Skip to main content

Lateral variation in seismic velocities and rheology beneath the Qinling-Dabie orogen

Abstract

The Qinling-Dabie orogen is an important tectonic belt that trends east-west and divides continental China into northern and southern parts. Due to its strong deformation, complicated structure, multiphase structural superposition and the massive exposed high and ultrahigh metamorphic rocks, its tectonic formation and geodynamical evolution are hot research topics worldwide. Previous studies mainly focused on the regional geological or geochemical aspects, whereas the geophysical constraints are few and isolated, in particular on the orogenic scale. Here, we integrate the available P- and S-wave seismic and seismicity data, and construct the rheological structures along the Qinling-Dabie orogen. The results demonstrate that: (1) there are strong lateral variations in the crustal velocity between the western and eastern sections of the Qinling-Dabie orogen, indicating the different origin and tectonic evolution between these two parts; (2) the lateral variations are also manifested in the rheological structure. The rigid blocks, such as South China and Ordos basin (North China Craton), resist deformation and show low seismicity. The weak regions, such as the margin of Tibet and western Qinling-Dabie experience strong deformation and accumulated stress, thus show active seismicity; (3) in the lower crust of most of the HP/UHP terranes the values of P-wave velocity are higher than the global average ones; finally (4) low P- and S-wave velocities and low strength in the lower crust and lithospheric mantle beneath Dabie indicate lithospheric delamination, and/or high temperature, and partial melting condition.

This is a preview of subscription content, access via your institution.

References

  1. Anderson D L. 2007. Slabs on command—Is there convincing tomographic evidence for whole mantle convection? www.mantleplumes.org/TomographyProblems. html

    Google Scholar 

  2. Angiboust S, Agard P, Jolivet L, Beyssac O. 2009. The Zermatt-Saas ophiolite: The largest (60-km wide) and deepest (c. 70–80 km) continuous slice of oceanic lithosphere detached from a subduction zone? Terra Nova, 21: 171–180

    Article  Google Scholar 

  3. Bai Z M, Zhang Z J, Wang Y H. 2007. Crustal structure across the Dabie- Sulu orogenic belt revealed by seismic velocity profiles. J Geophys Eng, 4: 436–442

    Article  Google Scholar 

  4. Bao X, Song X, Xu M, Wang L, Sun X, Mi N, Yu D, Li H. 2013. Crust and upper mantle structure of the North China Craton and the NE Tibetan Plateau and its tectonic implications. Earth Planet Sci Lett, 369-370: 129–137

    Article  Google Scholar 

  5. Beane R J, Liou J G, Coleman R G, Leech M L. 1995. Petrology and retrograde P-T path for eclogites of the Maksyutov complex, Southern Ural Mountains, Russia. Isl Arc, 4: 254–266

    Article  Google Scholar 

  6. Boncio P, Mancini T, Lavecchia G, Selvaggi G. 2007. Seismotectonics of strike-slip earthquakes within the deep crust of southern Italy: Geometry, kinematics, stress field and crustal rheology of the Potenza 1990–1991 seismic sequences (Mmax 5.7). Tectonophysics, 445: 281–300

    Article  Google Scholar 

  7. Brandmayr E, Marson I, Romanelli F, Panza G F. 2011. Lithosphere density model in Italy: No hint for slab pull. Terra Nova, 23: 292–299

    Article  Google Scholar 

  8. Burov E, Watts A. 2006. The long-term strength of continental lithosphere: “Jelly sandwich” or “crème brûlée”? GSA Today, 16: 4

    Article  Google Scholar 

  9. Burov E B. 2011. Rheology and strength of the lithosphere. Mar Pet Geol, 28: 1402–1443

    Article  Google Scholar 

  10. Cao J M, Zhu J S, Wu D C. 1994. Velocity structure of the crust in eastern Qinlinmountain (in Chinese with English abstract). J Chengdu Inst Technol, 21: 11–17

