Advertisement

Science China Earth Sciences

, Volume 58, Issue 9, pp 1523–1537 | Cite as

Decratonic gold deposits

  • RiXiang ZhuEmail author
  • HongRui Fan
  • JianWei Li
  • QingRen Meng
  • ShengRong Li
  • QingDong Zeng
Research Paper

Abstract

The North China craton (NCC) hosts numerous gold deposits and is known as the most gold-productive region of China. The gold deposits were mostly formed within a few million years in the Early Cretaceous (130-120 Ma), coeval with widespread occurrences of bimodal magmatism, rift basins and metamorphic core complexes that marked the peak of lithospheric thinning and destruction of the NCC. Stable isotope data and geological evidence indicate that ore-forming fluids and other components were largely exsolved from cooling magma and/or derived from mantle degassing during the period of lithospheric extension. Gold mineralization in the NCC contrasts strikingly with that of other cratons where gold ore-forming fluids were sourced mostly from metamorphic devolatization in compressional or transpressional regimes. In this paper, we present a summary and discussion on time-space distribution and ore genesis of gold deposits in the NCC in the context of the timing, spatial variation, and decratonic processes. Compared with orogenic gold deposits in other cratonic blocks, the Early Cretaceous gold deposits in the NCC are quite distinct in that they were deposited from magma-derived fluids under extensional settings and associated closely with destruction of cratonic lithosphere. We argue that Early Cretaceous gold deposits in the NCC cannot be classified as orogenic gold deposits as previously suggested, rather, they are a new type of gold deposits, termed as “decratonic gold deposits” in this study. The westward subduction of the paleo-West Pacific plate (the Izanagi plate) beneath the eastern China continent gave rise to an optimal tectonic setting for large-scale gold mineralization in the Early Cretaceous. Dehydration of the subducted and stagnant slab in the mantle transition zone led to continuous hydration and considerable metasomatism of the mantle wedge beneath the NCC. As a consequence, the refractory mantle became oxidized and highly enriched in large ion lithophile elements and chalcophile elements (e.g., Cu, Au, Ag and Te). Partial melting of such a mantle would have produced voluminous hydrous, Au- and S-bearing basaltic magma, which, together with crust-derived melts induced by underplating of basaltic magma, served as an important source for ore-forming fluids. It is suggested that the Eocene Carlin-type gold deposits in Nevada, occurring geologically in the deformed western margin of the North America craton, are comparable with the Early Cretaceous gold deposits of the NCC because they share similar tectonic settings and auriferous fluids. The NCC gold deposits are characterized by gold-bearing quartz veins in the Archean amphibolite facies rocks, whereas the Nevada gold deposits are featured by fine-grained sulfide dissemination in Paleozoic marine sedimentary rocks. Their main differences in gold mineralization are the different host rocks, ore-controlling structures, and ore-forming depth. The similar tectonic setting and ore-forming fluid source, however, indicate that the Carlin-type gold deposits in Nevada are actually analogous to decratonic gold deposits in the NCC. Gold deposits in both the NCC and Nevada were formed in a relatively short time interval (<10 Myr) and become progressively younger toward the subduction zone. Younging of gold mineralization toward subduction zone might have been attributed to retreat of subduction zone and rollback of subducted slab. According to the ages of gold deposits on inland and marginal zones, the retreat rates of the Izanagi plate in the western Pacific in the Early Cretaceous and the Farallon plate of the eastern Pacific in the Eocene are estimated at 8.8 cm/yr and 3.3 cm/yr, respectively.

Keywords

Early Cretaceous craton destruction decratonic gold deposit ore deposit model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11430_2015_5139_MOESM1_ESM.pdf (804 kb)
Supplementary material, approximately 836 KB.

