Skip to main content
Log in

Magmatism during continental collision, subduction, exhumation and mountain collapse in collisional orogenic belts and continental net growth: A perspective

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Continental orogens on Earth can be classified into accretionary orogen and collisional orogen. Magmatism in orogens occurs in every periods of an orogenic cycle, from oceanic subduction, continental collision to orogenic collapse. Continental collision requires the existence of prior oceanic subduction zone. It is generally assumed that the prerequisite of continental deep subduction is oceanic subduction and its drag force to the connecting passive-margin continental lithosphere during continental collision. Continental subduction and collision lead to the thickening and uplift of crust, but the formation time of the related magmatism in orogens depends on the heating mechanism of lithosphere. The accretionary orogens, on the other hand, have no strong continental collision, deep subduction, no large scale of crustal thrusting, thickening and uplift, and no UHP eclogite-facies metamorphic rocks related to continental deep subduction. Even though arc crust could be significantly thickened during oceanic subduction, it is still doubtful that syn- or post-collisional magmatism would be generated. In collisional orogens, due to continental deep subduction and significant crustal thickening, the UHP metamorphosed oceanic and continental crusts will experience decompression melting during exhumation, generating syn-collisional magmatism. During the orogen unrooting and collapse, post-collisional magmatism develops in response to lithosphere extension and upwelling of asthenospheric mantle, marking the end of an orogenic cycle. Therefore, magmatism in orogens can occur during the continental deep subduction, exhumation and uplift after detachment of subducted oceanic crust from continental crust, and extensional collapse. The time span from continental collision to collapse and erosion of orogens (the end of orogenic cycle) is 50–85 Myr. Collisional orogens are the key sites for understanding continental deep subduction, exhumation, uplift and orogenic collapse. Magmatism in collisional orogens plays important roles in continental reworking and net growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aikman A B, Harrison T M, Lin D. 2008. Evidence for early (>44 Ma) Himalayan crustal thickening, Tethyan Himalaya, southeastern Tibet. Earth Planet Sci Lett, 274: 14–23

    Google Scholar 

  • Allègre C J, Rousseau D. 1984. The growth of the continent through geological time studied by Nd isotope analysis of shales. Earth Planet Sci Lett, 67: 19–34

    Google Scholar 

  • An Z S, Kutzbach J E, Prell W L, et al. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature, 411: 62–66

    Google Scholar 

  • Andersen T B. 1998. Extensional tectonics in the Caledonides of southern Norway, an overview. Tectonophysics, 285: 333–351

    Google Scholar 

  • Arculus R J. 1981. Island arc magmatism in relation to the evolution of the crust and mantle. Tectonophysics, 75: 113–133

    Google Scholar 

  • Armstrong R L, Harmon R S. 1981. Radiogenic isotopes: The case for crustal recycling on a near-steady-state no-continental-growth Earth. Phil Trans R Soc Londo, 301: 443–472

    Google Scholar 

  • Atherton M P, Ghani A A. 2002. Slab breakoff: A model for Caledonian, Late Granite syn-collisional magmatism in the orthotectonic (metamorphic) zone of Scotland and Donegal, Ireland. Lithos, 62: 65–85

    Google Scholar 

  • Atherton M P, Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362: 144–146

    Google Scholar 

  • Barker F, Arth J G. 1976. Generation of trondhjemitic-tonalitic liquids and Archean bimodal trondhjemite-basalt suites. Geology, 4: 596–600

    Google Scholar 

  • Beaumont C, Jamieson R A, Butler J P, et al. 2009. Crustal structure: A key constraint on the mechanism of ultra-high-pressure rock exhumation. Earth Planet Sci Lett, 287: 116–129

    Google Scholar 

  • Becker H. 1993. Garnet peridotite and eclogite Sm-Nd mineral ages from the Lepontine dome (Swiss Alps): New evidence for Eocene high-pressure metamorphism in the central Alps. Geology, 21: 599–602

    Google Scholar 

  • Bédard J H. 2006. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochim Cosmochim Acta, 70: 1188–1214

    Google Scholar 

  • Belousova E A, Kostitsyn Y A, Griffin W L, et al. 2010. The growth of the continental crust: Constraints from zircon Hf-isotope data. Lithos, 119: 457–466

    Google Scholar 

  • Berger A, Bousquet R. 2008. Subduction-related metamorphism in the Alps: Review of isotopic ages based on petrology and their geodynamic consequences. Geolog Soc, 298: 117–144

    Google Scholar 

  • Berger J, Féménias O, Ohnenstetter D, et al. 2010. New occurrence of UHP eclogites in Limousin (French Massif Central): Age, tectonic setting and fluid-rock interactions. Lithos, 118: 365–382

    Google Scholar 

  • Bird P. 1979. Continental delamination and the Colorado Plateau. J Geophyl Res, 84: 7561–7571

    Google Scholar 

  • Blanckenburg F, Davies J H. 1995. Slab breakoff: A model for syncollisional magmatism and tectonics in the Alps. Tectonics, 14: 120–131

    Google Scholar 

  • Bonin B, Azzouni-Sekkal A, Bussy F, et al. 1998. Alkali-calcic and alkaline post-orogenic (PO) granite magmatism: Petrologic constraints and geodynamic settings. Lithos, 45: 45–70