    Google Scholar 

  11. Castelli D, Rolfo F, Groppo C, Compagnoni R. 2007. Impure marbles from the UHP Brossasco-Isasca Unit (Dora-Maira Massif, western Alps): Evidence for Alpine equilibration in the diamond stability field and evaluation of the X(CO2) fluid evolution. J Metamorph Geol, 25: 587–603

    Article  Google Scholar 

  12. Chen L, Berntsson F, Zhang Z, Wang P, Wu J, Xu T. 2014. Seismically constrained thermo-rheological structure of the eastern Tibetan margin: Implication for lithospheric delamination. Tectonophysics, 627: 122–134

    Article  Google Scholar 

  13. Chen L, Gerya T V. 2016. The role of lateral lithospheric strength heterogeneities in orogenic plateau growth: Insights from 3-D thermo-mechanical modeling. J Geophys Res Solid Earth, 121: 3118–3138

    Article  Google Scholar 

  14. Chen W P, Molnar P. 1983. Focal depths of intracontinental and intraplate earthquakes and their implications for the thermal and mechanical properties of the lithosphere. J Geophys Res, 88: 4183–4214

    Article  Google Scholar 

  15. Christensen N I, Mooney W D. 1995. Seismic velocity structure and composition of the continental crust: A global view. J Geophys Res, 100: 9761–9788

    Article  Google Scholar 

  16. de Corte K, Korsakov A, Taylor W R, Cartigny P, Ader M, De Paepe P. 2000. Diamond growth during ultrahigh-pressure metamorphism of the Kokchetav massif, northern Kazakhstan. Isl Arc, 9: 428–438

    Article  Google Scholar 

  17. Cui Z Z, Li Q S, Wu C D, Yin Z X, Liu H B. 1995. The crustal structure and deeptectonics along Golmud-Ejinaqi transect (in Chinese with English abstract). Chin J Geophys, 38(Suppl II): 15–28

    Google Scholar 

  18. da Costa Campos Neto M, Caby R. 2000. Terrane accretion and upward extrusion of high-pressure granulites in the Neoproterozoic nappes of southeast Brazil: Petrologic and structural constraints. Tectonics, 19: 669–687

    Article  Google Scholar 

  19. Deng Y, Li S, Fan W L, Liu J. 2011. Crustal structure beneath South China revealed by deep seismic soundings and its dynamics implications (in Chinese with English abstract). Chin J Geophys, 54: 2560–2574

    Article  Google Scholar 

  20. Deng Y, Fan W, Zhang Z, Badal J. 2013. Geophysical evidence on segmentation of the Tancheng-Lujiang fault and its implications on the lithosphere evolution in East China. J Asian Earth Sci, 78: 263–276

    Article  Google Scholar 

  21. Doglioni C, Panza G. 2015. Chapter One-Polarized plate tectonics. Adv Geophys, 56: 1–167

    Article  Google Scholar 

  22. Dong S W, Wu X Z, Gao R, Lu D Y, Li Y K, He Y Q, Tang J F, Cao F Y, Hou M J, Huang D J. 1998. On the crust velocity levels and dynamics of the Dabieshan orogenic belt (in Chinese with English abstract). Chin J Geophys, 41: 349–361

    Google Scholar 

  23. Dong S W, Li Q S, Gao R, Liu F T, Xu P F, Liu X C, Xue H M, Guan Y. 2008. Moho-mapping in the Dabie ultrahigh-pressure collisional orogen, central China. Am J Sci, 308: 517–528

    Article  Google Scholar 

  24. Dong Y, Zhang G, Neubauer F, Liu X, Genser J, Hauzenberger C. 2011. Tectonic evolution of the Qinling orogen, China: Review and synthesis. J Asian Earth Sci, 41: 213–237

    Article  Google Scholar 

  25. Frezzotti M L, Ferrando S, Dallai L, Compagnoni R. 2007. Intermediate Alkali-Alumino-silicate aqueous solutions released by deeply subducted continental crust: Fluid evolution in UHP OH-rich Topaz-Kyanite quartzites from Donghai (Sulu, China). J Petrol, 48: 1219–1241