References

  1. Beck S L, Zandt G. 2002. The nature of orogenic crust in the Central Andes. J Geophys Res, 107, doi: 10.1029/2000JB000124Google Scholar
  2. Bierlein F P, Crowe D E. 2000. Phanerozoic orogenic lode gold deposits. Rev Econ Geol, 13: 103–139Google Scholar
  3. Bird P. 2003. An updated digital model of plate boundaries. Geochem Geophys Geosyst, 4: 1027, doi: 10.1029/2001GC000252CrossRefGoogle Scholar
  4. Botcharnikov R E, Linnen R L, Wilke M, Holtz F, Jugo P J, Berndt J. 2011. High gold concentrations in sulphide-bearing magma under oxidizing conditions. Nat Geosci, 4: 112–115CrossRefGoogle Scholar
  5. Cai Y C, Fan H R, Hu F F, Yang K F, Lan T J, Yu H, Liu Y M. 2011. Ore-forming fluids, stable isotope and mineralizing age of the Hubazhuang gold deposit, Jiaodong Peninsula of eastern China (in Chinese with English abstract). Acta Petrol Sin, 27: 1341–1351Google Scholar
  6. Cai Y C, Fan H R, Santosh M, Liu X, Hu F F, Yang K F, Lan T G, Yang Y H, Liu Y S. 2013. Evolution of the lithospheric mantle beneath the southeastern North China Craton: Constraints from mafic dikes in the Jiaobei terrain. Gondwana Res, 24: 601–621CrossRefGoogle Scholar
  7. Carlson R W, Pearson D G, James D E. 2005. Physical, chemical, and chronological characteristics of continental mantle. Rev Geophys, 43: RG1001, doi: 10.1029/2004RG000156CrossRefGoogle Scholar
  8. Charles N, Gumiaux C, Augier R, Chen Y, Faure M, Lin W, Zhu R X. 2012. Metamorphic core complex dynamic and structural development: Field evidence from the Liaodong Peninsula (China, East Asian). Tectonophys, 560, 22–50CrossRefGoogle Scholar
  9. Chen Y J, Fu S G. 1992. Gold Mineralization in West Henan (in Chinese with English abstract). Beijing: Seismological Press. 1–234Google Scholar
  10. Chen Y J, Guo G J, Li X. 1998. Metallogenic geodynamic background of gold deposits in Granite-greenstone terrains of North China Craton. Sci China Ser D-Earth Sci, 41: 113–120CrossRefGoogle Scholar
  11. Chen Y J, Pirajno F, Li N, Guo D S, Lai Y. 2009. Isotope systematics and fluid inclusion studies of the Qiyugou breccia pipe-hosted gold deposit, Qinling orogen, Henan province, China: Implications for ore genesis. Ore Geol Rev, 35: 245–261CrossRefGoogle Scholar
  12. Dong G C, Santosh M, Li S R, Shen J F, Mo X X, Scott S, Qu K, Wang X. 2013. Mesozoic magmatism and metallogenesis associated with the destruction of the North China Craton: Evidence from U-Pb geochronology and stable isotope geochemistry of the Mujicun porphyry Cu-Mo Deposit. Ore Geol Rev, 53: 434–445CrossRefGoogle Scholar
  13. Drew L J, Berger B R, Kurbanov N K. 1996. Geology and structural evolution of the Muruntau gold deposit, Kyzylkum desert, Uzbekistan. Ore Geol Rev, 11: 175–196CrossRefGoogle Scholar
  14. Fan H R, Hu F F, Wilde S A, Yang K F, Jin C W. 2011. The Qiyugou gold-bearing breccia pipes, Xiong’ershan region, central China: Fluid inclusion and stable isotope evidence for an origin from magmatic fluids. Int Geol Rev, 53: 25–45CrossRefGoogle Scholar
  15. Fan H R, Xie Y H, Zhao R, Wang Y L. 2000. Dual origins of Xiaoqinling gold-bearing quartz veins: Fluid inclusion evidences. Chin Sci Bull, 45: 1424–1430CrossRefGoogle Scholar
  16. Fan H R, Zhai M G, Xie Y H, Yang J H. 2003. Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold province, China. Miner Depos, 38: 739–750CrossRefGoogle Scholar
  17. Feng J Z, Yue Z S, Xiao R G. 2009, Metallogeny of the Xiaoqinling Gold District and Prognosis of Deep Mineral Resources (in Chinese with English abstract). Beijing: Geological Publishing House. 1–268Google Scholar
