Skip to main content
Log in

NanoSIMS imaging method of zircon U-Pb dating

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

We report an imaging method of zircon U-Pb dating with NanoSIMS 50L, which overcomes the significant U-Pb fractionation as the pit was sputtered deeper during conventional spot mode analysis and can be applied to irregular small grains or heterogeneous areas of zircon. The U-Pb and Pb-Pb ages can be acquired simultaneously for 2 μm×2 μm (for small grains) or 1 μm×9 μm (for zoned grains), together with Zr, Y and other trace elements distributions. Using zircon M257 as standard, the U-Pb ages of other zircon standards, including Qinghu, Plesovice, Temora and 91500, were measured to (2σ) as 158.8±0.8, 335.9±3.4, 412.0±12 and 1067±12 Ma, respectively, consistent with the recommended values within the analytical uncertainties. Tiny zircon grains in the impact melt breccia of the lunar meteorite SaU 169 were also measured in this study, with a Pb-Pb age of 3912±14 Ma and a U-Pb age of 3917±17 Ma, similar to previous results reported for the same meteorite. The imaging method was also applied to determine U-Pb age of the thin overgrowth rims of Longtan metamorphic zircon, with a Pb-Pb age of 1933±27 Ma and a U-Pb age of 1935±25 Ma, clearly distinct from the Pb-Pb age of 2098±61 Ma and the U-Pb age of 2054±40 Ma for detrital cores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Black L P, Kamo S L, Allen C M, Aleinikoff J N, Davis D W, Korsch R J, Foudoulis C. 2003. Temora 1: A new zircon standard for Phanerozoic U-Pb geochronology. Chem Geol, 200: 155–170

    Article  Google Scholar 

  • Compston W. 1996. Shrimp: Origins, impact and continuing evolution. J Roy Soc West Austral, 79: 109–117

    Google Scholar 

  • Davis D W, Williams I S, Krogh T E. 2003. Historical development of zircon geochronology. Rev Mineral Geochem, 53: 145–181

    Article  Google Scholar 

  • Hopkins M, Mojzsis S, Bottke W, Abramov O. 2015. Micrometer-scale U-Pb age domains in eucrite zircons, impact re-setting, and the thermal history of the HED parent body. Icarus, 245: 367–378

    Article  Google Scholar 

  • Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem, 53: 27–62

    Article  Google Scholar 

  • Kusiak M A, Whitehouse M J, Wilde S A, Nemchin A A, Clark C. 2013. Mobilization of radiogenic Pb in zircon revealed by ion imaging: Implications for early Earth geochronology. Geology, 41: 291–294

    Article  Google Scholar 

  • Li Q L, Li X H, Liu Y, Tang G Q, Yang J H, Zhu W G. 2010. Precise U-Pb and Pb-Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique. J Anal At Spectrom, 25: 1107–1113

    Article  Google Scholar 

  • Li X H, Liu Y, Li Q L, Guo C H, Chamberlain K R. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochem Geophy Geosyst, 10, doi: 10.1029/2009GC002400

    Google Scholar 

  • Lin Y, Shen W, Liu Y, Xu L, Hofmann B A, Mao Q, Tang G Q, Wu F, Li X H. 2012. Very high-K kreep-rich clasts in the impact melt breccia of the lunar meteorite SaU 169: New constraints on the last residue of the Lunar Magma Ocean. Geochim Cosmochim Acta, 85: 19–40

    Article  Google Scholar 

  • Liu D, Jolliff B L, Zeigler R A, Korotev R L, Wan Y, Xie H, Zhang Y, Dong C, Wang W. 2012. Comparative zircon U-Pb geochronology of impact melt breccias from Apollo 12 and lunar meteorite SaU 169, and implications for the age of the Imbrium impact. Earth Planet Sci Lett, 319: 277–286

    Article  Google Scholar 

  • Liu Y, Hu Z, Zong K, Gao C, Gao S, Xu J, Chen H. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin Sci Bull, 55: 1535–1546

