Skip to main content

Anatomy of a eustatic event during the Turonian (Late Cretaceous) hot greenhouse climate

Abstract

Sequence stratigraphic studies consider relative change in sea level (as regulated by eustasy, local tectonics and sediment supply) as the main builder of the stratigraphic record. Eustasy has generally been considered as a consequence of the growth and decay of continental ice sheets that would explain large, rapid changes in sea level, even during periods of relative global climatic warmth. However, such a mechanism has become increasingly difficult to envision during times of extreme global warmth such as the Turonian, when the equator-to-pole temperature gradient was very low and the presence of polar ice seems improbable. This paper investigates the timing and extent of sea level falls during the late Cenomanian through Turonian, especially the largest of those events, sequence boundary KTu4, which occurred during the middle to late Turonian peak of the Cretaceous hot greenhouse climate. We conclude that the amplitude of the widespread third-order sea level fall in the middle Turonian that is centered at ~91.8 Ma varies at different locations depending on the influence of dynamic topography on local tectonics and regional climatic conditions. Ice volume variations seem unlikely as a mechanism for controlling sea level at this time. However, this causal factor cannot be ruled out completely since Antarctic highlands (if they existed in the Late Cretaceous) could sequester enough water as ice to cause eustatic falls. To ascertain this requires detailed tomographic imaging of Antarctica, followed by geodynamic modeling, to determine whether high plateaus could have existed to accumulate ephemeral ice sheets. Other mechanisms for sea level change, such as transference between ground water (a small amplitude shorter time scale effect) and the ocean and entrainment and release of water from the mantle to the oceanic reservoir (a potentially large amplitude and longer time scale process), are intriguing and need to be explored further to prove their efficacy at third-order time scales.

This is a preview of subscription content, access via your institution.

References

  1. Barrera E, Savin S M. 1999. Evolution of late Campanian-Maastrichtian marine climates and oceans. In: Barrera E, Johnson C, eds. Evolution of the Cretaceous Ocean-Climate System. Geol Soc Am Spec Paper, 332: 245–282

    Article  Google Scholar 

  2. Barron E J, Washington W M. 1985. Warm Cretaceous climates: High atmospheric CO2 as a plausible mechanism. In: Sundquist E T, Broecker W S, eds. The Carbon Cycle and Atmospheric CO2: Natural Variations Archaen to Present. Amer Geophys Union Geophys Monogr, 32: 546–553

    Google Scholar 

  3. Barron E J, Peterson W H, Pollard D, Thompson S. 1993. Past climate and the role of ocean heat transport: Model simulations for the Cretaceous. Paleoceanography, 8: 785–798

    Article  Google Scholar 

  4. Beerling D J, Fox A, Stevenson D S, Valdes P J. 2011. Enhanced chemistryclimate feedbacks in past greenhouse worlds. Proc Natl Acad Sci USA, 108: 9770–9775

    Article  Google Scholar 

  5. Bice K L, Norris R D. 2002. Possible atmospheric CO2 extremes of the Middle Cretaceous (late Albian-Turonian). Paleoceanography, 17: 22-1–22-17

  6. Bice K L, Huber B T, Norris R D. 2003. Extreme polar warmth during the Cretaceous greenhouse? Paradox of the late Turonian δ18O record at Deep Sea Drilling Project Site 511. Paleoceanography, 18: 1031

    Article  Google Scholar 

  7. Bornemann A, Norris R D, Friedrich O, Beckmann B, Schouten S, Damsté J S S, Vogel J, Hofmann P, Wagner T. 2008. Isotopic evidence for glaciation during the Cretaceous Supergreenhouse. Science, 319: 189–192

    Article  Google Scholar 

  8. Clarke L J, Jenkyns H C. 1999. New oxygen isotope evidence for long-term Cretaceous climatic change in the Southern Hemisphere. Geology, 27: 699–702

    Article  Google Scholar 

  9. Cloetingh S, Haq B U. 2015. Inherited landscapes and sea level change. Science, 347: 1258375

    Article  Google Scholar 

  10. Cobban W A, Walaszczyk I, Obradovich J D, Mckinney K C. 2006. A USGS zonal table for the Upper Cretaceous middle Cenomanian-Maastrichtian of the Western Interior of the United States based on ammonites, inoceramids, and radiometric ages. USGS Open-File Report 2006-1250: 1–46

    Google Scholar 

  11. Conrad C P. 2013. The solid Earth's influence on sea level. Geol Soc Am Bull, 125: 1027–1052

    Article  Google Scholar 

  12. De Conto R M, Pollard D. 2003. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature, 421: 245–249

    Article  Google Scholar 

  13. Fassell M L, Bralower T J. 1999. Warm, equable mid-Cretaceous: Stable isotope evidence. Spec Pap Geol Soc Am, 332: 121–142