  18. Funiciello F, Faccenna C, Giardini D, Morra G, Regenauer-Lieb K. 2003. Dynamics of retreating slabs: 2. Insights from three-dimensional laboratory experiments. J Geophys Res, 108(B4): 2207, doi: 10.1029/2001JB000896CrossRefGoogle Scholar
  19. Goldfarb R, Groves D I, Gardoll S. 2001. Orogenic gold and geologic time: A global synthesis. Ore Geol Rev, 18: 1–75CrossRefGoogle Scholar
  20. Goldfarb R, Santosh M. 2014. The dilemma of the Jiaodong gold deposits: Are they unique? Geosci Front, 5: 139–153CrossRefGoogle Scholar
  21. Groves D I, Bierlein F P. 2007. Geodynamic settings of mineral deposit systems. J Geol Soc, 164: 19–30CrossRefGoogle Scholar
  22. Groves D I, Goldfarb R J, Gebre-Mariam M, Hagemann S G, Robert F. 1998. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol Rev, 13: 7–27CrossRefGoogle Scholar
  23. Hagemann S, Cassidy K F. 2000. Archean orogenic lode gold deposits. Rev Econ Geol, 13: 9–68Google Scholar
  24. Hieronymus C F, Shomali Z H, Pedersen L B A. 2007. Dynamical model for generating sharp seismic velocity contrasts underneath continents: Application to the Sorgenfrei-Tornquist Zone. Earth Planet Sci Lett, 262: 77–91CrossRefGoogle Scholar
  25. Hoefs J. 2009. Stable Isotope Geochemistry. Berlin: Springer-Verlag. 1–286Google Scholar
  26. Hou M L, Jiang S Y, Jiang Y H, Ling H F. 2006. S-Pb isotope geochemistry and Rb-Sr geochronology of the Penglai gold field in the eastern Shandong Province (in Chinese with English abstract). Acta Petrol Sin, 22: 2525–2533Google Scholar
  27. Hu F F, Fan H R, Jiang X H, Li X C, Yang K F, Mernagh T. 2013. Fluid inclusions at different depths in the Sanshandao gold deposit, Jiaodong Peninsula, China. Geofluids, 13: 528–541CrossRefGoogle Scholar
  28. Hu F F, Fan H R, Yang J H, Wan Y S, Liu D Y, Zhai M G, Jin C W. 2004. Mineralizing age of the Rushan lode gold deposit in the Jiaodong Peninsula: SHRIMP U-Pb dating on hydrothermal zircon. Chin Sci Bull, 49: 1629–1636CrossRefGoogle Scholar
  29. Huang J, Zhao D. 2006. High-resolution mantle tomography of China and surrounding regions. J Geophys Res, 111: B09305, doi: 10.1029/2005JB004066Google Scholar
  30. Ionov D A, Hoefs J, Wedepohl K H, Wiechert U. 1992. Concentration and isotopic composition of sulfur in ultramafic xenoliths from Central Asia. Earth Planet Sci Lett, 111: 269–286CrossRefGoogle Scholar
  31. Jiang N, Xu J, Song M. 1999. Fluid inclusion characteristics of mesothermal gold deposits in the Xiaoqinling district, Shaanxi and Henan provinces, People’s Republic of China. Miner Depos, 34: 150–162CrossRefGoogle Scholar
  32. Lee C-T A, Yin Q, Rudnick R L, Jacobsen S B. 2001. Preservation of ancient and fertile lithospheric mantle beneath the southwestern United States. Nature, 411: 69–73CrossRefGoogle Scholar
  33. Li C Y, Wang F Y, Hao X L, Ding X, Zhang H, Ling M X, Zhou J B, Li Y L, Fan W M, Sun W D. 2012. Formation of the world’s largest molybdenum metallogenic belt: A plate-tectonic perspective on the Qinling molybdenum deposits. Int Geol Rev, 54: 1093–1112CrossRefGoogle Scholar
  34. Li C, van der Hilst R D, Engdahl E R, Burdick S. 2008. A new global model for P wave speed variations in Earth’s mantle. Geochem Geophys Geosyst, 9: Q05018, doi: 10.1029/2007GC001806Google Scholar
  35. Li H M, Mao J W, Shen Y C, Liu T B, Zhang L C. 2003. Ar-Ar ages of K-feldspar and quartz from Dongji gold deposit, Northwest Jiaodong, and their significance (in Chinese with English abstract). Mineral Deps, 22: 72–77Google Scholar
