Science China Earth Sciences

, Volume 59, Issue 3, pp 449–455 | Cite as

Inspirations from the scientific discovery of the anammox bacteria: A classic example of how scientific principles can guide discovery and development



Anaerobic ammonium oxidation (anammox) is a relatively new pathway within the N cycle discovered in the late 1990s. This eminent discovery not only modified the classical theory of biological metabolism and matter cycling, but also profoundly influenced our understanding of the energy sources for life. A new member of chemolithoautotrophic microorganisms capable of carbon fixation was found in the vast deep dark ocean. If the discovery of the chemosynthetic ecosystems in the deep-sea hydrothermal vent environments once challenged the old dogma “all living things depend on the sun for growth,” the discovery of anammox bacteria that are widespread in anoxic environments fortifies the victory over this dogma. Anammox bacteria catalyze the oxidization of NH4 + by using NO2 - as the terminal electron acceptor to produce N2. Similar to the denitrifying microorganisms, anammox bacteria play a biogeochemical role of inorganic N removal from the environment. However, unlike heterotrophic denitrifying bacteria, anammox bacteria are chemolithoautotrophs that can generate transmembrane proton motive force, synthesize ATP molecules and further carry out CO2 fixation through metabolic energy harvested from the anammox process. Although anammox bacteria and the subsequently found ammonia-oxidizing archaea (AOA), another very important group of N cycling microorganisms are both chemolithoautotrophs, AOA use ammonia rather than ammonium as the electron donor and O2 as the terminal electron acceptor in their energy metabolism. Therefore, the ecological process of AOA mainly takes place in oxic seawater and sediments, while anammox bacteria are widely distributed in anoxic water and sediments, and even in some typical extreme marine environments such as the deep-sea hydrothermal vents and methane seeps. Studies have shown that the anammox process may be responsible for 30%–70% N2 production in the ocean. In environmental engineering related to nitrogenous wastewater treatment, anammox provides a new technology with low energy consumption, low cost, and high efficiency that can achieve energy saving and emission reduction. However, the discovery of anammox bacteria is actually a hard-won achievement. Early in the 1960s, the possibility of the anammox biogeochemical process was predicted to exist according to some marine geochemical data. Then in the 1970s, the existence of anammox bacteria was further predicted via chemical reaction thermodynamic calculations. However, these microorganisms were not found in subsequent decades. What hindered the discovery of anammox bacteria, an important N cycling microbial group widespread in hypoxic and anoxic environments? What are the factors that finally led to their discovery? What are the inspirations that the analyses of these questions can bring to scientific research? This review article will analyze and elucidate the above questions by presenting the fundamental physiological and ecological characteristics of the marine anammox bacteria and the principles of scientific research.


anaerobic ammonium oxidation marine nitrogen cycle chemolithoautotrophy wastewater treatment scientific inspiration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali M, Oshiki M, Awata T, Isobe K, Kimura Z, Yoshikawa H, Hira D, Kindaichi T, Satoh H, Fujii T, Okabe S. 2015. Physiological characterization of anaerobic ammonium oxidizing bacterium “Candidatus Jettenia caeni”. Environ Microbiol, 17: 2172–2189CrossRefGoogle Scholar
