Advertisement

Snowdrift effect on snow deposition: Insights from a comparison of a snow pit profile and meteorological observations in east Antarctica

  • 124 Accesses

Abstract

A high-frequency and precise ultrasonic sounder was used to monitor precipitated/deposited and drift snow events over a 3-year period (17 January 2005 to 4 January 2008) at the Eagle automatic weather station site, inland Antarctica. Ion species and oxygen isotope ratios were also generated from a snow pit below the sensor. These accumulation and snowdrift events were used to examine the synchronism with seasonal variations of δ 18O and ion species, providing an opportunity to assess the snowdrift effect in typical Antarctic inland conditions. There were up to 1-year differences for this 3-year-long snow pit between the traditional dating method and ultrasonic records. This difference implies that in areas with low accumulation or high wind, the snowdrift effect can induce abnormal disturbances on snow deposition. The snowdrift effect should be seriously taken into account for high-resolution dating of ice cores and estimation of surface mass balance, especially when the morphology of most Antarctic inland areas is similar to that of the Eagle site.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. Adams H. 1996. The detection and analysis of a gravity wave observed over Casey in East Antarctica using radiosonde data. Aust Meteorol Mag, 45: 219–232

  2. Allison I, Wendler G, Radok U. 1993. Climatology of the East Antarctic ice sheet (100°E to 140°E) derived from automatic weather stations. J Geophys Res, 98: 8815–8823

  3. Allison I. 1998. Surface climate of the interior of the Lambert Glacier basin, Antarctica, form automatic weather station data. Ann Glaciol, 27: 515–520

  4. Bintanja R. 1998a. The contribution of snowdrift sublimation to the surface mass balance of Antarctica. Ann Glaciol, 27: 251–259

  5. Bintanja R. 1998b. The interaction between drifting snow and atmospheric turbulence. Ann Glaciol, 26: 167–173

  6. Bintanja R. 2001. Snowdrift sublimation in a katabatic wind region of the Antarctic Ice sheet. J Appl Meteorol, 40: 1952–1966

  7. Bromwich D H. 1988. Snowfall in high southern latitudes. Rev Geophys, 26: 149–168

  8. Curran M A J, van Ommen T D, Morgan V I, Phillips K L, Palmer A S. 2003. Ice core evidence for Antarctic sea ice decline since the 1950s. Science, 302: 1203–1206

  9. Dansgaard W. 1964. Stable isotopes in precipitation. Tellus, 16: 436–468

  10. DiMarzio J, Brenner A, Schutz R, Shuman C A, Zwally H J. 2007. GLAS/ICESat 500 m laser altimetry digital elevation model of Antarctica, Boulder, Colorado USA. National Snow and Ice Data Center, Digital media

  11. Ding M H, Xiao C D, Jin B, Ren J W, Qin D H, Sun W Z. 2010. Distribution of δ 18O in surface snow along a transect from Zhongshan Station to Dome A, East Antarctica. Chin Sci Bull, 55: 2709–2714

  12. Ding M, Xiao C, Li Y, Ren J, Hou S, Jin B, Sun B. 2011. Spatial variability of surface mass balance along a traverse route from Zhongshan station to Dome A, Antarctica. J Glaciol, 57: 658–666

  13. Ding M H, Xiao C D, Li C J, Qin D H, Jin B, Shi G T, Xie A H, Cui X B. 2015. Surface mass balance and its climate significance from the coast to Dome A, East Antarctica. Sci China Earth Sci, 58: 1787–1797

  14. Ding M, Xiao C, Yang Y, Wang Y, Li C, Yuan N, Shi G, Sun W, Ming J. 2016. Re-assessment of recent (2008–2013) surface mass balance over Dome Argus, Antarctica. Polar Res, 35: 26133

  15. Eisen O, Frezzotti M, Genthon C, Isaksson E, Magand O, van den Broeke M R, Dixon D A, Ekaykin A, Holmlund P, Kameda T, Karlöf L, Kaspari S, Lipenkov V Y, Oerter H, Takahashi S, Vaughan D G. 2008. Groundbased measurements of spatial and temporal variability of snow accumulation in East Antarctica. Rev Geophys, 46: RG2001

  16. EPICA Community Members. 2004. Eight glacial cycles from an Antarctic ice core. Nature, 429: 623–628

  17. Fierz C, Lehning M. 2001. Assessment of the microstructure-based snowcover model SNOWPACK: Thermal and mechanical properties. Cold Regions Sci Tech, 33: 123–131