  36. Li J W, Bi S J, Selby D, Chen L, Vasconcelos P, Thiede D, Zhou M F, Li Z K, Qiu H N. 2012a. Giant Mesozoic gold provinces related to the destruction of the North China Craton. Earth Planet Sci Lett, 349–350: 26–37CrossRefGoogle Scholar
  37. Li J W, Li Z K, Zhou M F, Chen L, Bi S J, Deng X D, Qiu H N, Cohen B, Selby D, Zhao X F. 2012b. The early Cretaceous Yangzhaiyu lode gold deposit, North China Craton: A link between craton reactivation and gold veining. Econ Geol, 107: 43–79CrossRefGoogle Scholar
  38. Li J W, Vasconcelos P M, Zhang J, Zhou M F, Zhang X J, Yang F H. 2003. 40Ar/39Ar constraints on a temporal link between gold mineralization, magmatism, and continental margin transtension in the Jiaodong gold province, eastern China. J Geol, 111: 741–751CrossRefGoogle Scholar
  39. Li J W, Vasconcelos P, Zhou M F, Zhao X F, Ma C Q. 2006. Geochronology of the Pengjiakuang and Rushan gold deposits, eastern Jiaodong gold province, northeastern China: Implications for regional mineralization and geodynamic setting. Econ Geol, 101: 1023–1038CrossRefGoogle Scholar
  40. Li L, Santosh M, Li S R. 2015. The’ Jiaodong type’ gold deposits: Characteristics, origin and prospecting. Ore Geol Rev, 65: 589–611CrossRefGoogle Scholar
  41. Li Q L, Chen F K, Yang J H, Fan H R. 2008. Single grain pyrite Rb-Sr dating of the Linglong gold deposit, eastern China. Ore Geol Rev, 34: 263–270CrossRefGoogle Scholar
  42. Li Q, Santosh M, Li S R, Zhang J Q. 2015. Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cretaceous dykes in the central North China Craton: Implications for magma genesis and gold metallogeny. Ore Geol Rev, 67: 57–77CrossRefGoogle Scholar
  43. Li Q, Santosh M, Li S R. 2013. Stable isotopes and noble gases in the Xishimen gold deposit, central North China Craton: Metallogeny associated with lithospheric thinning and crust-mantle interaction. Int Geol Rev, 55: 1728–1743CrossRefGoogle Scholar
  44. Li S R, Santosh M, Zhang H F, Luo J Y, Zhang J Q, Li C L, Song J Y, Zhang X B. 2014. Metallogeny in response to lithospheric thinning and craton destruction: geochemistry and U-Pb zircon chronology of the Yixingzhai gold deposit, central North China Craton. Ore Geol Rev, 56: 457–471CrossRefGoogle Scholar
  45. Li S R, Santosh M, Zhang H F, Shen J F, Dong G C, Wang J Z, Zhang J Q. 2013. Inhomogeneous lithospheric thinning in the central North China Craton: Zircon U-Pb and S-He-Ar isotopic record from magmatism and metallogeny in the Taihang Mountains. Gondwana Res, 23: 141–160CrossRefGoogle Scholar
  46. Li S R, Santosh M. 2014. Metallogeny and craton destruction: records from the North China Craton. Ore Geol Rev, 56: 376–414CrossRefGoogle Scholar
  47. Li X, Kwak T A P, Brown R W. 1998. Wallrock alteration in the Bendigo gold ore field, Victoria, Australia: Uses in exploration. Ore Geol Rev, 13: 381–406CrossRefGoogle Scholar
  48. Liu J, Davis G, Lin Z, Wu F. 2005. The Liaonan metamorphic core complex, southeastern Liaoning Province, North China: A likely contributor to Cretaceous rotation of eastern Liaoning, Korea and contiguous areas. Tectonophysics, 407: 65–80CrossRefGoogle Scholar
  49. Lu Y C, Ge L S, Shen W, Wang Z H, Guo X D, Wang L, Zhou C F. 2012. Characteristics of fluid inclusions of Yixingzhai gold deposit in Shanxi Province and their geological significance (in Chinese with English abstract). Mine Deps, 31: 83–93Google Scholar
  50. Ma L, Jiang S Y, Hou M L, Dai B Z, Jiang Y H, Yang T, Zhao K D, Pu W, Zhu Z Y, Xu B. 2013. Geochemistry of Early Cretaceous calc-alkaline lamprophyres in the Jiaodong Peninsula: Implication for lithospheric evolution of the eastern North China Craton. Gondwana Res, 25: 859–872CrossRefGoogle Scholar