    Article  Google Scholar 

  • Liu Y, Li X H, Li Q L, Tang G Q, Yin Q Z. 2011. Precise U-Pb zircon dating at a scale of <5 micron by the cameca 1280 SIMS using a Gaussian illumination probe. J Anal At Spectrom, 26: 845–851

    Article  Google Scholar 

  • Ludwig K. 2003. Isoplot version 3.0: A geochronology toolkit for Microsoft Excel. Berkeley Geochronology Center

    Google Scholar 

  • Nasdala L, Hofmeister W G, Norberg N, Mattinson J M, Corfu F, Dorr W, Kamo S L, Kennedy A K, Kronz A, Reiners P W, Frei D, Kosler J, Wan Y S, Gotze J, Hager T, Kroner A, Valley J W. 2008. Zircon M257—A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostand Geoanal Res, 32: 247–265

    Article  Google Scholar 

  • Nemchin A, Timms N, Pidgeon R, Geisler T, Reddy S, Meyer C. 2009. Timing of crystallization of the lunar magma ocean constrained by the oldest zircon. Nature Geosci, 2: 133–136

    Article  Google Scholar 

  • Nemchin A A, Pidgeon R T, Whitehouse M J, Vaughan J P, Meyer C. 2008. SIMS U-Pb study of zircon from Apollo 14 and 17 breccias: Implications for the evolution of lunar KREEP. Geochim Cosmochim Acta, 72: 668–689

    Article  Google Scholar 

  • Sláma J, Košler J, Condon D J, Crowley J L, Gerdes A, Hanchar J M, Horstwood M S A, Morris G A, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M N, Whitehouse M J. 2008. Plešovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol, 249: 1–35

    Article  Google Scholar 

  • Takahata N, Tsutsumi Y, Sano Y. 2008. Ion microprobe U-Pb dating of zircon with a 15 micrometer spatial resolution using NanoSIMS. Gondwana Res, 14: 587–596

    Article  Google Scholar 

  • Valley J W, Cavosie A J, Ushikubo T, Reinhard D A, Lawrence D F, Larson D J, Clifton P H, Kelly T F, Wilde S A, Moser D E, Spicuzza M J. 2014. Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nature Geosci, 7: 219–223

    Article  Google Scholar 

  • Wang W, Liu X, Hu J, Li Z, Zhao Y, Zhai M, Liu X, Clarke G, Zhang S, Qu H. 2014. Late Paleoproterozoic medium-P high grade metamorphism of basement rocks beneath the northern margin of the Ordos Basin, NW China: Petrology, phase equilibrium modelling and U-Pb geochronology. Precambrian Res, 251: 181–196

    Article  Google Scholar 

  • Werner S C, Ody A, Poulet F. 2014. The source crater of martian Shergottite meteorites. Science, 343: 1343–1346

    Article  Google Scholar 

  • Wiedenbeck M, AllÉ P, Corfu F, Griffin W L, Meier M, Oberli F, Quadt A V, Roddick J C, Spiegel W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand Geoanal Res, 19: 1–23

    Article  Google Scholar 

  • Williams I S. 1998. Applications of microanalytical techniques to understanding mineralizing processes. Rev Econ Geol, 7: 1–35

    Article  Google Scholar 

  • Yang W, Lin Y T, Zhang J C, Hao J L, Shen W J, Hu S. 2012. Precise micrometre-sized Pb-Pb and U-Pb dating with NanoSIMS. J Anal At Spectrom, 27: 479–487

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sen Hu or YangTing Lin.

Electronic supplementary material

11430_2016_10_MOESM1_ESM.pdf

U-Pb and Pb-Pb analyses results of the standard zircon Qinghu, Temora, Plesovice and 91500 measured using NanoSIMS imaging method

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Lin, Y., Yang, W. et al. NanoSIMS imaging method of zircon U-Pb dating. Sci. China Earth Sci. 59, 2155–2164 (2016). https://doi.org/10.1007/s11430-016-0010-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-0010-3

Keywords

Navigation