    Article  Google Scholar 

  26. Gao S, Zhang B, Jin Z, Kern H. 1999. Lower crustal delamination in the Qinling-Dabie orogenic belt. Sci China Ser D-Earth Sci, 42: 423–433

    Google Scholar 

  27. Ghiribelli B, Frezzotti M L, Palmeri R. 2002. Coesite in eclogites of the Lanterman Range (Antarctica): Evidence from textural and Raman studies. Eur J Mineral, 14: 355–360

    Article  Google Scholar 

  28. Gilotti J A, Ravna E J K. 2002. First evidence for ultrahigh-pressure metamorphism in the North-East Greenland Caledonides. Geology, 30: 551–554

    Article  Google Scholar 

  29. Hacker B R, Andersen T B, Johnston S, Kylander-Clark A R C, Peterman E M, Walsh E O, Young D. 2010. High-temperature deformation during continental-margin subduction & exhumation: The ultrahigh-pressure Western Gneiss Region of Norway. Tectonophysics, 480: 149–171

    Article  Google Scholar 

  30. Hacker B R, Ritzwoller M H, Xie J. 2014. Partially melted, mica-bearing crust in Central Tibet. Tectonics, 33: 1408–1424

    Article  Google Scholar 

  31. Jackson J. 2002a. Faulting, flow, and the strength of the continental lithosphere. Int Geol Rev, 44: 39–61

    Article  Google Scholar 

  32. Jackson J. 2002b. Strength of the continental lithosphere: Time to abandon the jelly sandwich? GSA Today, 12: 4–9

    Article  Google Scholar 

  33. Jackson J, McKenzie D, Priestley K, Emmerson B. 2008. New views on the structure and rheology of the lithosphere. J Geol Soc, 165: 453–465

    Article  Google Scholar 

  34. Jahn B, Caby R, Monie P. 2001. The oldest UHP eclogites of the World: Age of UHP metamorphism, nature of protoliths and tectonic implications. Chem Geol, 178: 143–158

    Article  Google Scholar 

  35. Jiang C, Yang Y, Zheng Y. 2016. Crustal structure in the junction of Qinling Orogen, Yangtze craton and Tibetan Plateau: Implications for the formation of the Dabashan Orocline and the growth of Tibetan Plateau. Geophys J Int, 205: 1670–1681

    Article  Google Scholar 

  36. Jiang G, Zhang G, Lü Q, Shi D, Xu Y. 2013. 3-D velocity model beneath the Middle-Lower Yangtze River and its implication to the deep geodynamics. Tectonophysics, 606: 36–47

    Article  Google Scholar 

  37. Kohlstedt D L, Evans B, Mackwell S J. 1995. Strength of the lithosphere: Constraints imposed by laboratory experiments. J Geophys Res, 100: 17587–17602

    Article  Google Scholar 

  38. Lachenbruch A H. 1970. Crustal temperature and heat production: Implications of the linear heat-flow relation. J Geophys Res, 75: 3291–3300

    Article  Google Scholar 

  39. Lardeaux J M, Ledru P, Daniel I, Duchene S. 2001. The Variscan French Massif Central—A new addition to the ultra-high pressure metamorphic “club”: Exhumation processes and geodynamic consequences. Tectonophysics, 332: 143–167

    Article  Google Scholar 

  40. Lardeaux J M, Schwartz S, Tricart P, Paul A, Guillot S, Béthoux N, Masson F. 2006. A crustal-scale cross-section of the south-western Alps combining geophysical and geological imagery. Terra Nova, 18: 412–422

    Article  Google Scholar 

  41. Leech M L, Ernst W G. 1998. Graphite pseudomorphs after diamond? A carbon isotope and spectroscopic study of graphite cuboids from the Maksyutov Complex, south Ural Mountains, Russia. Geochim Cosmochim Acta, 62: 2143–2154