    Google Scholar 

  • Brandon C, Romanowicz B. 1986. A “no-lid” zone in the central Chang-Thang platform of Tibet: Evidence from pure path phase velocity measurements of long period Rayleigh waves. J Geophys Res, 91: 6547–6564

    Google Scholar 

  • Bussy F, Hernandez J, von Raumer J. 2000. Bimodal magmatism as a consequence of the post-collisional readjustment of the thickened Variscan continental lithosphere (Aiguilles Rouges-Mont Blanc Massifs, Western Alps). Geolog Soc America Spec Pap, 350: 221–233

    Google Scholar 

  • Castillo P R. 2006. An overview of adakite petrogenesis. Chin Sci Bull, 51: 257–268

    Google Scholar 

  • Castillo P R. 2012. Adakite petrogenesis. Lithos, 134: 304–316

    Google Scholar 

  • Cawood P A, Kröner A, Collins W J, et al. 2009. Accretionary orogens through Earth history. In: Cawood P A, Kroner A, eds. Earth Accretionary Systems in Space and Time. London: The Geological Societry. 1–36

    Google Scholar 

  • Champion, D C, Smithies, R H. 2003. Archaean granites. In: Blevin P, Jones M, Chappell B, eds. Magmas to Mineralisation: The Ishihara Symposium. Geoscience, Australia. 19–24

    Google Scholar 

  • Chemenda A I, Burg J P, Mattauer M. 2000. Evolutionary model of the Himalaya-Tibet system: Geopoem based on new modelling, geological and geophysical data. Earth Planet Sci Lett, 174: 397–409

    Google Scholar 

  • Chemenda A I, Mattauer M, Malavieille J, et al. 1995. A mechanism for syn-collisional rock exhumation and associated normal faulting: Results from physical modelling. Earth Planet Sci Lett, 132: 225–232

    Google Scholar 

  • Chen B, Jahn B M, Suzuki K. 2013. Petrological and Nd-Sr-Os isotopic constraints on the origin of high-Mg adakitic rocks from the North China Craton: Tectonic implications. Geology, 41: 91–94

    Google Scholar 

  • Chen D L, Liu L, Sun Y, et al. 2012. Felsic veins within UHP eclogite at Xitieshan in North Qaidam, NW China: Partial melting during exhumation. Lithos, 136–139: 187–200

    Google Scholar 

  • Chen Y X, Song S G, Niu Y L, et al. 2014. Melting of continental crust during subduction initiation: A case study from the Chaidanuo peraluminous granite in the North Qilian suture zone. Geochim Cosmochim Acta, 132: 311–336

    Google Scholar 

  • Chen Y X, Xia X H, Song S G. 2012. Petrogenesis of Aoyougou high-silica adakite in the North Qilian orogen, NW China: Evidence for decompression melting of oceanic slab. Chin Sci Bull, 57: 2289–2301

    Google Scholar 

  • Chen Y X, Zheng Y F, Hu Z C. 2013. Synexhumation anatexis of ultrahigh-pressure metamorphic rocks: Petrological evidence from granitic gneiss in the Sulu orogen. Lithos, 156–159: 69–96

    Google Scholar 

  • Chopin C. 2003. Ultrahigh-pressure metamorphism; tracing continental crust into the mantle. Earth Planet Sci Lett, 212: 1–14

    Google Scholar 

  • Chung S L, Chu, M F, Zhang Y, et al. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth Sci Rev, 68: 173–196

    Google Scholar 

  • Chung S L, Liu D, Ji J, et al. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31: 1021–1024

    Google Scholar 

  • Condie K C, Aster R C. 2010. Episodic zircon age spectra of orogenic granitoids: The supercontinent connection and continental growth. Precambrian Res, 180: 227–236

    Google Scholar 

  • Condie K C, Belousova E, Griffin W L, et al. 2009. Granitoid events in space and time: Constraints from igneous and detrital zircon age spectra. Gondwana Res, 15: 228–242

    Google Scholar 

  • Condie K C. 1998. Episodic continental growth and supercontinents: A mantle avalanche connection? Earth Planet Sci Lett, 163: 97–108

    Google Scholar 

  • Cuthbert S J, Carswell D A, Krogh-Ravna E J, et al. 2000. Eclogites and eclogites in the Western Gneiss region, Norwegian Caledonides. Lithos, 52: 165–195

    Google Scholar 

  • Dai L Q, Zhao Z F, Zheng Y F, et al. 2011. Zircon Hf-O isotope evidence for crust-mantle interaction during continental deep subduction. Earth Planet Sci Lett, 308: 229–244

    Google Scholar 

  • Dai L Q, Zhao Z F, Zheng Y F, et al. 2012. The nature of orogenic lithospheric mantle: Geochemical constraints from postcollisional maficultramafic rocks in the Dabie orogen. Chem Geol, 334: 99–121

    Google Scholar 

  • Dai L Q, Zhao Z F, Zheng Y F. 2014. Geochemical insights into the role of metasomatic hornblendite in generating alkali basalts. Geochem Geophys Geosyst, 15: 3762–3779

