Science China Earth Sciences

, Volume 59, Issue 5, pp 989–996 | Cite as

Compressional behavior of MgCr2O4 spinel from first-principles simulation

  • YanYao Zhang
  • Xi Liu
  • ZhiHua Xiong
  • ZhiGang Zhang
Research Paper


The compressional behavior of the MgCr2O4 spinel has been investigated with the CASTEP code using density functional theory and planewave pseudopotential technique. We treated the exchange-correlation interaction by both the local density approximation (LDA) and generalized gradient approximation (GGA) with the Perdew-Burker-Ernzerhof functional. Our simulation was conducted for the pressure range of 0–19 GPa. We obtained the isothermal bulk modulus (K T ) of the MgCr2O4 spinel as 181.46(48) GPa (GGA; low boundary) or 216.1(11) GPa (LDA; high boundary), with its first derivative (K' T ) as 4.41(6) or 4.5(1), respectively. The oxygen parameter u is not constant but negatively correlated with P, and decreases by about 0.5–0.6% for the investigated P range. The component polyhedra have different compressibilities, increasing in the order of (O4)1<CrO6<(O4)2<O6<MgO4. The Mg-O bond in the MgO4 tetrahedron is much more compressible than the Cr-O bond in the CrO6 octahedron.


MgCr2O4 spinel Compressional behavior GGA LDA Polyhedral compressibility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angel R J, Allan D R, Miletich R, Finger L W. 1997. The use of quartz as an internal pressure standard in high-pressure crystallography. J Appl Crystallogr, 30: 461–466CrossRefGoogle Scholar
  2. Ballhaus C, Berry R F, Green D H. 1990. Oxygen fugacity controls in the Earth’s upper mantle. Nature, 349: 437–449CrossRefGoogle Scholar
  3. Ballhaus C, Berry R F, Green D H. 1991. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen barometer: Implications for the oxidation state of the upper mantle. Contrib Mineral Petrol, 107: 27–40CrossRefGoogle Scholar
  4. Barnes S J, Roeder P L. 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks. J Petrol, 42: 2279–2302CrossRefGoogle Scholar
  5. Barron L M. 2005. A linear model and topography for the host-inclusion mineral system involving diamond. Can Mineral, 43: 203–224CrossRefGoogle Scholar
  6. Becke A D. 1993. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys, 98: 5648–5652Google Scholar
  7. Birch F. 1947. Finite elastic strain of cubic crystals. Phys Rev, 71: 809–924CrossRefGoogle Scholar
  8. Bouhemadou A, Khenata R, Zerarga F. 2007. Ab initio study of the structural and elastic properties of spinels MgX2O4(X = Al, Ga, In) under pressure. Eur Phys J B, 56: 1–5CrossRefGoogle Scholar
  9. Catti M, Fava F F, Zicovich C, Dovesi R. 1999. High-pressure decomposition of MCr2O4 spinels (M = Mg, Mn, Zn) by ab initio methods. Phys Chem Miner, 26: 389–395CrossRefGoogle Scholar
  10. Ceperley D M, Alder B J. 1980. Ground state of the electron gas by a stochastic method. Phys Rev Lett, 45: 566–569CrossRefGoogle Scholar
  11. Chang L L, Liu X, Liu H, Kojitani H, Wang S C. 2013. Vibrational mode analysis and heat capacity calculation of K2SiSi3O9-wadeite. Phys Chem Miner, 40: 563–574CrossRefGoogle Scholar
  12. Cookenboo H, Bustin R, Wilks K. 1997. Detrital chromian spinel compositions used to reconstruct the tectonic setting of provenance: Implications for orogeny in the Canadian Cordillera. J Sediment Res, 67: 116–123Google Scholar
  13. D’Arco P, Silvi B, Roetti C, Orlando R. 1991. Comparative study of spinel compounds: A pseudopotential periodic Hartree-Fock calculation of Mg2SiO4, Mg2GeO4, Al2MgO4, and Ga2MgO4. J Geophys Res, 96: 6107–6112CrossRefGoogle Scholar
  14. Deng L W, Liu X, Liu H, Zhang Y G. 2011. A first-principles study of the phase transition from Holl-I to Holl-II in the composition KAlSi3O8. Am Miner, 96: 974–982CrossRefGoogle Scholar
  15. Dick H J B, Bullen T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol, 86: 54–76CrossRefGoogle Scholar
  16. Duke J. 1983. Ore deposit models 7. Magmatic segregation deposits of chromite. Geosci Can, 10: 15–24Google Scholar
  17. Fabries J. 1979. Spinel-olivine geothermometry in peridotites from ultramafic complexes. Contrib Mineral Petrol, 69: 329–336CrossRefGoogle Scholar