    Article  Google Scholar 

  42. Li T S. 1991. Features of gravitational and magnetic anomalies and crustal structurealong the Lianyungang-Linyi-Sishui profile (in Chinese with English abstract). J Seismol Res, 14:141–146

    Google Scholar 

  43. Liou J G, Tsujimori T, Zhang R Y, Katayama I, Maruyama S. 2004. Global UHP metamorphism and continental subduction/collision: The Himalayan Model. Int Geol Rev, 46: 1–27

    Article  Google Scholar 

  44. Liou J G, Zhang R Y, Jahn B M. 2000. Petrological and geochemical characteristics of ultrahigh-pressure metamorphic rocks from the Dabie-Sulu Terrane, East-Central China. Int Geol Rev, 42: 328–352

    Article  Google Scholar 

  45. Liu F T, Xu P F, Liu J S, Yin Z X, Qin J Y, Zhang X K, Zhang C K, Zhao J R. 2003. Thecrustal velocity structure of the continental deep subduction belt: Study on theeastern Dabie orogen by seismic wide-angle reflection/ refraction (in Chinese with English abstract). Chin J Geophys, 46: 366–372

    Google Scholar 

  46. Liu L, Wang C, Cao Y T, Chen D L, Kang L, Yang W Q, Zhu X H. 2012. Geochronology of multi-stage metamorphic events: Constraints on episodic zircon growth from the UHP eclogite in the South Altyn, NW China. Lithos, 136-139: 10–26

    Article  Google Scholar 

  47. Liu M, Mooney W D, Li S, Okaya N, Detweiler S. 2006. Crustal structure of the northeastern margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin. Tectonophysics, 420: 253–266

    Article  Google Scholar 

  48. Luo Y, Xu Y, Yang Y. 2012. Crustal structure beneath the Dabie orogenic belt from ambient noise tomography. Earth Planet Sci Lett, 313–314: 12–22

    Article  Google Scholar 

  49. Meng Q R, Zhang G W. 2000. Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics, 323: 183–196

    Article  Google Scholar 

  50. Muto J. 2011. Rheological structure of northeastern Japan lithosphere based on geophysical observations and rock mechanics. Tectonophysics, 503: 201–206

    Article  Google Scholar 

  51. Ortega-Gutiérrez F, Solari L A, Solé J, Martens U, Gómez-Tuena A, Morán-Ical S, Reyes-Salas M. 2004. Polyphase, high-temperature eclogite- facies metamorphism in the Chuacús Complex, central Guatemala: Petrology, geochronology, and tectonic implications. Int Geol Rev, 46: 445–470

    Article  Google Scholar 

  52. Ouyang L, Li H, Lü Q, Yang Y, Li X, Jiang G, Zhang G, Shi D, Zheng D, Sun S, Tan J, Zhou M. 2014. Crustal and uppermost mantle velocity structure and its relationship with the formation of ore districts in the Middle- Lower Yangtze River region. Earth Planet Sci Lett, 408: 378–389

    Article  Google Scholar 

  53. Pan S, Niu F. 2011. Large contrasts in crustal structure and composition between the Ordos plateau and the NE Tibetan Plateau from receiver function analysis. Earth Planet Sci Lett, 303: 291–298

    Article  Google Scholar 

  54. Panza G F, Pontevivo A, Chimera G, Raykova R, Aoudia A. 2003. The lithosphere-asthenosphere: Italy and surroundings. Episodes, 26: 169–174

    Google Scholar 

  55. Panza G F, Raykova R B. 2008. Structure and rheology of lithosphere in Italy and surrounding. Terra Nova, 20: 194–199

    Article  Google Scholar 

  56. Parkinson C D. 2000. Coesite inclusions and prograde compositional zonation of garnet in whiteschist of the HP-UHPM Kokchetav massif, Kazakhstan: A record of progressive UHP metamorphism. Lithos, 52: 215–233