  18. Frezzotti M, Gandolfi S, Urbini S. 2002. Snow megadunes in Antarctica: Sedimentary structure and genesis. J Geophys Res, 107: 4344

  19. Frezzotti M, Pourchet M, Flora O, Gandolfi S, Gay M, Urbini S, Vincent C, Becagli S, Gragnani R, Proposito M, Severi M, Traversi R, Udisti R, Fily M. 2004. New estimations of precipitation and surface sublimation in East Antarctica from snow accumulation measurements. Clim Dyn, 23: 803–813

  20. Frezzotti M, Urbini S, Proposito M, Scarchilli C, Gandolfi S. 2007. Spatial and temporal variability of surface mass balance near Talos Dome, East Antarctica. J Geophys Res, 112: F02032

  21. Fujita K, Abe O. 2006. Stable isotopes in daily precipitation at Dome Fuji, East Antarctica. Geophys Res Lett, 33: L18503

  22. Furukawa T, Kamiyama K, Maeno H. 1996. Snow surface features along the traverse route from the coast to Dome Fuji station, Queen Maud Land, Antarctica. In: Proceedings of the NIPR Symposium on Polar Meteorology and Glaciology. 13–24

  23. Gallée H. 1998. Simulation of blowing snow over the Antarctic ice sheet. Ann Glaciol, 26: 203–205

  24. Gallée H, Trouvilliez A, Agosta C, Genthon C, Favier V, Naaim-Bouvet F. 2013. Transport of snow by the wind: A comparison between observations in Adélie Land, Antarctica, and simulations made with the regional climate model MAR. Bound-Layer Meteorol, 146: 133–147

  25. Goodwin I D. 1991. Snow-accumulation variability from seasonal surface observations and firn-core stratigraphy, eastern Wilkes Land, Antarctica. J Glaciol, 37: 383–387

  26. Gow A J. 1969. On the rates of growth of grains and crystals in South Pole firn. J Glaciol, 8: 241–252

  27. Groot Zwaaftink C D, Cagnati A, Crepaz A, Fierz C, Macelloni G, Valt M, Lehning M. 2013. Event-driven deposition of snow on the Antarctic Plateau: Analyzing field measurements with SNOWPACK. Cryosphere, 7: 333–347

  28. Hezel P J, Alexander B, Bitz C M, Steig E J, Holmes C D, Yang X, Sciare J. 2011. Modeled methanesulfonic acid (MSA) deposition in Antarctica and its relationship to sea ice. J Geophys Res, 116: D23214

  29. Jouzel J, Alley R B, Cuffey K M, Dansgaard W, Grootes P, Hoffmann G, Johnsen S J, Koster R D, Peel D, Shuman C A, Stievenard M, Stuiver M, White J. 1997. Validity of the temperature reconstruction from water isotopes in ice cores. J Geophys Res, 102: 26471–26487

  30. Kameda T, Motoyama H, Fujita S, Takahashi S. 2008. Temporal and spatial variability of surface mass balance at Dome Fuji, East Antarctica, by the stake method from 1995 to 2006. J Glaciol, 54: 107–116

  31. Krinner G, Magand O, Simmonds I, Genthon C, Dufresne J L. 2006. Simulated Antarctic precipitation and surface mass balance at the end of the twentieth and twenty-first centuries. Clim Dyn, 28: 215–230

  32. Legrand M, Mayewski P. 1997. Glaciochemistry of polar ice cores: A review. Rev Geophys, 35: 219–243

  33. Lenaerts J T M, van den Broeke M R, Déry S J, König-Langlo G, Ettema J, Munneke P K. 2010. Modelling snowdrift sublimation on an Antarctic ice shelf. Cryosphere, 4: 179–190

  34. Lenaerts J T M, van den Broeke M R. 2012. Modeling drifting snow in Antarctica with a regional climate model: 2. Results. J Geophys Res, 117: D05109

  35. Ma Y, Bian L, Xiao C, Allison I, Zhou X. 2010. Near surface climate of the traverse route from Zhongshan Station to Dome A, East Antarctica. Antarct Sci, 22: 443–459

  36. Mann G W, Anderson P S, Mobbs S D. 2000. Profile measurements of blowing snow at Halley, Antarctica. J Geophys Res, 105: 24491–24508