  18. Fei Y W, Ricolleau A, Frank M, Mibe K, Shen G Y, Prakapenka V. 2007. Toward an internally consistent pressure scale. Proc Natl Acad Sci USA, 104: 9182–9186CrossRefGoogle Scholar
  19. Gracia L, Beltrán A, Andrés J, Franco R, Recio J M. 2002. Quantum-mechanical simulation of MgAl2O4 under high pressure. Phys Rev B, 66: 224114CrossRefGoogle Scholar
  20. Graham J. 1978. Manganochromite, palladium antimonide, and some unusual mineral associations at the Nairne pyrite deposit, South Australia. Am Miner, 63: 1166–1174Google Scholar
  21. Hazen R M, Finger L W. 1979. Bulk modulus-volume relationship for cation-anion polyhedra. J Geophys Res, 84: 6723–6728CrossRefGoogle Scholar
  22. Hill R J, Craig J R, Gibbs G V. 1979. Systematics of the spinel structure type. Phys Chem Miner, 4: 317–339CrossRefGoogle Scholar
  23. Hohenberg P, Kohn W. 1964. Inhomogeneous electron gas. Phys Rev, 136: 864–871CrossRefGoogle Scholar
  24. Howell D, Wood I G, Dobson D P, Jones A P, Nasdala L, Harris J W. 2010. Quantifying strain birefringence halos around inclusions in diamond. Contrib Mineral Petrol, 160: 705–717CrossRefGoogle Scholar
  25. Kagi H, Odake S, Fukura S, Zedgenizov D A. 2009. Raman spectroscopic estimation of depth of diamond origin: Technical developments and the application. Russ Geol Geophys, 50: 1183–1187CrossRefGoogle Scholar
  26. Karklit A, Stegantsev S, Petrova E. 1970. Properties of ceramics in the system MgO-MgCr2O4. Refract Ind Ceram, 11: 786–788CrossRefGoogle Scholar
  27. Klemme S, O’Neill H St C. 1997. The reaction MgCr2O4 + SiO2 = Cr2O3 + MgSiO3 and the free energy of formation of magnesiochromite (MgCr2O4). Contrib Mineral Petrol, 130: 59–65CrossRefGoogle Scholar
  28. Kohn W, Sham L J. 1965. Self-consistent equations including exchange and correlation effects. Phys Rev, 140: 1133–1138CrossRefGoogle Scholar
  29. Lee M H. 1995. Advanced pseudopotentials for large scale electronic structure calculations. Doctoral Dissertation. UK: University of CambridgeGoogle Scholar
  30. Lenaz D, Logvinova A M, Princivalle F, Sobolev N V. 2009. Structural parameters of chromite included in diamond and kimberlites from Siberia: A new tool for discriminating source. Am Miner, 94: 1067–1070CrossRefGoogle Scholar
  31. Lenaz D, Skogby H, Princivalle F, Hålenius U. 2004. Structural changes and valence states in the MgCr2O4-FeCr2O4 solid solution series. Phys Chem Miner, 31: 633–642CrossRefGoogle Scholar
  32. Lin J S, Qteish A, Payne M C, Heine V. 1993. Optimized and transferable nonlocal separable ab initio pseudopotentials. Phys Rev B, 47: 4174–4180CrossRefGoogle Scholar
  33. Liu L G, Mernagh T P, Jaques A L. 1990. A mineralogical Raman spectroscopy study on eclogitic garnet inclusions in diamonds from Argyle. Contrib Mineral Petrol, 105: 156–161CrossRefGoogle Scholar
  34. Liu X, O’Neill H St C. 2004. The effect of Cr2O3 on the partial melting of spinel lherzolite in the system CaO-MgO-Al2O3-SiO2-Cr2O3 at 1.1 GPa. J Petrol, 45: 2261–2286CrossRefGoogle Scholar
  35. Monkhorst H J, Pack J D. 1976. Special points for Brillouin-zone integrations. Phys Rev B, 13: 5188–5192CrossRefGoogle Scholar
  36. Nasdala L, Brenker F E, Glinnemann J, Hofmeister W, Gasparik T, Harris J W, Stachel T, Reese I. 2003. Spectroscopic 2D-tomography: Residual pressure and strain around mineral inclusions in diamonds. Eur J Mineral, 15: 931–935CrossRefGoogle Scholar
  37. Nestola F, Merli M, Nimis P, Parisatto M, Kopylova M, De Stefano A, Longo M, Ziberna L, Manghnani M. 2012. In situ analysis of garnet inclusion in diamond using single-crystal X-ray diffraction and X-ray micro-tomography. Eur J Mineral, 24: 599–606CrossRefGoogle Scholar
  38. Nestola F, Periotto B, Andreozzi G B, Bruschini E, Bosi F. 2014. Pressure-volume equation of state for chromite and magnesiochromite: A single-crystal X-ray diffraction investigation. Am Miner, 99: 1248–1253CrossRefGoogle Scholar
  39. O’Neill H St C. 1981. The transition between spinel lherzolite and garnet lherzolite, and its use as a geobarometer. Contrib Mineral Petrol, 77: 185–194CrossRefGoogle Scholar