    Google Scholar 

  14. Forster A, Schouten S, Baas M, Sinninghe Damsté J S. 2007. Mid-Cretaceous (Albian–Santonian) sea surface temperature record of the tropical Atlantic Ocean. Geology, 35: 919–922

    Article  Google Scholar 

  15. Friedrich O, Schiebel R, Wilson P A, Weldeab S, Beer C J, Cooper M J, Fiebig J. 2012. Influence of test size, water depth, and ecology on Mg/Ca, Sr/Ca, δ18O and δ13C in nine modern species of planktic foraminifers. Earth Planet Sci Lett, 319-320: 133–145

    Article  Google Scholar 

  16. Gale A S. 1996. Turonian correlation and sequence stratigraphy of the Chalk in southern England. In: Hesselbo S P, Parkinson D N, eds. Sequence Stratigraphy in British Geology. Geol Soc London Spec Publ, 103: 177–195

    Google Scholar 

  17. Galeotti S, Rusciadelli G, Sprovieri M, Lanci L, Gaudio A, Pekar S. 2009. Sea-level control on facies architecture in the Cenomanian–Coniacian Apulian margin (Western Tethys): A record of glacio-eustatic fluctuations during the Cretaceous greenhouse? Palaeogeogr Palaeoclimatol Palaeoecol, 276: 196–205

    Article  Google Scholar 

  18. Gurnis M, Dietmar Meller R, Moresi L. 1998. Cretaceous vertical motion of Australia and the Australian-Antarctic discordance. Science, 279: 1499–1504

    Article  Google Scholar 

  19. Haq B U, Hardenbol J, Vail P R. 1987a. Chronology of fluctuating sea levels since the Triassic. Science, 235: 1156–1167

    Article  Google Scholar 

  20. Haq B U, Hardenbol J, Vail P R. 1987b. Mesozoic-Cenozoic Cycle Chart. In: Bally A W, ed. Atlas of Seismic Stratigraphy. Am Association Petroleum Geology, Tulsa, Okalahoma (Large Foldout)

    Google Scholar 

  21. Haq B U, Hardenbol J, Vail P R. 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea level change. In: Wilgus C W, et al. eds. Sea-Level Changes: An Integrated Approach. SEPM Spec Publication, 42: 71–108

    Article  Google Scholar 

  22. Haq B U, Al-Qahtani A M. 2005. Phanerozoic cycles of sea-level change on the Arabian Platform. Geo Arabia, 10: 127–160

    Google Scholar 

  23. Haq B U. 2014. Cretaceous eustasy revisited. Glob Planet Change, 113: 44–58

    Article  Google Scholar 

  24. Hardenbol J, Thierry J, Farley M B, de-Graciansky P C, Vail P R. 1998. Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. In: de Graciansky P C, Hardenbol J, Thierry J, Vail P R, eds. Mesozoic and Cenozoic Sequence Stratigraphy of European basins, Special Publication, Society for Sedimentary Geology. Tulsa, OK (Large Foldouts). 3–13

    Chapter  Google Scholar 

  25. Hardenbol J, Robaszynski F. 1998. Introduction to the Upper Cretaceous. In: de Graciansky P C, Hardenbol J, Thierry J, Vail P R, eds. Mesozoic and Cenozoic Sequence Stratigraphy of European Basins, Special Publication, Society for Sedimentary Geology. Tulsa, OK (Large Foldouts). 329–332

    Chapter  Google Scholar 

  26. Hay W W. 2011. Can humans force a return to a ‘Cretaceous’ climate? Sedimentary Geol, 235: 5–26

    Article  Google Scholar 

  27. Hay W W. 2016. Toward understanding Cretaceous climate-An updated review. Sci China Earth Sci, doi: 10.1007/s11430-016-0095-9

    Google Scholar 

  28. Hay W W, Leslie M A. 1990. Could possible changes in global groundwater reservoir cause eustatic sea-level fluctuations? In: Revelle R. ed. Sea-Level Change. Washington D C: National Academy Press. 161–170

    Google Scholar 

  29. Herman A B, Spicer R A. 1996. Palaeobotanical evidence for a warm Cretaceous Arctic Ocean. Nature, 380: 330–333

    Article  Google Scholar 

  30. Huber B T, Hodell D A, Hamilton C P. 1995. Middle–Late Cretaceous climate of the southern high latitudes: Stable isotopic evidence for minimal equator-to-pole thermal gradients. Geol Soc Am Bull, 107: 1164–1191