    Google Scholar 

  • Dallagiovanna G, Gaggero L, Maino M, et al. 2009. U-Pb zircon ages for post-Variscan volcanism in the Ligurian Alps (Northern Italy). J Geol Soc, 166: 101–114

    Google Scholar 

  • Davies J, von Blanckenburg F. 1995. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet Sci Lett, 129: 85–102

    Google Scholar 

  • Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347: 662–665

    Google Scholar 

  • Dewey J F. 1988. Extensional collapse of orogens. Tectonics, 7: 1123–1139

    Google Scholar 

  • Dhuime B, Hawkesworth C J, Cawood P A, et al. 2012. A change in the geodynamics of continental growth 3 billion years ago. Science, 335: 1334–1336

    Google Scholar 

  • Ding L, Kapp P, Wan X. 2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics, 24: 1–18

    Google Scholar 

  • Ding L, Zhong D, Yin A, et al. 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth Planet Sci Lett, 192: 423–438

    Google Scholar 

  • Dobrzhinetskaya L, Green H W, Wang S. 1996. Alpe Arami: A peridotite massif from depths of more than 300 kilometers. Science, 271: 1841–1845

    Google Scholar 

  • Drummond M S, Defant M J. 1990. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons. J Geol Soc Res: Solid Earth, 95: 21503–21521

    Google Scholar 

  • Ernst W G, Liou J G. 1995. Contrasting plate-tectonic styles of the Qinling-Dabie-Sulu and Franciscan metamorphic belts. Geology, 23: 353–356

    Google Scholar 

  • Faure M, Cocherie A, Mezeme E B, et al. 2010. Middle Carboniferous crustal melting in the Variscan Belt: New insights from U-Th-Pbtot. monazite and U-Pb zircon ages of the Montagne Noire Axial Zone (southern French Massif Central). Gondwana Res, 18: 653–673

    Google Scholar 

  • Foley S, Tiepolo M, Vannucci R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417: 837–840

    Google Scholar 

  • Gao S, Rudnick R L, Yuan H L, et al. 2004. Recycling lower continental crust in the North China craton. Nature, 432: 892–897

    Google Scholar 

  • Gao X Y, Zheng Y F, Chen Y X, et al. 2013. Trace element composition of continentally subducted slab-derived melt: Insight from multiphase solid inclusions in ultrahigh-pressure eclogite in the Dabie orogen. J Metamorph Geol, 31: 453–468

    Google Scholar 

  • Gao X Y, Zheng Y F, Chen Y X. 2012. Dehydration melting of ultrahigh-pressure eclogite in the Dabie orogen: Evidence from multiphase solid inclusions in garnet. J Metamorph Geol, 30: 193–212

    Google Scholar 

  • Gerdes A, Wörner G, Henk A. 2000. Post-collisional granite generation and HT-LP metamorphism by radiogenic heating: The Variscan South Bohemian Batholith. J Geol Soc, 157: 577–587

    Google Scholar 

  • Gerya T V, Yuen D A, Maresch W V. 2004. Thermomechanical modelling of slab detachment. Earth Planet Sci Lett, 226: 101–116

    Google Scholar 

  • Ghani A A, Atherton M P. 2006. The chemical character of the Late Caledonian Donegal Granites, Ireland, with comments on their genesis. Earth Sci, 97: 437–454

    Google Scholar 

  • Gill J B. 1981. Orogenic andesites and plate tectonics. Berlin: Springer-Verlag

    Google Scholar 

  • Gordon S M, Little T A, Hacker B R, et al. 2012. Multi-stage exhumation of young UHP-HP rocks: Timescales of melt crystallization in the D’Entrecasteaux Islands, southeastern Papua New Guinea. Earth Planet Sci Lett, 351: 237–246

    Google Scholar 

  • Gordon S M, Whitney D L, Teyssier C, et al. 2013. U-Pb dates and trace-element geochemistry of zircon from migmatite, Western Gneiss Region, Norway: Significance for history of partial melting in continental subduction. Lithos, 170–171: 35–53

    Google Scholar 

  • Guo J H, Chen F K, Zhang X M, et al. 2005. Evolution of syn- to post-collisional magmatism from north Sulu UHP belt, Eastern China: Zircon U-Pb geochronology (in Chinese). Acta Petrolog Sin, 21: 1281–1301

    Google Scholar 

  • Guo Z, Wilson M, Liu J. 2007. Post-collisional adakites in south Tibet: Products of partial melting of subduction-modified lower crust. Lithos, 96: 205–224

    Google Scholar 

  • Gutiérrez-Alonso G, Murphy J B, Fernández-Suárez J, et al. 2011. Lithospheric delamination in the core of Pangea: Sm-Nd insights from the Iberian mantle. Geology, 39: 155–158

    Google Scholar 

  • Handy M R, Schmid S, Bousquet R, et al. 2010. Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological-geophysical record of spreading and subduction in the Alps. Earth-Sci Rev, 102: 121–158

    Google Scholar 

  • Harris N B W, Caddick M, Kosler J, et al. 2004. The pressure-temperature-time path of migmatites from the Sikkim Himalaya. J Metamorph Geol, 22: 249–264