  37. McConnell J R, Bales R C, Davis D R. 1997. Recent intra-annual snow accumulation at South Pole: Implications for ice core interpretation. J Geophys Res, 102: 21947–21954

  38. McMorrow A J, Curran M A J, Van Ommen T D, Morgan V I, Allison I. 2002. Features of meteorological events preserved in a high-resolution Law Dome (East Antarctica) snow pit. Ann Glaciol, 35: 463–470

  39. McMorrow A, van Ommen T D, Morgan V, Curran M A J. 2004. Ultra-highresolution seasonality of trace-ion species and oxygen isotope ratios in Antarctic firn over four annual cycles. Ann Glaciol, 39: 34–40

  40. Motoyama H, Furukawa T, Goto-Azuma K, Tanaka Y, Furusaki A, Igarashi M, Saito T, Kamiyama K. 2008. Glaciological data collected by the 45th, 46th and 47th Japanese Antarctic Research Expeditions during 2004–2007. JARE Data Rep, 34: 1–22

  41. Neem Community Members. 2013. Eemian interglacial reconstructed from a Greenland folded ice core. Nature, 493: 489–494

  42. Paterson W S B. 1994. The Physics of Glaciers. 3 rd ed. Oxford: Pergamon Press. 480

  43. Petit J R, Jouzel J, Pourchet M, Merlivat L. 1982. A detailed study of snow accumulation and stable isotope content in Dome C (Antarctica). J Geophys Res, 87: 4301–4308

  44. Petit J R, Jouzel J, Raynaud D, Barkov N I, Barnola J M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov V M, Legrand M, Lipenkov V Y, Lorius C, PÉpin L, Ritz C, Saltzman E, Stievenard M. 1999. Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antarctica. Nature, 399: 429–436

  45. Pomeroy J W, Jones H G. 1996. Wind-blown snow: Sublimation, transport and changes to polar snow. In: Wolff E W, Bales R C, eds. Chemical Exchange Between the Atmosphere and Polar Snow. NATO ASI Series, 143. Berlin & Heidelberg: Springer Verlag. 453–489

  46. Qin D H. 2001. Antarctic Glaciology. Beijing: Science Press. 239

  47. Reijmer C H, van Den Broeke M R. 2003. Temporal and spatial variability of the surface mass balance in Dronning Maud Land, Antarctica, as derived from automatic weather stations. J Glaciol, 49: 512–520

  48. Ren J. 1995. A traverse expedition to the Lambert glacier basin, Eastern Antarctica (in Chinese). J Glaciol Geocyol, 17: 303–307

  49. Ren J, Sun J, Qin D, Xiao C. 2004. A primary study on ionic concentrations in snow pits in the hinterland of East Antarctica. J Glaciol Geocyol, 26: 135–141

  50. Scambos T A, Frezzotti M, Haran T, Bohlander J, Lenaerts J T M, van den Broeke M R, Jezek K, Long D, Urbini S, Farness K, Neumann T, Albert M, Winther J G. 2012. Extent of low-accumulation ‘wind glaze’ areas on the East Antarctic plateau: Implications for continental ice mass balance. J Glaciol, 58: 633–647

  51. Scarchilli C, Frezzotti M, Didonfrancesco G, Valt M, Urbini S, De Silvestri L, Dolci S, Iacarino A, Grigioni P. 2008. The impact of Precipitation and Sublimation processes on Snow Accumulation: Preliminary Results. Terra Antartica Reports, 14: 47–50

  52. Scarchilli C, Frezzotti M, Grigioni P, de Silvestri L, Agnoletto L, Dolci S. 2010. Extraordinary blowing snow transport events in East Antarctica. Clim Dyn, 34: 1195–1206

  53. Scarchilli C, Frezzotti M, Ruti P M. 2011. Snow precipitation at four ice core sites in East Antarctica: Provenance, seasonality and blocking factors. Clim Dyn, 37: 2107–2125

  54. Smith M C. 1995. The role of atmospheric processes in the Antarctic ice mass balance. Dissertation for Doctoral Degree. Leeds: University of Leeds. 220

