Skip to main content
Log in

Distribution of fatty acids in the alpine grassland soils of the Qinghai-Tibetan Plateau

  • Research Paper
  • Special Topic: Advances in organic proxies for research in climate and environmental changes
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

As an important biomarker, fatty acids (FAs) have been extensively used to trace the origin of organic matter in sediments and soils. However, studies of the distribution and abundance of FAs in alpine grassland soils are still rare, especially on the Qinghai-Tibetan Plateau (QTP), the highest plateau in the world, which contributes sediments to many large rivers in Asia. This study investigates the composition, distribution and source of FAs with increasing soil depths from 17 typical alpine grassland sites in the QTP. The most abundant FAs included the ubiquitous C16 FA and even-numbered long-chain FAs (C20–C30), indicating mixed inputs from microbial and higher plant sources. Source apportionment showed that higher plants were the dominant contributor of FAs (approximately 40%) in QTP soils. The abundance of FAs decreased with soil depth, with the highest value (1.08±0.09 mg/g OC) at a 0–10 cm depth and the lowest value (0.46±0.12 mg/g OC) at a 50–70 cm depth, due to much lower plant inputs into the deeper horizons. The total concentration of FAs was negatively correlated to the mean annual temperature (MAT; P<0.05) and soil pH (P<0.01), suggesting that the preservation of FAs was favored in low-MAT and low-pH soils on the QTP. The abundance of fresh OC source FAs increased significantly with the mean annual precipitation (MAP; P<0.05), indicating that high MAP facilitates the accumulation of fresh FAs in QTP soils. Other environmental parameters, such as the soil mineral content (aluminum and iron oxide), microbial community composition as well as litter quality and quantity, may also exert a strong control on the preservation of FAs in QTP soils and warrant further research to better understand the mechanisms responsible for the preservation of FAs in QTP soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amblès A, Jambu P, Parlanti E, Joffre J, Riffe C. 1994. Incorporation of natural monoacids from plant residues into an hydromorphic forest podzol. Eur J Soil Sci, 45: 175–182

    Article  Google Scholar 

  • Baumann F, He J S, Schmidt K, Kühn P, Scholten T. 2009. Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau. Glob Change Biol, 15: 3001–3017

    Article  Google Scholar 

  • Bull I D, Nott C J, van Bergen P F, Poulton P R, Evershed R P. 2000. Organic geochemical studies of soils from the Rothamsted classical experiments-VI. The occurrence and source of organic acids in an experimental grassland soil. Soil Biol Biochem, 32: 1367–1376

    Article  Google Scholar 

  • Camacho-Ibar V F, Aveytua-Alcázar L, Carriquiry J D. 2003. Fatty acid reactivities in sediment cores from the northern Gulf of California. Org Geochem, 34: 425–439

    Article  Google Scholar 

  • Chen H, Zhu Q, Peng C, Wu N, Wang Y, Fang X, Gao Y, Zhu D, Yang G, Yian J, Kang X, Piao S, Ouyang H, Xiang W, Luo Z, Jiang H, Song X, Zhang Y, Yu G, Zhao X, Gong P, Yao T, Wu J. 2013. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Glob Change Biol, 19: 2940–2955

    Article  Google Scholar 

  • Ding S, Xu Y, Wang Y, He Y, Hou J, Chen L, He J S. 2015. Distribution of branched glycerol dialkyl glycerol tetraethers in surface soils of the Qinghai-Tibetan Plateau: Implications of brGDGTs-based proxies in cold and dry regions. Biogeosciences, 12: 3141–3151

    Article  Google Scholar 

  • Dörfer C, Kuehhn P, Baumann F, He J S, Scholten T. 2013. Soil organic carbon pools and stocks in permafrost-affected soils on the Tibetan Plateau. PLoS One, 8: e57024

    Article  Google Scholar 

  • Feng X J, Simpson M J. 2007. The distribution and degradation of biomarkers in Alberta grassland soil profiles. Org Geochem, 38: 1558–1570

    Article  Google Scholar 

  • Feng X J, Simpson M J. 2008. Temperature responses of individual soil organic matter components. J Geophys Res, 113: G03036

    Article  Google Scholar 

  • Feng X J, Vonk J E, van Dongen B E, Gustafsson Ö, Semiletov I P, Dudarev O V, Wang Z H, Montluçon D B, Wacker L, Eglinton T I. 2013. Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins. Proc Natl Acad Sci USA, 110: 14168–14173

    Article  Google Scholar 

  • Gleixner G, Czimczik C I, Kramer C, Lühker B, Schmidt M W I. 2001. Plant compounds and their turnover and stabilization as soil organic matter. In: Schulze E D, Heimann M, Harrison S, Holland E, Lloyd J, Prentice I C, Schimel D, eds. Global Biogeochemical Cycles in the Climate System. San Diego: Academic Press. 201–215

    Chapter  Google Scholar 

  • He J S, Wang Z H, Wang X P, Schmid B, Zuo W Y, Zhou M, Zheng C Y, Wang M F, Fang J Y. 2006. A test of generality of leaf trait relationships on the Tibetan Plateau. New Phytologist, 170: 835–848

    Article  Google Scholar 

  • Hu J F, Zhang H B, Peng P A. 2006. Fatty acid composition of surface sediments in the subtropical Pearl River estuary and adjacent shelf, Southern China. Estuar Coast Shelf Sci, 66: 346–356

    Article  Google Scholar 

  • Huang X, Zeng Z G, Chen S, Yin X B, Wang X Y, Ma Y, Yang B J, Rong K B, Shu Y C, Jiang T. 2015. Abundance and distribution of fatty acids in sediments of the South Mid-Atlantic Ridge. J Ocean Univ China, 14: 277–283