    Google Scholar 

  • Harrison T M, Blichert-Toft J, Müller W, et al. 2005. Heterogeneous Hadean hafnium: Evidence of continental crust at 4.4 to 4.5 Ga. Science, 310: 1947–1950

    Google Scholar 

  • Harrison T M, Lovera O M, Grove M. 1997. New insights into the origin of two contrasting Himalayan granite belts. Geology, 25: 899–902

    Google Scholar 

  • Hawkesworth C, Cawood P, Kemp T, et al. 2009. Geochemistry: A matter of preservation. Science, 323: 49–50

    Google Scholar 

  • He Y, Li S, Hoefs J, et al. 2011. Post-collisional granitoids from the Dabie orogen: New evidence for partial melting of a thickened continental crust. Geochim Cosmochim Acta, 75: 3815–3838

    Google Scholar 

  • Holt W E, Wallace T C. 1990. Crustal thickness and upper mantle velocities in the Tibetan Plateau region from the inversion of regional Pnl waveforms: Evidence for a thick upper mantle lid beneath southern Tibet. J Geophys Res, 95: 12499–12525

    Google Scholar 

  • Hou Z Q, Gao Y F, Qu X M, et al. 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth Planet Sci Lett, 220: 139–155

    Google Scholar 

  • Houseman G A, McKenzie D P, Molnar P. 1981. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. J Geol Soc Res: Solid Earth, 86: 6115–6132

    Google Scholar 

  • Houseman G A, Molnar P. 1997. Gravitational (Rayleigh-Taylor) instability of a layer with non-linear viscosity and convective thinning of continental lithosphere. Geophys J Int, 128: 125–150

    Google Scholar 

  • Iizuka T, Komiya T, Ueno Y, et al. 2007. Geology and zircon geochronology of the Acasta Gneiss Complex, northwestern Canada: New constraints on its tectonothermal history. Precambrian Res, 153: 179–208

    Google Scholar 

  • Imayama T, Takeshita T, Yi K, et al. 2012. Two-stage partial melting and contrasting cooling history within the Higher Himalayan Crystalline Sequence in the far-eastern Nepal Himalaya. Lithos, 134: 1–22

    Google Scholar 

  • Jahn B M, Glikson A Y, Peucat J J, et al. 1981. REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara Block, Western Australia: Implications for the early crustal evolution. Geochim Cosmochim Acta, 45: 1633–1652

    Google Scholar 

  • Kaneko Y, Katayama I, Yamamoto H, et al. 2003. Timing of Himalayan ultrahigh-pressure metamorphism: Sinking rate and subduction angle of the Indian continental crust beneath Asia. J Metamorph Geol, 21: 589–599

    Google Scholar 

  • Kylander-Clark A R C, Hacker B R, Mattinson C G. 2012. Size and exhumation rate of ultrahigh-pressure terranes linked to orogenic stage. Earth Planet Sci Lett, 321: 115–120

    Google Scholar 

  • Labrousse L, Prouteau G, Ganzhorn A C. 2011. Continental exhumation triggered by partial melting at ultrahigh pressure. Geology, 39: 1171–1174

    Google Scholar 

  • Lardeaux J M, Ledru P, Daniel I, et al. 2001. The Variscan French Massif Central-A new addition to the ultra-high pressure metamorphic ‘club’: Exhumation processes and geodynamic consequences. Tectonophysics, 332: 143–167

    Google Scholar 

  • Leech M L, Singh S, Jain A K, et al. 2005. The onset of India-Asia continental collision: Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth Planet Sci Lett, 234: 83–97

    Google Scholar 

  • Li S, Wang T, Wilde S A, et al. 2013. Evolution, source and tectonic significance of Early Mesozoic granitoid magmatism in the Central Asian Orogenic Belt (central segment). Earth-Sci Rev, 126: 206–234

    Google Scholar 

  • Li W C, Chen R X, Zheng Y F, et al. 2014. Dehydration and anatexis of UHP metagranite during continental collision in the Sulu orogen. J Metamorphic Geol, 32: 915–936

    Google Scholar 

  • Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35: 179–182

    Google Scholar 

  • Liégeois J P. 1998. Some words on the post-collisional magmatism. Lithos, 45: 15–18

    Google Scholar 

  • Liou J G, Ernst, W G, Song S G, et al. 2009b. Tectonics and HP-UHP metamorphism of northern Tibet-Preface. J Asian Earth Sci, 35: 191–198

    Google Scholar 

  • Liou J G, Ernst, W G, Zhang R Y, et al. 2009a. Ultrahigh-pressure minerals and metamorphic terranes-The view from China. J Asian Earth Sci, 35: 199–231

    Google Scholar 

  • Liou J G, Tsujimori T, Zhang R Y, et al. 2004. Global UHP metamorphism and continental subduction/collision: The Himalayan model. Intl Geol Rev, 46: 1–27

    Google Scholar 

  • Liu D Y, Jian P, Kröner A, et al. 2006. Dating of prograde metamorphic events deciphered from episodic zircon growth in rocks of the Dabie-Sulu UHP complex, China. Earth Planet Sci Lett, 250: 650–666

    Google Scholar 

  • Liu D, Zhao Z D, Zhu D C, et al. 2014. Post-collisional potassic and ultrapotassic rocks in southern Tibet: Mantle and crustal origins in response to India-Asia collision and convergence. Geochim Cosmochim Acta, 143: 207–231

