Google Scholar 

  • Korokhin V V, Kaydash V G, Shkuratov Y G, Stankevich D G, Mall U. 2008. Prognosis of TiO2 abundance in lunar soil using a non-linear analysis of Clementine and LSCC data. Planet Space Sci, 56: 1063–1078

    Article  Google Scholar 

  • Krotikov V D, Troitsky V S. 1964. Radio emission and nature of the Moon. Sov Phys Usp, 6: 841–871

    Article  Google Scholar 

  • Li X Y, Wang S J, Cheng A Y. 2007. A review of lunar surface temperature model. Adv Earth Sci, 22: 480–485

    Google Scholar 

  • Li Y, Wang Z Z, Jiang J S. 2010. Simulations on the influence of lunar surface temperature profiles on CE-1 lunar microwave sounder brightness temperature. Sci China Earth Sci, 53: 1379–1391

    Article  Google Scholar 

  • Lucey P G, Blewett D T, Jolliff B L. 2000. Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images. J Geophys Res, 105: 20297–20305

    Article  Google Scholar 

  • Meng Z G, Xu Y, Zheng Y C, Zhu Y C, Jia Y, Chen S B. 2014a. Inversion of lunar regolith layer thickness with CELMS data using BPNN method. Planet Space Sci, 101, doi: 10.1016/j.pss.2014.05.020

  • Meng Z G, Xu Y, Cai Z Z, Chen S B, Lian Y, Huang H. 2014b. Influence of Lunar Topography on Simulated Surface Temperature. Adv Space Res. doi: 10.1016/j.asr.2014.05.015

    Google Scholar 

  • Meng Z G, Ping J S, Xu Y, Chen S B, Chen S. 2014c. Influence of layer thickness on microwave emission of lunar regolith (in Chinese). Geograph Res, 33: 1–8

    Google Scholar 

  • Pieters C M, Head J W, Isaacson P, Petro N, Runyon C, Ohtake M, Foing B, Grande M. 2008. Lunar international science coordination/calibration targets (L-ISCT). Adv Space Res, 42: 248–258

    Article  Google Scholar 

  • Prettyman T H, Hagerty J J, Elphic R C, Feldman W C, Lawrence D J, McKinney G W, Vaniman D T. 2006. Elemental composition of the lunar surface: Analysis of gamma ray spectroscopy data from Lunar Prospector. J Geophys Res, 111: E12007, doi: 10.1029/2005JE002656

    Article  Google Scholar 

  • Racca G D. 1995. Moon surface thermal characteristics for Moon orbiting spacecraft thermal analysis. Planet Space Sci, 43: 835–842

    Article  Google Scholar 

  • Shkuratov Y G, Bondarenko N V. 2001. Regolith layer thickness mapping of the moon by radar and optical data. Icarus, 149: 329–338

    Article  Google Scholar 

  • Troitskii V S, Tikhonova T V. 1970. Thermal radiation from the moon and the physical properties of the upper lunar layer. Radiophys Quantum Electron, 13: 981–1010

    Article  Google Scholar 

  • Ulaby F T, Moore R K, Fung A. 1981. Microwave Remote Sensing. Reading, MA: Addison-Wesley-Longman

    Google Scholar 

  • Vijayan S, Mohan S, Murty S V S. 2015. Simulated lunar brightness temperature in land and S-band and regolith thickness estimation using an index-based approach. 45th Lunar Planetary Science Conference. 1627

    Google Scholar 

  • Wang Z Z, Li Y, Jiang J S, Li D H. 2010. Lunar surface dielectric constant, regolith thickness and helium-3 abundance distributions retrieved from microwave brightness temperatures of CE-1 Lunar Microwave Sounder. Sci China Earth Sci, 53: 1365–1378

    Article  Google Scholar 

  • Zhang W G, Jiang J S, Liu H G, Zhang X H, Zhang D H, Li D H, Xu C D. 2010. Distribution and anomaly of microwave emission at lunar south pole. Sci China Earth Sci, 53: 465–474

    Google Scholar 

  • Zheng Y C. 2005. Advanced research of lunar simulant series and the characteristics of microwave radiation of lunar regolith (in Chinese). Doctoral Dissertation. Beijing: University of Chinese Academy of Sciences

    Google Scholar 

  • Zheng Y C, Tsang K T, Chan K L, Zou Y L, Zhang F, Ouyang Z Y. 2012. First microwave map of the Moon with Chang’E-1 data: The role of local time in global imaging. Icarus, 219: 194–210

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuoDong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Z., Yang, G., Ping, J. et al. Influence of (FeO+TiO2) abundance on the microwave thermal emissions of lunar regolith. Sci. China Earth Sci. 59, 1498–1507 (2016). https://doi.org/10.1007/s11430-016-5280-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-5280-1

Keywords

Navigation