  51. Machetel P. 2003. Global thermal and dynamical perturbations due to Cretaceous mantle avalanche. C R Geosci, 335: 91–97CrossRefGoogle Scholar
  52. Mao J W, Goldfarb R J, Zhang Z W, Xu W Y, Qiu Y, Deng J. 2002. Gold deposits in the Xiaoqinling-Xiong’ershan region, Qinling Mountains, central China. Miner Depos, 37: 306–325CrossRefGoogle Scholar
  53. Mao J W, Pirajno F, Xiang J F, Gao J J, Ye H S, Li Y F, Guo B J. 2011. Mesozoic molybdenum deposits in the east Qingling-Dabie orogenic belt: characteristics and tectonic setting. Ore Geol Rev, 43: 264–293CrossRefGoogle Scholar
  54. Mao J W, Wang Y T, Li H M, Pirajno F, Zhang C Q, Wang R T. 2008. The relationship of mantle-derived fluids to gold metallogenesis in the Jiaodong Peninsula: Evidence from D-O-C-S isotope systematics. Ore Geol Rev, 33: 361–381CrossRefGoogle Scholar
  55. Miao L C, Fan W M, Zhai M G, Qiu Y M, McNaughton N J, Groves D I. 2003. Zircon SHRIMP U-Pb geochronology of the granitoid intrusions from Jinchanggouliang-Erdaogou gold orefield and its significance (in Chinese with English abstract). Acta Petrol Sin, 19: 71–80Google Scholar
  56. Mills S E, Tomkins A G, Weinberg R F, Fan H R. 2015. Anomalously silver-rich vein-hosted mineralisation in disseminated-style gold deposits, Jiaodong gold district, China. Ore Geol Rev, 68: 127–141CrossRefGoogle Scholar
  57. Mooney W D, Braile L W. 1989. The seismic structure of the continental crust and upper mantle of North America. In: Bally A W, Palmer A R, eds. The Geology of North America-An Overview. Geol Soc Am, 39–52CrossRefGoogle Scholar
  58. Müller R D, Sdrolias D, Gaina C, Roest W R. 2008b. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem Ge ophys Geosyst, 9: Q04006, doi: 10.1029/2007GC001743Google Scholar
  59. Müller R D, Sdrolias D, Gaina C, Steinberger C, Heine B. 2008a. Long-term sea-level fluctuations driven by ocean basin dynamics. Science, 319: 1357–1362CrossRefGoogle Scholar
  60. Muntean J L, Cline J S, Simon A C, Longo A A. 2011. Magmatic-hydrothermal origin of Nevada’s Carlin-type gold deposits. Nat Geosci, 4: 122–127CrossRefGoogle Scholar
  61. Ni Z Y, Li N, Guan S J, Zhang H, Xue L W. 2008. Characteristics of fluid inclusions and ore genesis of the Dahu Au-Mo deposit in the Xiaoqinling gold field, Henan province (in Chinese with English abstract). Acta Petrol Sin, 24: 2058–2068Google Scholar
  62. Niu Y L. 2005. Generation and evolution of basaltic magmas: Some basic concepts and a hypothesis for the origin of the Mesozoic-Cenozoic volcanism in eastern China. Geol J China Univ, 11: 9–46Google Scholar
  63. Niu Y L. 2014. Geological understanding of plate tectonics: Basic concepts, illustrations, examples and new perspectives. Global Tectonics and Metallogeny, 10: 23–46CrossRefGoogle Scholar
  64. Partington G A, Williams P J. 2000. Proterozoic lode gold and (iron)-copper-gold deposits: A comparison of Australian and global examples. Rev Econ Geol, 13: 69–101Google Scholar
  65. Phillips G N, Powell R. 2010. Formation of gold deposits: a metamorphic devolatilisation model. J Metamorph Geol, 28: 689–718CrossRefGoogle Scholar
  66. Pollack H N. 1986. Cratonization and thermal evolution of the mantle. Earth Planet Sci Lett, 80: 175–182CrossRefGoogle Scholar
  67. Qi J Z, Yuan S S, Li L, Fan Y X, Liu W, Gao Q B, Sun S, Guo J H, Li Z H. 2003. Geological and geochemical studies of Yangshan gold deposit, Gansu Province (in Chinese with English abstract). Mine Deps, 22: 24–31Google Scholar