    Google Scholar 

  • Liu F L, Liou J G. 2011. Zircon as the best mineral for P-T-time history of UHP metamorphism: A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks. J Asian Earth Sci, 40: 1–39

    Google Scholar 

  • Liu F L, Robinson P T, Liu P H. 2012. Multiple partial melting events in the Sulu UHP terrane: Zircon U-Pb dating of granitic leucosomes within amphibolite and gneiss. J Metamorph Geol, 30: 887–906

    Google Scholar 

  • Liu L, Zhang J, Green II H W, et al. 2007. Evidence of former stishovite in metamorphosed sediments, implying subduction to >350 km. Earth Planet Sci Lett, 263: 180–191

    Google Scholar 

  • Liu Q, Hermann J, Zhang J F. 2013. Polyphase inclusions in the Shuanghe UHP eclogites formed by subsolidus transformation and incipient melting during exhumation of deeply subducted crust. Lithos, 177: 91–1093.

    Google Scholar 

  • Liu X C, Wu Y B, Gao S, et al. 2014a. Record of multiple stage channelized fluid and melt activities in deeply subducted slab from zircon U-Pb age and Hf-O isotope compositions. Geochim Cosmochim Acta, 144: 1–24

    Google Scholar 

  • Long X, Yuan C, Sun M, et al. 2012. Geochemistry and U-Pb detrital zircon dating of Paleozoic graywackes in East Junggar, NW China: Insights into subduction-accretion processes in the southern Central Asian Orogenic Belt. Gondwana Res, 21: 637–653

    Google Scholar 

  • Ma C, Li Z, Ehlers C, et al. 1998. A post-collisional magmatic plumbing system: Mesozoic granitoid plutons from the Dabieshan high-pressure and ultrahigh-pressure metamorphic zone, east-central China. Lithos, 45: 431–456

    Google Scholar 

  • Macpherson C G, Dreher S T, Thirlwall M F. 2006. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett, 243: 581–593

    Google Scholar 

  • Mahéo G, Guillot S, Blichert-Toft J, et al. 2002. A slab breakoff model for the Neogene thermal evolution of South Karakorum and South Tibet. Earth Planet Sci Lett, 195: 45–58

    Google Scholar 

  • Maino M, Dallagiovanna G, Gaggero L, et al. 2012. U-Pb zircon geochronological and petrographic constraints on late to post-collisional Variscan magmatism and metamorphism in the Ligurian Alps, Italy. Geolog J, 47: 632–652

    Google Scholar 

  • Marotta A M, Fernàndez M, Sabadini R. 1998. Mantle unrooting in collisional settings. Tectonophysics, 296: 31–46

    Google Scholar 

  • Martin H, Moyen J F, Guitreau M, et al. 2014. Why Archaean TTG cannot be generated by MORB melting in subduction zones. Lithos, 198: 1–13

    Google Scholar 

  • Martin H, Smithies R H, Rapp R, et al. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79: 1–24

    Google Scholar 

  • Martin H. 1994. The Archean grey gneisses and the genesis of continental crust. In: Concie K C, ed. Archean Crustal Evolution. Amsterdam: Elsevier. 205–259

    Google Scholar 

  • Martin H. 1999. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos, 46: 411–429

    Google Scholar 

  • Maruyama S, Liou J G, Terabayashi M. 1996. Blueschists and eclogites of the world and their exhumation. Int Geol Rev, 38: 485–594

    Google Scholar 

  • Mattinson C G, Wooden J L, Liou J G, et al. 2006. Age and duration of eclogite-facies metamorphism, North Qaidam HP/UHP terrane, western China. Am J Sci, 306: 683–711

    Google Scholar 

  • McKenzie D P. 1978. Active tectonics of the Alpine-Himalayan belt: The Aegean Sea and surrounding regions. Geophys J R Astron Soc, 55: 217–254

    Google Scholar 

  • McKerrow W S, Mac Niocaill C, Dewey J F. 2000. The Caledonian orogeny redefined. J Geol Soc, 157: 1149–1154

    Google Scholar 

  • Meng F, Zhang J, Yang J. 2005. Tectono-thermal event of post-HP/UHP metamorphism in the Xitieshan area of the North Qaidam Mountains, western China: Isotopic and geochemical evidence of granite and gneiss (in Chinese). Acta Petrolog Sin, 21: 45–56

    Google Scholar 

  • Miller C, Schuster R, Klötzli U, et al. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. J Petrol, 40: 1399–1424

    Google Scholar 

  • Mo X, Hou Z, Niu Y, et al. 2007. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos, 96: 225–242

    Google Scholar 

  • Mo X, Niu Y, Dong G, et al. 2008. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chem Geol, 250: 49–67

    Google Scholar 

  • Moyen J F, Martin H. 2012. Forty years of TTG research. Lithos, 148: 312–336

    Google Scholar 

  • Moyen J F, Stevens G. 2006. Experimental constraints on TTG petrogenesis: Implications for Archean geodynamics. In: Benn K, Mareschal J C, Condie K C, eds. Archean Geodynamics and Environments. Washington: AGU. 149–175