  2. Amann R I, Ludwig W, Schleifer K H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev, 59: 143–169Google Scholar
  3. Arrigo K R. 2005. Marine microorganisms and global nutrient cycles. Nature, 437: 349–355CrossRefGoogle Scholar
  4. Boumann H A, Longo M L, Stroeve P, Poolman B, Hopmans E C, Stuart M C, Sinninghe D J S, Schouten S. 2009. Biophysical properties of membrane lipids of anammox bacteria: I. Ladderane phospholipids form highly organized fluid membranes. Biochim Biophys Acta, 1788: 1444–1451CrossRefGoogle Scholar
  5. Broda E. 1977. Two kinds of lithotrophs missing in nature. Z Allg Mikrobiol, 17: 491–493CrossRefGoogle Scholar
  6. Byrne N, Strous M, Crépeau V, Kartal B, Birrien J L, Schmid M, Lesongeur F, Schouten S, Jaeschke A, Jetten M, Prieur D, Godfroy A. 2009. Presence and activity of anaerobic ammonium-oxidizing bacteria at deep-sea hydrothermal vents. J ISME, 3: 117–123CrossRefGoogle Scholar
  7. Chen Z J, Wang J F, Zhang H Q, Shen Y L. 2014. Review: Wastewater treatment process with anaerobic ammonia oxidation and its practical application (in Chinese). Ecol Environ Sci, 23: 521–527Google Scholar
  8. Dalsgaard T, Canfield D, Petersen J, Thamdrup B, Acuna-González J. 2003. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature, 422: 606–608CrossRefGoogle Scholar
  9. Dang H Y, Chen R P, Wang L, Guo L Z, Chen P P, Tang Z W, Tian F, Li S Z, Klotz M G. 2010. Environmental factors shape sediment anammox bacterial communities in hypernutrified Jiaozhou Bay, China. Appl Environ Microbiol, 76: 7036–7047CrossRefGoogle Scholar
  10. Dang H Y, Zhou H X, Zhang Z N, Yu Z S, Hua E, Liu X S, Jiao N Z. 2013. Molecular detection of Candidatus Scalindua pacifica and environmental responses of sediment anammox bacterial community in the Bohai Sea, China. PLoS ONE, 8: e61330CrossRefGoogle Scholar
  11. Devol A H. 2003. Solution to a marine mystery. Nature, 422: 575–576CrossRefGoogle Scholar
  12. Fuchsman C A, Staley J T, Oakley B B, Kirkpatrick J B, Murray J W. 2012. Free-living and aggregate-associated Planctomycetes in the Black Sea. FEMS Microbiol Ecol, 80: 402–416CrossRefGoogle Scholar
  13. Graaf A A, Bruijn P, Robertson L A, Jetten M S M, Kuenen J G. 1997. Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor. Microbiology, 143: 2415–2421CrossRefGoogle Scholar
  14. Graaf A A, Mulder A, Bruijn P, Jetten M S, Robertson L A, Kuenen J G. 1995. Anaerobic oxidation of ammonium is a biologically mediated process. Appl Environ Microbiol, 61: 1246–1251Google Scholar
  15. Hu B L, Zheng P, Tang C J, Chen J W, Biezen E, Zhang L, Ni B J, Jetten M S, Yan J, Yu H Q, Kartal B. 2010. Identification and quantification of anammox bacteria in eight nitrogen removal reactors. Water Res, 44: 5014–5020CrossRefGoogle Scholar
  16. Hu Z, Alen T, Jetten M S, Kartal B. 2013. Lysozyme and penicillin inhibit the growth of anaerobic ammonium-oxidizing planctomycetes. Appl Environ Microbiol, 79: 7763–7769CrossRefGoogle Scholar
  17. Jaeschke A, Op den Camp H J, Harhangi H, Klimiuk A, Hopmans E C, Jetten M S, Schouten S, Sinninghe D J S. 2009. 16S rRNA gene and lipid biomarker evidence for anaerobic ammonium-oxidizing bacteria (anammox) in California and Nevada hot springs. FEMS Microbiol Ecol, 67: 343–350CrossRefGoogle Scholar
  18. Jetten M S, Niftrik L V, Strous M, Kartal B, Keltjens J T, Op den Camp H J. 2009. Biochemistry and molecular biology of anammox bacteria. Crit Rev Biochem Mol Biol, 44: 65–84CrossRefGoogle Scholar
  19. Jetten M S, Wagner M, Fuerst J, Loosdrecht M, Kuenen G, Strous M. 2001. Microbiology and application of the anaerobic ammonium oxidation (“anammox”) process. Curr Opin Biotechnol, 12: 283–288CrossRefGoogle Scholar