  68. Robert F, Poulsen K H, Cassidy K F, Hodgson C J. 2005. Gold metallogeny of the Superior and Yilgarn cratons. Bull Soc Econom Geol, One Hundredth Anniversary 1905–2005: 1001–1033Google Scholar
  69. Seton M, Müller R D, Zahirovic S, Gaina C, Torsvik T, Shephard G, Talsma A, Gurnis M, Turner M, Maus S, Chandler M. 2012. Global continental and ocean basin reconstructions since 200 Ma. Earth Sci Rev, 113: 212–270CrossRefGoogle Scholar
  70. Sun W D, Ding X, Hu Y H, Li X H. 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth Planet Sci Lett, 262: 533–542CrossRefGoogle Scholar
  71. Sun W D, Li S, Yang X Y, Ling M X, Ding X, Duan L A, Zhan M Z, Zhang H, Fan W M. 2013. Large-scale gold mineralization in eastern China induced by an Early Cretaceous clockwise change in Pacific plate motions. Int Geol Rev, 55: 311–321CrossRefGoogle Scholar
  72. Sun W Y, Li S R, Santosh M, Wang X, Zhang L J. 2014. Isotope geochemistry and geochronology of the Qiubudong silver deposit, central North China Craton: Implications for ore genesis and lithospheric dynamics. Ore Geol Rev, 57: 229–242CrossRefGoogle Scholar
  73. Sun X M, Wang S Q, Wang Y D, Du J Y, Xu Q W. 2010. The structure feature and evolutionary series in the north segment of Tancheng-Lujiang fault zone (in Chinese with English abstract). Acta Petrol Sin, 26: 165–176Google Scholar
  74. Tan J, Wei J H, Audétat A, Pettke T. 2012. Source of metals in the Guocheng gold deposit, Jiaodong Peninsula, North China Craton: Link to early Cretaceous mafic magmatism originating from Paleoproterozoic metasomatized lithospheric mantle. Ore Geol Rev, 48: 70–87CrossRefGoogle Scholar
  75. Tang K F, Li J W, Selby D, Zhou M F, Bi S J, Deng X D. 2013. Geology, mineralization, and geochronology of the Qianhe gold deposit, Xiong’-ershan area, southern North China Craton. Miner Depos, 48: 729–747CrossRefGoogle Scholar
  76. Tang Y J, Zhang H F, Ying J F, Su B X. 2013. Widespread refertilization of cratonic and circum-cratonic lithospheric mantle. Earth Sci Rev, 118: 45–68CrossRefGoogle Scholar
  77. van der Hilst R D. 1995. Complex morphology of subducted lithosphere in the mantle beneath the Tonga trench. Nature, 374: 154–157CrossRefGoogle Scholar
  78. Wang R H, Jin C Z, Li J C. 2008. 40Ar-39Ar isotopic dating for Paishanlou gold deposit and its geological implication (in Chinese with English abstract). J Northeastern Univ, 29: 1482–1485Google Scholar
  79. Wang S J, Wang F Y, Zhang J S, Jia S X, Zhang C K, Zhao J R, Liu B F. 2014. The P-wave velocity structure of the lithosphere of the North China Craton—Results from the Wendeng-Alxa Left Banner deep seismic sounding profile. Sci Chin Earth Sci, 57: 2053–2063CrossRefGoogle Scholar
  80. Wang S J, Zhang X K, Fang S M, Zhang C K, Wang F Y, Zhao J R, Zhang J S, Liu B F, Pan S Z, Huang C. 2008. Crustal structure and its features in the northwest margin of Bohai bay and adjacent areas (in Chinese with English abstract). Chin J Geophys, 51: 1451–1458Google Scholar
  81. Wang T, Zheng Y, Zhang J, Zeng L, Donskaya T, Guo L, Li J. 2011. Pattern and kinematic polarity of late Mesozoic extension in continental NE Asia: Perspectives from metamorphic core complexes. Tectonics, 30: TC6007, doi: 10.1029/2011TC002896CrossRefGoogle Scholar
  82. Wang X, Li S R, Santosh M, Gan H N, Sun W Y. 2014. Source characteristics and fluid evolution of the Beiyingxigou Pb-Zn-Ag deposit, central North China Craton: An integrated stable isotope investigation. Ore Geol Rev, 56: 528–540CrossRefGoogle Scholar
  83. Wang Z L, Yang L Q, Guo L N, Marsh E, Wang J P, Liu Y, Chao Zhang C, Li R H, Zhang L, Zheng X L, Zhao R X. 2015. Fluid immiscibility and gold deposition in the Xincheng deposit, Jiaodong Peninsula, China: A fluid inclusion study. Ore Geol Rev, 65: 701–717CrossRefGoogle Scholar