  40. O’Neill H St C, Dollase W A. 1994. Crystal structures and cation distributions in simple spinels from powder XRD structural refinements: MgCr2O4, ZnCr2O4, Fe3O4 and the temperature dependence of the cation distribution in ZnAl2O4. Phys Chem Miner, 20: 541–555CrossRefGoogle Scholar
  41. O’Neill H St C, Navrotsky A. 1983. Simple spinels: Crystallographic parameters, cation radii, lattice energies, and cation distribution. Am Miner, 68: 181–194Google Scholar
  42. O’Neill H St C, Wall V J. 1987. The olivine-orthopyroxene-spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth’s upper mantle. J Petrol, 28: 1169–1191CrossRefGoogle Scholar
  43. Ottonello G, Civalleri B, Zuccolini M V, Zicovich-Wilson C M. 2007. Ab-initio thermal physics and Cr-isotopic fractionation of MgCr2O4. Am Miner, 92: 98–108CrossRefGoogle Scholar
  44. Paraskevopoulos G M, Economou M. 1981. Zoned Mn-rich chromite from podiform type chromite ore in serpentinites of northern Greece. Am Miner, 66: 1013–1019Google Scholar
  45. Payne M C, Teter M P, Allen D C, Arias T A, Joannopoulos J D. 1992. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev Mod Phys, 64: 1045–1097CrossRefGoogle Scholar
  46. Perdew J P, Burke K, Ernzerhof M. 1996. Generalized gradient approximation made simple. Phys Rev Lett, 77: 3865–3868CrossRefGoogle Scholar
  47. Perdew J P, Zunger A. 1981. Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B, 23: 5048–5079CrossRefGoogle Scholar
  48. Recio J M, Franco R, Pendás A M, Blanco M A, Pueyo L. 2001. Theoretical explanation of the uniform compressibility behavior observed in oxide spinels. Phys Rev B, 63: 184101CrossRefGoogle Scholar
  49. Rodríguez-Hernández P, Muñoz A. 2014. Theoretical ab initio calculations in spinels at high pressures. In: Manjon F J, Tiginyanu I, Ursaki V, eds. Pressure-Induced Phase Transitions in AB2X4 Chalcogenide Compounds. Springer Series in Materials Science, Vol 189. New York: Springer. 103–109Google Scholar
  50. Smith F G. 1953. Historical development of inclusion thermometry. Toronto: University of Toronto PressGoogle Scholar
  51. Stachel T, Harris J W. 2008. The origin of cratonic diamonds-constraints from mineral inclusions. Ore Geol Rev, 34: 5–32CrossRefGoogle Scholar
  52. Stephens P J, Devlin F J, Chabalowski C F, Frisch M J. 1994. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem, 98: 11623–11627CrossRefGoogle Scholar
  53. Wang S C, Liu X, Fei Y W, He Q, Wang H J. 2012. In situ high-temperature powder X-ray diffraction study on the spinel solid solutions (Mg1-xMnx)Cr2O4. Phys Chem Miner, 39: 189–198CrossRefGoogle Scholar
  54. Wang Z, O’Neill H St C, Lazor P, Saxena S K. 2002. High pressure Raman spectroscopic study of spinel MgCr2O4. J Phys Chem Solids, 63: 2057–2061CrossRefGoogle Scholar
  55. Xiong Z H, Liu X, Shieh S R, Wang S C, Chang L L, Tang J J, Hong X G, Zhang Z G, Wang H J. 2016. Some thermodynamic properties of larnite (β-Ca2SiO4) constrained by high T/P experiment and/or theoretical simulation. Am Miner, 101: 277–288CrossRefGoogle Scholar
  56. Yamanaka T, Takéuchi Y. 1983. Order-disorder transition in MgAl2O4 spinel at high temperatures up to 1700°C. Z Kristallogr, 165: 65–78CrossRefGoogle Scholar
  57. Yang J S, Dobrzhinetskaya L, Bai W J, Fang Q S, Robinson P T, Zhang J F, Green II H W. 2007. Diamond- and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geology, 35: 875–878CrossRefGoogle Scholar
  58. Yong W J, Botis S, Shieh S R, Shi W G, Withers A C. 2012. Pressure- induced phase transition study of magnesiochromite (MgCr2O4) by Raman spectroscopy and X-ray diffraction. Phys Earth Planet Inter, 196-197: 75–82CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • YanYao Zhang
    • 1
    • 2
  • Xi Liu
    • 1
    • 2
  • ZhiHua Xiong
    • 1
    • 2
  • ZhiGang Zhang
    • 3
  1. 1.Key Laboratory of Orogenic Belts and Crustal EvolutionMinistry of Education of ChinaBeijingChina
  2. 2.School of Earth and Space SciencesPeking UniversityBeijingChina
  3. 3.Key Laboratory of Earth and Planetary Physics, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina

Personalised recommendations