    Google Scholar 

  • Moyen J F. 2011. The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos, 123: 21–36

    Google Scholar 

  • Nagel T J, Hoffmann J E, Münker C. 2012. Generation of Eoarchean tonalite-trondhjemite-granodiorite series from thickened mafic arc crust. Geology, 40: 375–378

    Google Scholar 

  • Niu Y L. 2005. Generation and evolution of basaltic magmas: Some basic concepts and a new view on the origin of Mesozoic-Cenozoic basaltic volcanism in eastern China (in Chinese). Geolog J Chin Univ, 11: 9–46

    Google Scholar 

  • Niu Y L. 2014. Geological understanding of plate tectonics: Basic concepts, illustrations, examples and new perspectives. Global Tect Met, 10: 1–24

    Google Scholar 

  • Niu Y, Mo X, Dong G, et al. 2007. Continental collision zones are primary sites of net continental crustal growth: Evidence from the Linzizong volcanic succession in southern Tibet. American Geophysical Union

    Google Scholar 

  • Niu Y, O’Hara M J. 2009. MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: New perspectives on crustal growth, crust-mantle differentiation and chemical structure of oceanic upper mantle. Lithos, 112: 1–17

    Google Scholar 

  • Niu Y, Zhao Z, Zhu D C, et al. 2013. Continental collision zones are primary sites for net continental crust growth—A testable hypothesis. Earth-Sci Rev, 127: 96–110

    Google Scholar 

  • Offler R, Murray C. 2011. Devonian volcanics in the New England Orogen: Tectonic setting and polarity. Gondwana Res, 19: 706–715

    Google Scholar 

  • Ogasawara Y, Fukasawa K, Maruyama S. 2002. Coesite exsolution from supersilicic titanite in UHP marble from the Kokchetav Massif, northern Kazakhstan. Am Miner, 87: 454–461

    Google Scholar 

  • Paquette J L, Ménot R P, Pin C, et al. 2003. Episodic and short-lived granitic pulses in a post-collisional setting: Evidence from precise U-Pb zircon dating through a crustal cross-section in Corsica. Chem Geol, 198: 1–20

    Google Scholar 

  • Pearcy L G, DeBari S M, Sleep N H. 1990. Mass balance calculations for two sections of island arc crust and implications for the formation of continents. Earth Planet Sci Lett, 96: 427–442

    Google Scholar 

  • Piromallo C, Faccenna C. 2004. How deep can we find the traces of Alpine subduction? Geophys Res Lett, 31: L06605. doi: 10.1029/2003GL019288

    Google Scholar 

  • Pitcher W S. 1983. Granite: Typology, geological environment and melting relationships. In: Atherton M P, Gribble C D, eds. Migma Melt Metamorph. 277–287

    Google Scholar 

  • Prelević D, Akal C, Foley S F, et al. 2012. Ultrapotassic mafic rocks as geochemical proxies for post-collisional dynamics of orogenic lithospheric mantle: The case of southwestern Anatolia, Turkey. J Petrol, 53: 1019–1055

    Google Scholar 

  • Rapp R P, Shimizu N, Norman M D. 2003. Growth of early continental crust by partial melting of eclogite. Nature, 425: 605–609

    Google Scholar 

  • Ratschbacher L, Hacker B R, Webb L E, et al. 2000. Exhumation of the ultrahigh-pressure continental crust in east central China: Cretaceous and Cenozoic unroofing and the Tan-Lu fault. J Geol Soc Res, 105: 13303–13338

    Google Scholar 

  • Rogers J J W, Greenberg J K. 1990. Late-orogenic, post-orogenic, and anorogenic granites: Distinction by major-element and trace-element chemistry and possible origins. J Geol, 291–309

    Google Scholar 

  • Rosenberg C L, Handy M R. 2005. Experimental deformation of partially melted granite revisited: Implications for the continental crust. J Metamorph Geol, 23: 19–28

    Google Scholar 

  • Rosenberg C L. 2004. Shear zones and magma ascent: A model based on a review of the Tertiary magmatism in the Alps. Tectonics, 23: TC3002

    Google Scholar 

  • Rubatto D, Chakraborty S, Dasgupta S. 2013. Time scales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology. Contr Miner Petrol, 165: 349–372

    Google Scholar 

  • Rubatto D, Gebauer D, Compagnoni R. 1999. Dating of eclogite-facies zircons: The age of Alpine metamorphism in the Sesia-Lanzo Zone (Western Alps). Earth Planet Sci Lett, 167: 141–158

    Google Scholar 

  • Rubatto D, Gebauer D, Fanning M. 1998. Jurassic formation and Eocene subduction of the Zermatt-Saas-Fee ophiolites: Implications for the geodynamic evolution of the Central and Western Alps. Contr Miner Petrol, 132: 269–287

    Google Scholar 

  • Rubatto D, Hermann J. 2001. Exhumation as fast as subduction? Geology, 29: 3–6

    Google Scholar 

  • Rudnick R L, Gao S, Ling W, et al. 2004. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos, 77: 609–637

    Google Scholar 

  • Rudnick R L, Gao S. 2003. Composition of the continental crust. Treat Geochem, 3: 1–64