  20. Jogler C. 2014. The bacterial “mitochondrium”. Mol Microbiol, 10: 12814Google Scholar
  21. Kartal B, Almeida N M, Maalcke W J, Op den Camp HJ, Jetten M S, Keltjens J T. 2013. How to make a living from anaerobic ammonium oxidation. FEMS Microbiol Rev, 37: 428–461CrossRefGoogle Scholar
  22. Kartal B, Kuenen J G, Loosdrecht M C. 2010. Sewage treatment with anammox. Science, 328: 702–703CrossRefGoogle Scholar
  23. Kartal B, Maalcke W J, Almeida N M, Cirpus I, Gloerich J, Geerts W, Op den Camp H J, Harhangi H R, Janssen-Megens E M, Francoijs K J, Stunnenberg H G, Keltjens J T, Jetten M S, Strous M. 2011. Molecular mechanism of anaerobic ammonium oxidation. Nature, 479: 127–130CrossRefGoogle Scholar
  24. Kartal B, Niftrik L, Rattray J, Vossenberg J L, Schmid M C, Sinninghe D J, Jetten M S, Strous M. 2008. Candidatus “Brocadia fulgida”: An autofluorescent anaerobic ammonium oxidizing bacterium. FEMS Microbiol Ecol, 63: 46–55CrossRefGoogle Scholar
  25. Kartal B, Rattray J, Niftrik L A, Vossenberg J, Schmid M C, Webb R I, Schouten S, Fuerst J A, Sinninghe D J, Jetten M S, Strous M. 2007. Candidatus “Anammoxoglobus propionicus” a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol, 30: 39–49CrossRefGoogle Scholar
  26. Kuenen J G. 2008. Anammox bacteria: From discovery to application. Nat Rev Microbiol, 6: 320–326CrossRefGoogle Scholar
  27. Kuenen J G, Jetten M S. 2001. Extraordinary anaerobic ammonium oxidising bacteria. ASM News, 64: 456–463Google Scholar
  28. Kuypers M M, Sliekers A O, Lavik G, Schmid M, Jøgensen B B, Kuenen J G, Sinninghe D J S, Strous M, Jetten M S M. 2003. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature, 422: 608–611CrossRefGoogle Scholar
  29. Mulder A. 1992. Anoxic ammonia oxidation. US Patent US5078884 AGoogle Scholar
  30. Mulder A, Graaf A A, Robertson L A, Kuenen J G. 1995. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol, 16: 177–183CrossRefGoogle Scholar
  31. Neumann S, Jetten M S, Niftrik L. 2011. The ultrastructure of the compartmentalized anaerobic ammonium-oxidizing bacteria is linked to their energy metabolism. Biochem Soc Trans, 39: 1805–1810CrossRefGoogle Scholar
  32. Niftrik L, Jetten M S. 2012. Anaerobic ammonium-oxidizing bacteria: Unique microorganisms with exceptional properties. Microbiol Mol Biol Re, 76: 585–596CrossRefGoogle Scholar
  33. Quan Z X, Rhee S K, Zuo J E, Yang Y, Bae J W, Park J R, Lee S T, Park Y H. 2008. Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environ Microbiol, 10: 3130–3139CrossRefGoogle Scholar
  34. Richard F A. 1965. Anoxic basins and fjords. In: Ripley J P, Skirrow G, eds. Chemical Oceanography. Manhattan: Academic Press. 1: 611–645Google Scholar
  35. Rothrock M J J, Vanotti M B, Szögi A A, Gonzalez M C, Fujii T. 2011. Long-term preservation of anammox bacteria. Appl Microbiol Biotechnol, 92: 147–157CrossRefGoogle Scholar
  36. Russ L, Kartal B, Op den Camp H J, Sollai M, Le Bruchec J, Caprais J C, Godfroy A, Sinninghe D J S, Jetten M S. 2013. Presence and diversity of anammox bacteria in cold hydrocarbon-rich seeps and hydrothermal vent sediments of the Guaymas Basin. Front Microbiol, 4: 219CrossRefGoogle Scholar
  37. Schalk J, Oustad H, Kuenen J G, Jetten M S. 1998. The anaerobic oxidation of hydrazine: A novel reaction in microbial nitrogen metabolism. FEMS Microbiol Lett, 158: 61–67CrossRefGoogle Scholar
  38. Schmid M, Twachtmann U, Klein M, Strous M, Juretschko S, Jetten M, Metzger J W, Schleifer K H, Wagner M. 2000. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst Appl Microbiol, 23: 93–106CrossRefGoogle Scholar