    Article  Google Scholar 

  • Jandl G, Leinweber P, Schulten H R, Ekschmitt K. 2005. Contribution of primary organic matter to the fatty acid pool in agricultural soils. Soil Biol Biochem, 37: 1033–1041

    Article  Google Scholar 

  • Kögel-Knabner I. 2002. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem, 34: 139–162

    Article  Google Scholar 

  • Kolattukudy P E, Croteau R, Buckner J S. 1976. Biochemistry of plant waxes. In: Kolattukudy P E, ed. Chemistry and Biochemistry of Natural Waxes. Amsterdam: Elsevier. 290–348

    Google Scholar 

  • Lin X, Zhang Z, Wang S, Hu Y, Xu G, Luo C, Chang X, Duan J, Lin Q, Xu B, Wang Y, Zhao X, Xie Z. 2011 Response of ecosystem respiration to warming and grazing during the growing seasons in the alpine meadow on the Tibetan plateau. Agric For Meteorol, 151: 792–802

    Article  Google Scholar 

  • Morgunova I P, Ivanov V N, Litvinenko I V, Petrova V I, Stepanova T V, Cherkashev G A. 2012. Geochemistry of organic matter in bottom sediments of the Ashadze hydrothermal field. Oceanology, 52: 345–353

    Article  Google Scholar 

  • Moucawi J, Fustec E, Jambu P. 1981. Decomposition of lipids in soils: Free and esterified fatty acids, alcohols and ketones. Soil Biol Biochem, 13: 461–468

    Article  Google Scholar 

  • Naafs D F W, van Bergen P F, Boogert S J, de Leeuw J W. 2004. Solventextractable lipids in an acid andic forest soil; variations with depth and season. Soil Biol Biochem, 36: 297–308

    Article  Google Scholar 

  • Nierop K G J, Buurman P. 1998. Composition of soil organic matter and its water-soluble fraction under young vegetation drift sand, central Netherlands. Eur J Soil Sci, 49: 605–615

    Article  Google Scholar 

  • Nierop K G J, Naffs D F W, van Bergen P F. 2005. Origin, occurrence and fate of extractable lipids in Dutch coastal dune soils along a pH gradient. Org Geochem, 36: 555–566

    Article  Google Scholar 

  • Otto A, Simpson M J. 2005. Degradation and preservation of vascular plant-derived biomarkers in grassland and forest soils from western Canada. Biogeochemistry, 74: 377–409

    Article  Google Scholar 

  • Perry G J, Volkman J K, Johns R B, Bavor H J. 1979. Fatty-acids of bacterial origin in contemporary marine-sediments. Geochim Cosmochim Acta, 43: 1715–1725

    Article  Google Scholar 

  • Piccolo A, Nardi S, Concheri G. 1996. Micelle-like conformation of humic substances as revealed by size exclusion chromatography. Chemosphere, 33: 595–602

    Article  Google Scholar 

  • Pisani O, Hills K M, Courtier-Murias D, Haddix M L, Paul E A, Conant R T, Simpson A J, Arhonditsis G B, Simpson M J. 2014. Accumulation of aliphatic compounds in soil with increasing mean annual temperature. Org Geochem, 76: 118–127

    Article  Google Scholar 

  • Schmidt M W I, Torn M S, Abiven S, Dittmar T, Guggenberger G, Janssens I A, Kleber M, Kögel-Knabner I, Lehmann J, Manning D A C, Nannipieri P, Rasse D P, Weiner S, Trumbore S E. 2011. Persistence of soil organic matter as an ecosystem property. Nature, 478: 49–56

    Article  Google Scholar 

  • Shi Y, Baumann F, Ma Y L, Song C, Kuehn P, Scholten T, He J S. 2012. Organic and inorganic carbon in the topsoil of the Mongolian and Tibetan grasslands: Pattern, control and implications. Biogeosciences, 9: 2287–2299

    Article  Google Scholar 

  • Sun D Y, Tan W B, Pei Y D, Zhou L P, Wang H, Yang H, Xu Y P. 2011. Late Quaternary environmental change of Yellow River Basin: An organic geochemical record in Bohai Sea (North China). Org Geochem, 42: 575–585

    Article  Google Scholar 

  • Toriyama J, Hak M, Imaya A, Hirai K, Kiyono Y. 2015. Effects of forest type and environmental factors on the soil organic carbon pool and its density fractions in a seasonally dry tropical forest. Forest Ecol Manag, 335: 147–155

    Article  Google Scholar 

  • Wiesenberg G L B, Dorodnikov M, Kuzyakov Y. 2010. Source determination of lipids in bulk soil and soil density fractions after four years of wheat cropping. Geoderma, 156: 267–277

    Article  Google Scholar 

  • Yang Y H, Fang J Y, Tang Y H, He J S, Ji C J, Zheng C Y, Zhu B. 2008. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Glob Change Biol, 14: 1592–1599

    Article  Google Scholar 

  • Yang Y H, Fang J Y, Ji C J, Han W X. 2009. Above- and belowground biomass allocation in Tibetan grasslands. J Veg Sci, 20: 177–184

    Article  Google Scholar 

  • Zhao L, Wu W, Xu X, Xu Y. 2014. Soil organic matter dynamics under different land use in grasslands in Inner Mongolia (northern China). Biogeosciences, 11: 5103–5113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoJuan Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, G., Zhu, S., Liu, Z. et al. Distribution of fatty acids in the alpine grassland soils of the Qinghai-Tibetan Plateau. Sci. China Earth Sci. 59, 1329–1338 (2016). https://doi.org/10.1007/s11430-016-5271-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-5271-2

Keywords

Navigation