    Article  Google Scholar 

  31. Huber B T, Mac Leod K G, Norris R D. 2002. Abrupt extinction and subsequent reworking of Cretaceous planktonic foraminifera across the K/T boundary: Evidence from the subtropical North Atlantic. Spec Pap Geol Soc Am, 356: 277–289

    Google Scholar 

  32. Jacobs D K, Sahagian D L. 1993. Climate-induced fluctuations in sea level during non-glacial times. Nature, 361: 710–712

    Article  Google Scholar 

  33. Jarvis I, Gale A S, Jenkyns H C, Pearce M A. 2006. Secular variation in Late Cretaceous carbon isotopes: A new d13C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma). Geol Mag, 143: 561–608

    Article  Google Scholar 

  34. Jarvis I, Trabucho-Alexandre J, Gröcke D R, Ulicný D, Laurin J. 2015. Intercontinental correlation of organic carbon and carbonate stable isotope records: evidence of climate and sea-level change during the Turonian (Cretaceous). Depositional Rec, 1: 53–90

    Article  Google Scholar 

  35. Joo Y J, Sageman B B. 2014. Cenomanian to campanian carbon isotope chemostratigraphy from the western interior basin, U.S.A. J Sedimentary Res, 84: 529–542

    Article  Google Scholar 

  36. Kennedy W J, Walaszczyk I, Cobban W A. 2000. Pueblo, Colorado, USA, candidate global boundary stratotypes section and point for base of the Turonian Stage of the Cretaceous and for the middle Turonian substage. Acta Geol Polon, 50: 295–334

    Google Scholar 

  37. Kump L R, Pollard D. 2008. Amplification of Cretaceous warmth by biological cloud feedbacks. Science, 320: 195–195

    Article  Google Scholar 

  38. Larson R L. 1991. Latest pulse of Earth: Evidence for a mid-Cretaceous superplume. Geology, 19: 547–550

    Article  Google Scholar 

  39. Laurin J, Sageman B B. 2007. Cenomanian Turonian Coastal Record in SW Utah, U.S.A.: Orbital-Scale Transgressive Regressive Events During Oceanic Anoxic Event II. J Sedimentary Res, 77: 731–756

    Article  Google Scholar 

  40. Lee C T A, Lackey J S. 2015. Global continental arc flare-ups and their relation to long-term greenhouse conditions. Elements, 11: 125–130

    Article  Google Scholar 

  41. Liu L, Spasojevic S, Gurnis M. 2008. Reconstructing Farallon Plate subduction beneath North America back to the Late Cretaceous. Science, 322: 934–938

    Article  Google Scholar 

  42. Meyers S R, Siewert S E, Singer B S, Sageman B B, Condon D J, Obradovich J D, Jicha B R, Sawyer D A. 2012. Intercalibration of radioisotopic and astrochronologic time scales for the Cenomanian-Turonian boundary interval, Western Interior Basin, USA. Geology, 40: 7–10

    Article  Google Scholar 

  43. Miller K G, Sugarman P J, Browning J V, Kominz M A, Olsson R K, Feigenson M D, Hernández J C. 2004. Upper Cretaceous sequences and sea-level history, New Jersey Coastal Plain. Geo Soc Am Bull, 116: 368–393

    Article  Google Scholar 

  44. Miller K G, Wright J D, Browning J V. 2005. Visions of ice sheets in a greenhouse world. Mar Geol, 217: 215–231

    Article  Google Scholar 

  45. Ogg J G, Hinnov L A. 2012. Cretaceous. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G M, eds. The Geological Time Scale. Amsterdam: Elsevier. 793–853

    Chapter  Google Scholar 

  46. Olde K, Jarvis I, Ulicný D, Pearce M A, Trabucho-Alexandre J, Cech S, Gröcke D R, Laurin J, Švábenická L, Tocher B A. 2015. Geochemical and palynological sea-level proxies in hemipelagic sediments: A critical assessment from the Upper Cretaceous of the Czech Republic. Palaeogeogr Palaeoclimatol Palaeoecol, 435: 222–243

    Article  Google Scholar 

  47. Poulsen C J, Zhou J. 2013. Sensitivity of Arctic climate variability to mean state: Insights from the Cretaceous. J Clim, 26: 7003–7022

    Article  Google Scholar 

  48. Sageman B B, Gardner M H, Armentrout J M, Murphy A E. 1998. Stratigraphic hierarchy of organic carbon–rich siltstones in deep-water facies, Brushy Canyon Formation (Guadalupian), Delaware Basin, West Texas. Geology, 26: 451–454