  55. Steen-Larsen H C, Masson-Delmotte V, Sjolte J, Johnsen S J, Vinther B M, Bréon F M, Clausen H B, Dahl-Jensen D, Falourd S, Fettweis X, Gallée H, Jouzel J, Kageyama M, Lerche H, Minster B, Picard G, Punge H J, Risi C, Salas D, Schwander J, Steffen K, Sveinbjörnsdóttir A E, Svensson A, White J. 2011. Understanding the climatic signal in the water stable isotope records from the NEEM shallow firn/ice cores in northwest Greenland. J Geophys Res, 116: D06108

  56. Steen-Larsen H C, Johnsen S J, Masson-Delmotte V, Stenni B, Risi C, Sodemann H, Balslev-Clausen D, Blunier T, Dahl-Jensen D, Ellehøj M D, Falourd S, Grindsted A, Gkinis V, Jouzel J, Popp T, Sheldon S, Simonsen S B, Sjolte J, Steffensen J P, Sperlich P, Sveinbjörnsdóttir A E, Vinther B M, White J W C. 2013. Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet. Atmos Chem Phys, 13: 4815–4828

  57. van de Berg W J, van den Broeke M R, Reijmer C H, van Meijgaard E. 2006. Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. J Geophys Res, 111: D11104

  58. van den Broeke M, van de Berg W J, van Meijgaard E, Reijmer C. 2006. Identification of Antarctic ablation areas using a regional atmospheric climate model. J Geophys Res, 111: D18110

  59. van den Broeke M, van de Berg W J, van Meijgaard E. 2008. Firn depth correction along the Antarctic grounding line. Antarct Sci, 20: 513–517

  60. Vionnet V, Brun E, Morin S, Boone A, Faroux S, Le Moigne P, Martin E, Willemet J M. 2012. The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2. Geosci Model Dev, 5: 773–791

  61. Wang Y, Ding M, van Wessem J M, Schlosser E, Altnau S, van den Broeke M R, Lenaerts J T M, Thomas E R, Isaksson E, Wang J, Sun W. 2016. A comparison of Antarctic Ice sheet surface mass balance from atmospheric climate models and in situ observations. J Clim, 29: 5317–5337

  62. Watanabe O. 1978. Distribution of surface features of snow cover in Mizuho Plateau. Memoirs National Institute Polar Res, 7: 154–181

  63. Williams C N, Basist A, Peterson T C, Grody N. 2000. Calibration and verification of land surface temperature anomalies derived from the SSM/I. Bull Amer Meteorol Soc, 81: 2141–2156

  64. Winther J G, Jespersen M N, Liston G E. 2001. Blue-ice areas in Antarctica derived from NOAA AVHRR satellite data. J Glaciol, 47: 325–334

  65. Xiao C, Ding M, Masson-Delmotte V, Zhang R, Jin B, Ren J, Li C, Werner M, Wang Y, Cui X, Wang X. 2012. Stable isotopes in surface snow along a traverse route from Zhongshan station to Dome A. East Antarctica. Clim Dyn, 41: 2427–2438

  66. Xiao C, Qin D, Bian L, Zhou X, Allison I, Yan M. 2005. A precise monitoring of snow surface height in the region of Lambert Glacier basin-Amery Ice Shelf, East Antarctica. Sci China Ser D-Earth Sci, 48: 100

  67. Zhou M, Zhang Z, Zhong S, Lenschow D, Hsu H M, Sun B, Gao Z, Li S, Bian X, Yu L. 2009. Observations of near-surface wind and temperature structures and their variations with topography and latitude in East Antarctica. J Geophys Res, 114: D17115

Download references

Acknowledgements

We are very grateful to Dr. H.C. Steen-Larsen for the kind help with both language and science. This study was supported by the National Basic Research Program of China (Grant No. 2013CBA01804), the National Natural Science Foundation of China (Grant Nos. 41425003 & 41601070), the State Oceanic Administration of the People’s Republic of China Project on Climate in Polar Regions (Grant No. CHINARE2016-2020) and Climate Change Estimation Program by China Meteorological Administration (Grant No. CCSF201332).

Author information

Correspondence to MingHu Ding or Tong Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ding, M., Zhang, T., Xiao, C. et al. Snowdrift effect on snow deposition: Insights from a comparison of a snow pit profile and meteorological observations in east Antarctica. Sci. China Earth Sci. 60, 672–685 (2017) doi:10.1007/s11430-016-0008-4

Download citation

Keywords

  • Snowdrift process
  • Air-snow interaction
  • Ice core dating
  • Ultrasonic sounder
  • Post depositional process