  84. Wei J H, Liu C Q, Zhao Y X, Li Z D. 2001. Time Span of the Major Ore-forming Stages of the Wulong Gold deposit, Liaoning (in Chinese with English abstract). Geol Rev, 47: 433–437Google Scholar
  85. Wen B J, Fan H R, Santosh M, Hu F F, Pirajno F, Yang K F. 2015. Genesis of two different types of gold mineralization in the Linglong gold field, China: Constrains from geology, fluid inclusions and stable isotope. Ore Geol Rev, 65: 643–658CrossRefGoogle Scholar
  86. Wu F Y, Xu Y G, Zhu R X, Zhang G W. 2014. Thinning and destruction of the cratonic lithosphere: A global perspective. Sci Chin Earth Sci, 57: 2878–2890CrossRefGoogle Scholar
  87. Xu J W, Zhu G, Tong W X, Cui K, Liu Q. 1987. Formation and evolution of the Tancheng-Lujiang wrench fault system: A major shear system to the northern of the Pacific Ocean. Tectonophysics, 134: 273–310CrossRefGoogle Scholar
  88. Yang F Q, Mao J W, Wang Y T, Li M W, Ye H S, Ye J H. 2005. Geological characteristics and metallogenesis of Sawayaerdun gold deposit in southwest Tianshan Mountains, Xinjiang (in Chinese with English abstract). Mine Deps, 24: 206–227Google Scholar
  89. Yang J H, Wu F Y, Wilde S A. 2003. A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China craton: An association with lithospheric thinning. Ore Geol Rev, 23: 125–152CrossRefGoogle Scholar
  90. Yang J H, Zhou X H, Chen L H. 2000. Dating of gold mineralization for super-large altered tectonite-type gold deposits in Northwestern Jiaodong Peninsula and its implications for gold metallogeny (in Chinese with English abstract). Acta Petrol Sin, 16: 454–458Google Scholar
  91. Yang J H, Zhou X H. 2000. The Rb-Sr isochron of ore and pyrite sub-samples from Linglong gold deposit, Jiaodong Peninsula, eastern China and their geological significance. Chin Sci Bull, 45: 2272–2276CrossRefGoogle Scholar
  92. Yang J H, Zhou X H. 2001. Rb-Sr, Sm-Nd, and Pb isotope systematics of pyrite: Implications for the age and genesis of lode gold deposits. Geology, 29: 711–714CrossRefGoogle Scholar
  93. Yang L Q, Deng J, Goldfarb R J, Zhang J, Gao B F, Wang Z L. 2014. 40Ar/39Ar geochronological constraints on the formation of the Dayingezhuang gold deposit: New implications for timing and duration of hydrothermal activity in the Jiaodong gold province, China. Gondwana Res, 25: 1469–1483CrossRefGoogle Scholar
  94. Yang L Q, Deng J, Guo C Y, Zhang J, Jiang S Q, Gao B F, Gong Q J, Wang Q F. 2009. Ore-forming fluid characteristics of the Dayingezhuang gold deposit, Jiaodong gold province, China. Resour Geol, 59: 181–193CrossRefGoogle Scholar
  95. Yao J M, Zhao T P, Li J, Sun Y L, Yuan Z L, Chen W, Han J. 2009. Molybdenite Re-Os age and zircon U-Pb age and Hf isotope geochemistry of the Qiyugou gold system, Henan Province (in Chinese with English abstract). Acta Petrol Sin, 25: 374–384Google Scholar
  96. Ye R, Zhao L S, Shen Y L. 1999. Geochemistry of Yixingzhai gold deposit, Shanxi (in Chinese with English abstract). Geosci, 13:415–418Google Scholar
  97. Zandt G, Myers S, Wallace T. 1995. Crust and mantle structure across the Basin and Range-Colorado Plateau boundary at 37°N latitude and implications for Cenozoic extensional mechanism. J Geophys Res, 100: 10529–10548CrossRefGoogle Scholar
  98. Zeng Q D, Liu J M, Qin K Z, Fan H R, Chu S X, Wang Y B, Zhou L L. 2013. Types, characteristics, and time-space distribution of molybdenum deposits in China. Int Geol Rev, 55: 1311–1358CrossRefGoogle Scholar