    Article  Google Scholar 

  57. Pauselli C, Ranalli G, Federico C. 2010. Rheology of the Northern Apennines: Lateral variations of lithospheric strength. Tectonophysics, 484: 27–35

    Article  Google Scholar 

  58. Pfiffner O A, Lehner P, Heitzmann P, Müller St, Steck A. 1997. Deep Structure of the Swiss Alps, Results of NRP 20. Basel: Birkhauser Verlag. 380

    Google Scholar 

  59. Ranalli G, Murphy D C. 1987. Rheological stratification of the lithosphere. Tectonophysics, 132: 281–295

    Article  Google Scholar 

  60. Rudnick R L, Fountain D M. 1995. Nature and composition of the continental crust: A lower crustal perspective. Rev Geophys, 33: 267–309

    Article  Google Scholar 

  61. Shen W, Ritzwoller M H, Schulte-Pelkum V, Lin F C. 2013. Joint inversion of surface wave dispersion and receiver functions: A Bayesian Monte- Carlo approach. Geophys J Int, 192: 807–836

    Article  Google Scholar 

  62. Shen W, Ritzwoller M H, Kang D, Kim Y H, Lin F C, Ning J, Wang W, Zheng Y, Zhou L. 2016. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion. Geophys J Int, 206: 954–979

    Article  Google Scholar 

  63. Song S G, Yang J S, Xu Z Q, Liou J G, Shi R D. 2003. Metamorphic evolution of the coesite-bearing ultrahigh-pressure terrane in the North Qaidam, Northern Tibet, NW China. J Metamorph Geol, 21: 631–644

    Article  Google Scholar 

  64. Stadtlander R, Mechie J, Schulze A. 1999. Deep structure of the southern Ural mountains as derived fromwide-angle seismic data. Geophys J Int, 137: 501–515

    Article  Google Scholar 

  65. Stratford W, Thybo H, Faleide J I, Olesen O, Tryggvason A. 2009. New Moho Map for onshore southern Norway. Geophys J Int, 178: 1755–1765

    Article  Google Scholar 

  66. Tao W, Shen Z. 2008. Heat flow distribution in Chinese continent and its adjacent areas. Prog Nat Sci, 18: 843–849

    Article  Google Scholar 

  67. Thouvenot F, Perrier G. 1980. Seismic evidence of a crustal overthrust in the Western Alps. Pure Appl Geophys, 119: 163–184

    Article  Google Scholar 

  68. Thouvenot F, Paul A, Fréchet J, Béthoux N, Jenatton L, Guiguet R. 2007. Are there really superposed Mohos in the southwestern Alps? New seismic data from fan-profiling reflections. Geophys J Int, 170: 1180–1194

    Article  Google Scholar 

  69. Vanderhaeghe O, Teyssier C. 2001. Crustal-scale rheological transitions during late-orogenic collapse. Tectonophysics, 335: 211–228

    Article  Google Scholar 

  70. Wang Q, Ji S, Salisbury M H, Xia B, Pan M, Xu Z. 2005. Shear wave properties and Poisson’s ratios of ultrahigh-pressure metamorphic rocks from the Dabie-Sulu orogenic belt, China: Implications for crustal composition. J Geophys Res, 110: B08208

    Article  Google Scholar 

  71. Wang Q, Wyman D A, Xu J, Jian P, Zhao Z, Li C, Xu W, Ma J, He B. 2007. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: Implications for partial melting and delamination of thickened lower crust. Geochim Cosmochim Acta, 71: 2609–2636

    Article  Google Scholar 

  72. Wang Y. 2001. Heat flow pattern and lateral variations of lithosphere strength in China mainland: Constraints on active deformation. Phys Earth Planet Inter, 126: 121–146

    Article  Google Scholar 

  73. Willner A P, Krohe A, Maresch W V. 2000. Interrelated P-T-t-d paths in the variscan erzgebirge dome (Saxony, Germany): Constraints on the rapid exhumation of high-pressure rocks from the root zone of a collisional orogen. Int Geol Rev, 42: 64–85

