Skip to main content
Log in

Effects of large-amplitude internal solitary waves on ROV operation—A numerical study

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Remotely operated vehicles (ROVs) are unique tools for underwater industrial exploration and scientific research of offshore areas and the deep ocean. With broadening application of ROVs, the study of factors that affect their safe operation is important. Besides the technical skills to control ROV movement, the dynamical ocean environment may also play a vital role in the safe operation of ROVs. In this paper, we investigate the influence of large-amplitude internal solitary waves (ISWs), focusing on the forces exerted on ROVs by ISWs. We present a methodology for modeling ISW-induced currents based on KdV model and calculate the ISW forces using the Morrison equation. Our results show that an extremely considerable load is exerted by the ISW on the ROV, resulting in a strong disturbance of the vehicle’s stability, affecting the ROV control. The numerical results of this work emphasize the importance of considering dynamical conditions when operating underwater vessels, such as ROV. Further laboratory and field investigation are suggested to gain more understanding of this subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agerschou H, Edens J. 1965. Fifth and First Order Wave-Force Coefficients for Cylindrical Piles. In: Proceeding of ASCE coastal engineering specialty conference. Santa Barbara, USA, October. 219–248

    Google Scholar 

  • Alford M H, Peacock T, MacKinnon J A, Nash J D, Buijsman M C, Centuroni L R, Chao S Y, Chang M H, Farmer D M, Fringer O B, Fu K H, Gallacher P C, Graber H C, Helfrich K R, Jachec S M, Jackson C R, Klymak J M, Ko D S, Jan S, Johnston T M S, Legg S, Lee I H, Lien R C, Mercier M J, Moum J N, Musgrave R, Park J H, Pickering A I, Pinkel R, Rainville L, Ramp S R, Rudnick D L, Sarkar S, Scotti A, Simmons H L, Laurent L C St, Venayagamoorthy S K, Wang Y H, Wang J, Yang Y J, Paluszkiewicz T, Tang T Y. 2015. The formation and fate of internal waves in the South China Sea. Nature, 521: 65–69

    Article  Google Scholar 

  • Brown L, Dayani A, Lazenby S, Miller J. 2014. Deep Water Pipeline Repair in the Gulf of Mexico. Document ID: OTC-25275-MS; Source: Offshore Technology Conference, 05-08 May, Houston, Texas, USA

    Book  Google Scholar 

  • Cai S, Long X, Gan Z. 2003. A method to estimate the forces exerted by internal solitons on cylindrical piles. Ocean Eng, 30: 673–689

    Article  Google Scholar 

  • Cai S, Long X, Wang S. 2008. Forces and torques exerted by internal solitons in shear flows on cylindrical piles. Applied Ocean Res, 30: 72–77

    Article  Google Scholar 

  • Cai S, Wang S, Long X. 2006. A simple estimation of the force exerted by internal solitons on cylindrical piles. Ocean Eng, 33: 974–980

    Article  Google Scholar 

  • Du T, Sun L, Zhang Y, Bao X, Fang X. 2007. An estimation of internal soliton forces on a pile in the ocean. J Ocean Univ China, 6: 101–106

    Article  Google Scholar 

  • Hughes J D, Paull B M, Serafin M, Openshaw G, Smith G L. 1996. Liuhua 11-1 Development-ROV Interventions. Proc. Offshore Technology Conference, Houston, Texas, 337–347

    Google Scholar 

  • Jackson C R. 2004. An Atlas of Internal Solitary-like Waves and Their Properties. 2nd ed. In: Global Ocean Associates, Alexandria, VA, 560

    Google Scholar 

  • Keulegan G H, Carpenter L H. 1958. Forces on cylinders and plates in an oscillating fluid. J Res National Bureau Standards, 60: 423–440

    Article  Google Scholar 

  • Li X, Clemente-Colón P, Friedman K S. 2000. Estimating oceanic mixed-layer depth from internal wave evolution observed from Radarsat- 1 SAR. Johns Hopkins APL Tech Dig, 21: 130–135

    Google Scholar 

  • Lien R C, Henyey F, Ma B, Yang Y J. 2014. Large-amplitude internal solitary waves observed in the Northern South China Sea: Properties and energetics. J Phys Oceanogr, 44: 1095–1115

    Article  Google Scholar 

  • Maxworthy T. 1979. A note on the internal solitary waves produced by tidal flow over a three-dimensional ridge. J Geophys Res, 84: 338–346

    Article  Google Scholar 

  • McClain C R, Barry J P. 2010. Habitat heterogeneity, disturbance, and productivity work in concert to regulate biodiversity in deep submarine canyons. Ecology, 91: 964–976

    Article  Google Scholar 

  • Mercier M J, Gostiaux L, Helfrich K, Sommeria J, Viboud S, Didelle H, Ghaemsaidi S J, Dauxois T, Peacock T. 2013. Large-scale, realistic laboratory modeling of M2 internal tide generation at the Luzon Strait. Geophys Res Lett, 40: 5704–5709

    Article  Google Scholar 

  • Morison J R, Johnson J W, Schaaf S A. 1950. The force exerted by surface waves on piles. J Petrol Technol, 2: 149–154

    Article  Google Scholar 

  • Osborne A R, Burch T L. 1980. Internal solitons in the Andaman Sea. Science. 208: 451–460

    Article  Google Scholar 

  • Ramos R J, Lund B, Graber H C. 2009. Determination of internal wave properties from X-B and radar observations. Ocean Eng, 36: 1039–1047

    Article  Google Scholar 

  • Shen H, He Y J. 2005. Study internal waves in north west of south China sea by satellite images. Geoscience and Remote Sensing Symposium, 2005 IGARSS'05 Proceedings IEEE International; IEEE, 4: 2539–2542

    Article  Google Scholar 

  • Showstack R. 2014. Unmanned research vessel lost on deep sea dive. Eos, Transactions American Geophysical Union, 95: 168–168

    Google Scholar 

  • Si Z, Zhang Y, Fan Z. 2012. A numerical simulation of shear forces and torques exerted by large-amplitude internal solitary waves on a rigid pile in South China Sea. Applied Ocean Res, 37: 127–132

    Article  Google Scholar 

  • Trask R P, Weller R A. 2001. Moorings, Woods Hole Oceanographic Institution, Woods Hole. MA: Academic Press. 1850–1860

    Google Scholar 

  • Xie J, Jian Y, Yang L. 2010. Strongly nonlinear internal soliton load on a small vertical circular cylinder in two-layer fluids. Appl Math Model, 34: 2089–2101

    Article  Google Scholar 

  • Yoerger D R, Bradley A M, Jakuba M, German C R. 2007. Autonomous and remotely operated vehicle technology for hydrothermal vent discovery, exploration, and sampling. Oceanography, 20: 152–161

    Article  Google Scholar 

  • Zha G, He Y, Yu T, Shen H. 2012. The force exerted on a cylindrical pile by ocean internal waves derived from nautical X-band radar observations and in-situ buoyancy frequency data. Ocean Eng, 41: 13–20

    Article  Google Scholar 

  • Zheng Q, Yuan Y, Klemas V, Yan X H. 2001. Theoretical expression for an ocean internal soliton synthetic aperture radar image and determination of the soliton characteristic half width. J Geophys Res, 106: 31415–31423

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, H., Hou, Y. Effects of large-amplitude internal solitary waves on ROV operation—A numerical study. Sci. China Earth Sci. 59, 1074–1080 (2016). https://doi.org/10.1007/s11430-015-5261-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-5261-9

Keywords

Navigation