  99. Zeng Q D, Liu T B, Shen Y C. 2001. The Tanlu fault zone and gold ore metallogenesis in eastern China. Int Geol Rev, 43: 176–190CrossRefGoogle Scholar
  100. Zhang C H, Wu G G, Xu D B, Wang G H, Sun W H. 2004. Mesozoic tectonic framework and evolution in the central segment of the intraplate Yanshan. orogenic belt (in Chinese with English abstract). Geol Bull Chin, 23: 864–875Google Scholar
  101. Zhang H F, Goldstein S L, Zhou X H, Sun M, Cai Y. 2009. Comprehensive refertilization of lithospheric mantle beneath the North China Craton: Further Os-Sr-Nd isotopic constraints. J Geol Soc, 166: 249–259CrossRefGoogle Scholar
  102. Zhang H F, Goldstein S L, Zhou X H, Sun M, Zheng J P, Cai Y. 2008. Evolution of subcontinental lithospheric mantle beneath eastern China: Re-Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts. Contrib Mineral Petrol, 155: 271–293CrossRefGoogle Scholar
  103. Zhang J, Chen Y J, Pirajno F, Deng J, Chen H Y, Wang C M. 2013. Geology, C-H-O-S-Pb isotope systematics and geochronology of the Yindongpo gold deposit, Tongbai Mountains, central China: Implication for ore genesis. Ore Geol Rev, 53: 343–356CrossRefGoogle Scholar
  104. Zhang L C, Shen Y C, Liu T B, Zeng Q D, Li G M, Li H M. 2003. 40Ar/39Ar and Rb-Sr isochron dating of the gold deposits on northern margin of the Jiaolai Basin, Shandong, China. Sci China Ser D-Earth Sci, 46: 708–718CrossRefGoogle Scholar
  105. Zhang X H, Liu Q, Ma Y J, Wang H. 2005. Geology, fluid inclusions, isotope geochemistry, and geochronology of the Paishanlou shear zone-hosted gold deposit, North China Craton. Ore Geol Rev, 26: 325–348CrossRefGoogle Scholar
  106. Zhang X O, Cawood P A, Wilde S A, et al. 2003. Geology and timing of mineralization at the Cangshang gold deposit, north-western Jiaodong Peninsula, China. Miner Depos, 38: 141–153Google Scholar
  107. Zhao G C, Sun M, Wilde S A, Li S Z. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res, 136: 177–202CrossRefGoogle Scholar
  108. Zheng T Y, Zhao L, Xu W W, Zhu R X. 2008b. Insight into modification of North China Craton from seismological study in the Shandong Province. Geophys Res Lett, 35: L22305, doi: 10.1029/2008GL035661CrossRefGoogle Scholar
  109. Zheng T Y, Zhao L, Zhu R X. 2008a. Insight into the geodynamics of cratonic reactivation from seismic analysis of the crust-mantle boundary. Geophys Res Lett, 35: L08303, doi: 10.1029/2008GL033439Google Scholar
  110. Zheng T Y, Zhao L, Zhu R X. 2009. New evidence from seismic imaging for subduction during assembly of the North China Craton. Geology, 37: 395–398CrossRefGoogle Scholar
  111. Zhu R X, Chen L, Wu F Y, Liu J L. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Sci Chin Earth Sci, 54: 789–797CrossRefGoogle Scholar
  112. Zhu R X, Xu Y G, Zhu G, Zhang H F, Xia Q K, Zheng T Y. 2012a. Destruction of the North China Craton. Sci China Earth Sci, 55: 1565–1587CrossRefGoogle Scholar
  113. Zhu R X, Yang J H, Wu F Y. 2012b. Timing of destruction of the North China Craton. Lithos, 149: 51–60CrossRefGoogle Scholar
  114. Zhu R X, Zheng T Y. 2009. Destruction geodynamics of the North China Craton and its Paleoproterozoic plate tectonics. Chin Sci Bull, 54: 3354–3366Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • RiXiang Zhu
    • 1
    Email author
  • HongRui Fan
    • 1
  • JianWei Li
    • 2
  • QingRen Meng
    • 1
  • ShengRong Li
    • 3
  • QingDong Zeng
    • 1
  1. 1.Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesWuhanChina
  3. 3.State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesBeijingChina

Personalised recommendations