    Article  Google Scholar 

  74. Wu J, Zhang Z. 2012. Spatial distribution of seismic layer, crustal thickness, and Vp/Vs ratio in the Permian Emeishan Mantle Plume region. Gondwana Res, 22: 127–139

    Article  Google Scholar 

  75. Wu Y B, Zheng Y F. 2013. Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong’an-Dabie-Sulu orogenic belt in central China. Gondwana Res, 23: 1402–1428

    Article  Google Scholar 

  76. Xie J, Ritzwoller M H, Shen W, Yang Y, Zheng Y, Zhou L. 2013. Crustal radial anisotropy across Eastern Tibet and the Western Yangtze Craton. J Geophys Res-Solid Earth, 118: 4226–4252

    Article  Google Scholar 

  77. Xu T, Zhang Z J, Tian X B, Liu B F, Bai Z M, Lu Q T, Teng J W. 2014. Crustal structure beneath the Middle-Lower Yangtze metallogenic belt and its surrounding areas: Constraints from active source seismic experiment along the Lixin to Yixing profile in East China. Acta Petrol Sin, 30: 918–930

    Google Scholar 

  78. Ye S, Ansorge J, Kissling E, Mueller S. 1995. Crustal structure beneath the eastern Swiss Alps derived from seismic refraction data. Tectonophysics, 242: 199–221

    Article  Google Scholar 

  79. Zang S X, Qiang Wei R, Liu Y G. 2005. Three-dimensional rheological structure of the lithosphere in the Ordos block and its adjacent area. Geophys J Int, 163: 339–356

    Article  Google Scholar 

  80. Zhang G W, Dong Y B, Lai S C, Guo A L, Meng Q R, Liu S F, Cheng S Y, Yao A P, Zhang Z Q, Pei X Z, Li S Z. 2003. Mianlüe tectonic zone and Mianlüe suture zone on southern margin of Qinling-Dabie orogenic belt. Sci China Ser D-Earth Sci, 47: 300–316

    Article  Google Scholar 

  81. Zhang G W, Cheng S, Guo A, Dong Y, Lai S, Yao A. 2004. Mianlue paleosuture on the southern margin of the Central Orogenic System in Qinling- Dabie with a discussion of the assembly of the main part of the continent of China (in Chinese with English abstract). Geol Bull, 23: 846–853

    Google Scholar 

  82. Zhang G, Zhang L, Song S, Niu Y. 2009. UHP metamorphic evolution and SHRIMP geochronology of a coesite-bearing meta-ophiolitic gabbro in the North Qaidam, NW China. J Asian Earth Sci, 35: 310–322

    Article  Google Scholar 

  83. Zhang J, Ma C, Li J, Pan Y. 2015. Petrogenesis of Early Cretaceous alkaline dolerite dykes in the Dabie Orogen, China: Constraints on the timing of lithospheric thinning. Lithos, 216–217: 17–30

    Article  Google Scholar 

  84. Zhang J X, Meng F C, Wan Y S. 2007. A cold Early Palaeozoic subduction zone in the North Qilian Mountains, NW China: Petrological and U-Pb geochronological constraints. J Metamorph Geol, 25: 285–304

    Article  Google Scholar 

  85. Zhang L, Ellis D J, Williams S, Jiang W. 2002. Ultra-high pressure metamorphism in western Tianshan, China: Part II. Evidence from magnesite in eclogite. Am Miner, 87: 861–866

    Google Scholar 

  86. Zhang X K, Jia S X, Zhao J R, Zhang C K, Yang J, Wang F Y, Zhang J S, Liu B F, Sun G W, Pan S Z. 2008. Crustal structures beneath West Qinling-East Kunlun orogen and its adjacent area—Results of wide-angle seismic reflection and refractionexperiment (in Chinese with English abstract). Chin J Geophys, 51: 439–450