    Article  Google Scholar 

  49. Sahagian D, Pinous O, Olferiev A, Zakharov V. 1996. Eustatic curve for the Middle Jurassic-Cretaceous based on Russian Platform and Siberian stratigraphy: Zonal resolution. AAPG Bull, 80: 1433–1458

    Google Scholar 

  50. Sames B, Wagreich M, Wendler J E, Haq B U, Conrad C P, Melinte-Dobrinescu M C, Hu X, Wendler I, Wolfgring E, Yilmaz I Ö, Zorina S O. 2016. Review: Short-term sea-level changes in a greenhouse world—A view from the Cretaceous. Palaeogeogr Palaeoclimatol Palaeoecol, 441: 393–411

    Article  Google Scholar 

  51. Schlanger S O, Jenkyns H C, Premoli-Silva I. 1981. Volcanism and vertical tectonics in the Pacific Basin related to global Cretaceous transgressions. Earth Planet Sci Lett, 52: 435–449

    Article  Google Scholar 

  52. Tarduno J A, Brinkman D B, Renne P R, Cottrell R D, Scher H, Castillo P. 1998. Evidence for extreme climatic warmth from Late Cretaceous Arctic vertebrates. Science, 282: 2241–2243

    Article  Google Scholar 

  53. Ulicný D, Jarvis I, Gröcke D R, Cech S, Laurin J, Olde K, Trabucho-Alexandre J, Švábenická L, Pedentchouk N. 2014. A high-resolution carbon-isotope record of the Turonian stage correlated to a siliciclastic basin fill: Implications for mid-Cretaceous sea-level change. Palaeogeogr Palaeoclimatol Palaeoecol, 405: 42–58

    Article  Google Scholar 

  54. Vandermark D, Tarduno J A, Brinkman D B. 2007. A fossil champsosaur population from the high Arctic: Implications for Late Cretaceous paleotemperatures. Palaeogeogr Palaeoclimatol Palaeoecol, 248: 49–59

    Article  Google Scholar 

  55. Voigt S, Hilbrecht H. 1997. Late Cretaceous carbon isotope stratigraphy in Europe: Correlation and relations with sea level and sediment stability. Palaeogeogr Palaeoclimatol Palaeoecol, 134: 39–59

    Article  Google Scholar 

  56. Wagreich M, Haq B U, Melinte-Dobrinescu M, Sames B, Yilmaz Ö. 2016. Advances and perspectives in understanding Cretaceous sea-level change. Palaeogeogr Palaeoclimatol Palaeoecol, 441: 391–392

    Article  Google Scholar 

  57. Wendler I, Wendler J E, Clarke L J. 2016. Sea-level reconstruction for Turonian sediments from Tanzania based on integration of sedimentology, microfacies, geochemistry and micropaleontology. Palaeogeogr Palaeoclimatol Palaeoecol, 441: 528–564

    Article  Google Scholar 

  58. Wendler J E, Wendler I. 2016. What drove sea-level fluctuations during the mid-Cretaceous greenhouse climate? Palaeogeogr Palaeoclimatol Palaeoecol, 441: 412–419

    Article  Google Scholar 

  59. Wiese F, Cech S, Ekrt B, Košt'ák M, Mazuch M, Voigt S. 2004. The Upper Turonian of the Bohemian Cretaceous Basin (Czech Republic) exemplified by the Úpohlavy working quarry: Integrated stratigraphy and palaeoceanography of a gateway to the Tethys. Cretac Res, 25: 329–352

    Article  Google Scholar 

  60. Wilmsen M, Nagm E. 2013. Sequence stratigraphy of the lower Upper Cretaceous (Upper Cenomanian–Turonian) of the Eastern Desert, Egypt. Newsl Stratigr, 46: 23–46

    Article  Google Scholar 

  61. Wilson P A, Norris R D, Cooper M J. 2002. Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropics on Demerara Rise. Geology, 30: 607–610

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the organizers and hosts of the IGCP 609 International Workshop on Climate and Environmental Evolution in the Mesozoic Greenhouse World, held in Nanjing, China from 5–11 September 2015, for putting together a highly stimulating and most enjoyable meeting. The authors also thank two anonymous reviewers for their contributions toward improvement of this paper. This paper is a contribution to IGCP Project 609 “Climate-environmental deteriorations during greenhouse phases: Causes and consequences of short-term Cretaceous sea-level changes”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Brian T. Huber.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haq, B.U., Huber, B.T. Anatomy of a eustatic event during the Turonian (Late Cretaceous) hot greenhouse climate. Sci. China Earth Sci. 60, 20–29 (2017). https://doi.org/10.1007/s11430-016-0166-y

Download citation

Keywords

  • Eustatic event
  • Turonian
  • Hot greenhouse climate