  39. Schmid M, Walsh K, Webb R, Rijpstra W I, Pas-Schoonen K, Verbruggen M J, Hill T, Moffett B, Fuerst J, Schouten S, Sinninghe D J S, Harris J, Shaw P, Jetten M, Strous M. 2003. Candidatus “Scalindua brodae”, sp. nov., Candidatus “Scalindua wagneri”, sp. nov., two new species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol, 26: 529–38CrossRefGoogle Scholar
  40. Shao S D, Luan X W, Dang H Y, Zhou H X, Zhao Y K, Liu H T, Zhang Y B, Dai L Q, Ye Y, Klotz M G. 2014. Deep-sea methane seep sediments in the Okhotsk Sea sustain diverse and abundant anammox bacteria. FEMS Microbiol Ecol, 87: 503–516CrossRefGoogle Scholar
  41. Sinninghe D J, Rijpstra W I, Geenevasen J A, Strous M, Jetten M S. 2005. Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox). FEBS J, 272: 4270–4283CrossRefGoogle Scholar
  42. Sinninghe D J, Strous M, Rijpstra W I, Hopmans E C, Geenevasen J A, Duin A C, Niftrik LA, Jetten M S. 2002. Linearly concatenated cyclobutane lipids form a dense bacterial membrane. Nature, 419: 708–712CrossRefGoogle Scholar
  43. Sonthiphand P, Hall M W, Neufeld J D. 2014. Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria. Front Microbiol, 5: 399CrossRefGoogle Scholar
  44. Stahl D A, Torre J R. 2012. Physiology and diversity of ammoniaoxidizing archaea. Annu Rev Microbiol, 66: 83–101CrossRefGoogle Scholar
  45. Strous M, Fuerst J A, Kramer E H, Logemann S, Muyzer G, Pas-Schoonen K T, Webb R, Kuenen J G, Jetten M S. 1999. Missing lithotroph identified as new planctomycete. Nature, 400: 446–449CrossRefGoogle Scholar
  46. Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor MW, Horn M, Daims H, Bartol-Mavel D, Wincker P, Barbe V, Fonknechten N, Vallenet D, Segurens B, Schenowitz-Truong C, Médigue C, Collingro A, Snel B, Dutilh B E, Op den Camp H J, van der Drift C, Cirpus I, van de Pas-Schoonen K T, Harhangi H R, van Niftrik L, Schmid M, Keltjens J, van de Vossenberg J, Kartal B, Meier H, Frishman D, Huynen MA, Mewes H W, Weissenbach J, Jetten M S, Wagner M, Le Paslier D. 2006. Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature, 440: 790–794CrossRefGoogle Scholar
  47. Teeseling M C, Neumann S, Niftrik L. 2013. The anammoxosome organelle is crucial for the energy metabolism of anaerobic ammonium oxidizing bacteria. J Mol Microbiol Biotechnol, 23: 104–117CrossRefGoogle Scholar
  48. Thamdrup B, Dalsgaard T. 2002. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl Environ Microbiol, 68: 1312–1318CrossRefGoogle Scholar
  49. Venter J C, Remington K, Heidelberg J F, Halpern A L, Rusc D, Eisen J A, Wu D Y, Paulsen I, Nelson K E, Nelson W, Fouts D E, Levy S, Knap A H, Lomas M W, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers Y H, Smith H O A F. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304: 66–74CrossRefGoogle Scholar
  50. Vossenberg J, Woebken D, Maalcke W J, Wessels H J, Dutilh B E, Kartal B, Janssen-Megens E M, Roeselers G, Yan J, Speth D, Gloerich J, Geerts W, van der Biezen E, Pluk W, Francoijs K J, Russ L, Lam P, Malfatti S A, Tringe S G, Haaijer S C, Op den Camp H J, Stunnenberg H G, Amann R, Kuypers M M, Jetten M S. 2013. The metagenome of the marine anammox bacterium “Candidatus Scalindua profunda” illustrates the versatility of this globally important nitrogen cycle bacterium. Environ Microbiol, 15: 1275–1289CrossRefGoogle Scholar
  51. Woebken D, Lam P, Kuypers M M, Naqvi S W, Kartal B, Strous M, Jetten M S, Fuchs B M, Amann R. 2008. A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones. Environ Microbiol, 10: 3106–3119CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth Sciences, Xiamen UniversityXiamenChina

Personalised recommendations