    Google Scholar 

  87. Zhang X M, Teng J, Sun R, Romanelli F, Zhang Z, Panza G F. 2014. Structural model of the lithosphere-asthenosphere system beneath the Qinghai- Tibet Plateau and its adjacent areas. Tectonophysics, 634: 208–226

    Article  Google Scholar 

  88. Zhang Z, Bai Z, Klemperer S L, Tian X, Xu T, Chen Y, Teng J. 2013a. Crustal structure across northeastern Tibet from wide-angle seismic profiling: Constraints on the Caledonian Qilian orogeny and its reactivation. Tectonophysics, 606: 140–159

    Article  Google Scholar 

  89. Zhang Z, Deng Y, Chen L, Wu J, Teng J, Panza G. 2013b. Seismic structure and rheology of the crust under mainland China. Gondwana Res, 23: 1455–1483

    Article  Google Scholar 

  90. Zhang Z, Teng J, Romanelli F, Braitenberg C, Ding Z, Zhang X, Fang L, Zhang S, Wu J, Deng Y, Ma T, Sun R, Panza G F. 2014. Geophysical constraints on the link between cratonization and orogeny: Evidence from the Tibetan Plateau and the North China Craton. Earth-Sci Rev, 130: 1–48

    Article  Google Scholar 

  91. Zhang Z M, Zhang J F, You Z D, Shen K. 2005. Ultrahigh-pressure metamorphic P-T-t path of the Sulu orogenic belt, eastern central China. Acta Petrol Sin, 21: 257–270

    Google Scholar 

  92. Zheng Y F. 2008. A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie-Sulu orogenic belt. Chin Sci Bull, 53: 3081–3104

    Article  Google Scholar 

  93. Zheng Y F, Gao T S, Wu Y B, Gong B, Liu X M. 2007. Fluid flow during exhumation of deeply subducted continental crust: Zircon U-Pb age and O-isotope studies of a quartz vein within ultrahigh-pressure eclogite. J Metamorph Geol, 25: 267–283

    Article  Google Scholar 

  94. Zheng Y, Shen W, Zhou L, Yang Y, Xie Z, Ritzwoller M H. 2011. Crust and uppermost mantle beneath the North China craton, northeastern China, and the Sea of Japan from ambient noise tomography. J Geophys Res, 116: B12312

    Article  Google Scholar 

  95. Zheng T, Zhu R, Zhao L, Ai Y. 2012. Intralithospheric mantle structures recorded continental subduction. J Geophys Res, 117: B03308

    Google Scholar 

  96. Zheng T Y, Zhao L, He Y M, Zhu R X. 2014. Seismic imaging of crustal reworking and lithospheric modification in eastern China. Geophys J Int, 196: 656–670

    Article  Google Scholar 

  97. Zhou L, Xie J, Shen W, Zheng Y, Yang Y, Shi H, Ritzwoller M H. 2012. The structure of the crust and uppermost mantle beneath South China from ambient noise and earthquake tomography. Geophys J Int, 189: 1565–1583

    Article  Google Scholar 

Download references

Acknowledgements

The paper is dedicated to the memory of Professor Zhang Zhongjie (1964–2013), who proposed the initial idea of this manuscript. Constructive comments from three anonymous reviewers have greatly improved the manuscript. We thank Dr. Qiu Zhong for valuable discussions and suggestions. We gratefully acknowledge the support offered by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB18030101), the National Natural Science Foundation of China (Grant No. 41504069) and the Italian Projects PRIN 2010–2011, PRIN 2015.

Author information

Affiliations

Authors

Corresponding author

Correspondence to YangFan Deng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Chen, L., Xu, T. et al. Lateral variation in seismic velocities and rheology beneath the Qinling-Dabie orogen. Sci. China Earth Sci. 60, 576–588 (2017). https://doi.org/10.1007/s11430-016-0101-6

Download citation

Keywords

  • Qinling-Dabie orogen
  • Deep seismic sounding
  • Tomography
  • Rheology
  • Seismicity