    Google Scholar 

  • Rudnick R L. 1995. Making continental crust. Nature, 378: 571–577

    Google Scholar 

  • Schmädicke E, Mezger K, Cosca M A, et al. 1995. Variscan Sm-Nd and Ar-Ar ages of eclogite facies rocks from the Erzgebirge, Bohemian Massif. J Metam Geol, 13: 537–552

    Google Scholar 

  • Scholl D W, von Huene R. 2007. Crustal recycling at modern subduction zones applied to the past—Issues of growth and preservation of continental basement crust, mantle geochemistry, and supercontinent reconstruction. Geol Soc America Mem, 200: 9–32

    Google Scholar 

  • Searle M P, Simpson R L, Law R D, et al. 2003. The structural geometry, metamorphic and magmatic evolution of the Everest massif, High Himalaya of Nepal-South Tibet. J Geol Soc, 160: 345–366

    Google Scholar 

  • Smithies R H. 2000. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet Sci Lett, 182: 115–125

    Google Scholar 

  • Sobolev N V, Shatsky V S. 1990. Diamond inclusions in garnets from metamorphic rocks: A new environment for diamond formation. Nature, 343: 742–746

    Google Scholar 

  • Song S G, Niu Y L, Su L, et al. 2013. Tectonics of the North Qilian orogen, NW China. Gondwana Res, 23: 1378–1401

    Google Scholar 

  • Song S G, Niu Y L, Su L, et al. 2014a. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: The example of the North Qaidam UHPM belt, NW China. Earth-Sci Rev, 129: 59–84

    Google Scholar 

  • Song S G, Niu Y L, Su L, et al. 2014b. Adakitic (tonalitic-trondhjemitic) magmas resulting from eclogite decompression and dehydration melting during exhumation in response to continental collision. Geochim Cosmochim Acta, 130: 42–62

    Google Scholar 

  • Song S G, Niu Y L, Wei C J, et al. 2010. Metamorphism, anatexis, zircon ages and tectonic evolution of the Gongshan block in the northern Indochina continent-An eastern extension of the Lhasa Block. Lithos, 120: 327–346

    Google Scholar 

  • Song S G, Niu Y L, Zhang L F, et al. 2009. Time constraints on orogenesis from oceanic subduction to continental subduction, collision, and exhumation: An example from North Qilian and North Qaidam HP-UHP belts. Acta Petrolog Sin, 25: 2067–2077

    Google Scholar 

  • Song S G, Su L, Niu Y L. 2009. Generation of adakite: Melting of eclogite during exhumation of UHPM terrane. Goldschmidt Conference Abstracts, A1252

    Google Scholar 

  • Song S G, Zhang L F, Chen J, et al. 2005a. Sodic amphibole exsolutions in garnet from garnet-peridotite, North Qaidam UHPM belt, NW China: Implications for ultradeep-origin and hydroxyl defects in mantle garnets. Am Miner, 90: 814–820

    Google Scholar 

  • Song S G, Zhang L F, Niu Y L, et al. 2005b. Geochronology of diamond-bearing zircons from garnet peridotite in the North Qaidam UHPM belt, Northern Tibetan Plateau: A record of complex histories from oceanic lithosphere subduction to continental collision. Earth Planet Sci Lett, 234: 99–118

    Google Scholar 

  • Song S G, Zhang L F, Niu Y L, et al. 2006. Evolution from oceanic subduction to continental collision: A case study from the Northern Tibetan Plateau based on geochemical and geochronological data (in Chinese). J Petrol, 47: 435–455

    Google Scholar 

  • Song S G, Zhang L F, Niu Y L. 2004. Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, Northern Tibetan Plateau, NW China. Am Miner, 89: 1330–1336

    Google Scholar 

  • Spengler D, Van Roermund H L M, Drury M R, et al. 2006. Deep origin and hot melting of an Archaean orogenic peridotite massif in Norway. Nature, 440: 913–917

    Google Scholar 

  • Stern R J, Scholl D W. 2010. Yin and yang of continental crust creation and destruction by plate tectonic processes. Int Geol Rev, 52: 1–31

    Google Scholar 

  • St-Onge M R, Rayner N, Palin R M, et al. 2013. Integrated pressure-temperature-time constraints for the Tso Morari dome (Northwest India): Implications for the burial and exhumation path of UHP units in the western Himalaya. J Metamorph Geol, 31: 469–504

    Google Scholar 

  • Streule M J, Searle M P, Waters D J, et al. 2010. Metamorphism, melting, and channel flow in the Greater Himalayan Sequence and Makalu leucogranite: Constraints from thermobarometry, metamorphic modeling, and U-Pb geochronology. Tectonics, 29: TC5011

    Google Scholar 

  • Taylor S R, McLennan S M. 1995. The geochemical evolution of the continental crust. Rev Geophys, 33: 241–265

    Google Scholar 

  • Taylor S R. 1967. The origin and growth of continents. Tectonophysics, 4: 17–34

    Google Scholar 

  • Taylor S R. 1977. Island arc models and the composition of the continental crust. In: Talwani M, Pitman W C III, eds. Island Arcs, Deep Sea Trenches, and Back-Arc Basins. Am Geophys Union, Maurice Ewing Ser, 1: 325–335

    Google Scholar 

  • Thomas W A. 1983. Continental margins, orogenic belts, and intracratonic structures. Geology, 11: 270–272

    Google Scholar 

  • Torsvik T H, Rehnström E F. 2003. The Tornquist Sea and Baltica-Avalonia docking. Tectonophysics, 362: 67–82

    Google Scholar 

  • Torsvik T H, Smethurst M A, Meert J G, et al. 1996. Continental break-up and collision in the Neoproterozoic and Palaeozoic-A tale of Baltica and Laurentia. Earth-Sci Rev, 40: 229–258.

    Google Scholar 

  • Turner S, Arnaud N, LIU J, et al. 1996. Post-collision, shoshonitic volcanism on the Tibetan Plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. J Petrol, 37: 45–71

    Google Scholar 

  • Valle Aguado B, Azevedo M R, Schaltegger U, et al. 2005. U-Pb zircon and monazite geochronology of Variscan magmatism related to syn-convergence extension in Central Northern Portugal. Lithos, 82: 169–184

    Google Scholar 

  • van de Zedde D M A, Wortel M J R. 2001. Shallow slab detachment as a transient source of heat at midlithospheric depths. Tectonics, 20: 868–882

    Google Scholar 

  • van Hunen J, Allen M B. 2011. Continental collision and slab break-off: A comparison of 3-D numerical models with observations. Earth Planet Sci Lett, 302: 27–37

    Google Scholar 

  • van Roermund R D. 1998. Ultra-high pressure (P>6 GPa) garnet peridotites in Western Norway: Exhumation of mantle rocks from >185 km depth. Terra Nova, 10: 295–301

    Google Scholar 

  • van Roermund R D. 2000. Super-silicic garnet microstructures from an orogenic garnet peridotite, evidence for an ultra-deep (>6 GPa) origin. J Metamorp Geol, 18: 135–147

    Google Scholar 

  • van Blanckenburg F, Davies J H. 1995. Slab breakoff: A model for syncollisional magmatism and tectonics in the Alps. Tectonics, 14: 120–131

    Google Scholar 

  • Wain A. 1997. New evidence for coesite in eclogite and gneisses: Defining an ultrahigh-pressure province in the Western Gneiss region of Norway. Geology, 25: 927–930

    Google Scholar 

  • Wang C, Song S G, Niu Y L, et al. 2015. Late Triassic Adakitic plutons within the Archean terrane of the North China Craton: Melting of the ancient lower crust at the onset of the lithospheric destruction. Lithos, 212: 353–367

    Google Scholar 

  • Wang M J, Song S G, Niu Y L, et al. 2014. Post-collisional magmatism: Consequences of UHPM terrane exhumation and orogen collapse, N. Qaidam UHPM belt, NW China. Lithos, 210–211: 181–198

    Google Scholar 

  • Wang Q, Wyman D A, Xu J, et al. 2007. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: Implications for partial melting and delamination of thickened lower crust. Geochim Cosmochim Acta, 71: 2609–2636

    Google Scholar 

  • Wang Q, Xu J F, Jian P, et al. 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization. J Petrol, 47: 119–144

    Google Scholar 

  • Warren C J, Beaumont C, Jamieson R A. 2008. Modelling tectonic styles and ultra-high pressure (UHP) rock exhumation during the transition from oceanic subduction to continental collision. Earth Planet Sci Lett, 267: 129–145

    Google Scholar 

  • Whalen J B, McNicoll V J, van Staal C R, et al. 2006. Spatial, temporal and geochemical characteristics of Silurian collision-zone magmatism, Newfoundland Appalachians: An example of a rapidly evolving magmatic system related to slab break-off. Lithos, 89: 377–404

    Google Scholar 

  • Whitney D L, Teyssier C, Rey P F. 2009. The consequences of crustal melting in continental subduction. Lithosphere, 1: 323–327

    Google Scholar 

  • Wilke F D H, O’Brien P J, Gerdes A, et al. 2010. The multistage exhumation history of the Kaghan Valley UHP series, NW Himalaya, Pakistan from U-Pb and 40Ar/39Ar ages. European J Miner, 22: 703–719

    Google Scholar 

  • Willbold M, Hegner E, Stracke A, et al. 2009. Continental geochemical signatures in dacites from Iceland and implications for models of early Archaean crust formation. Earth Planet Sci Lett, 279: 44–52

    Google Scholar 

  • Williams H, Turner S, Kelley S, et al. 2001. Age and composition of dikes in Southern Tibet: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology, 29: 339–342

    Google Scholar 

  • Windley B F, Alexeiev D, Xiao W, et al. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. J Geol Soc, 164: 31–47

    Google Scholar 

  • Wu C L, Gao Y H, Li Z L, et al. 2014. Zircon SHRIMP U-Pb dating of granites from Dulan and the chronological framework of the North Qaidam UHP belt, NW China. Sci China Earth Sci, 57: 2945–2965

    Google Scholar 

  • Wu C L, Gao Y H, Wu, S, et al. 2007. Zircon SHRIMP U-Pb dating of granites from the Da Qaidam area in the north margin of Qaidam Basin, NW China (in Chinese with English abstract). Acta Petrol Sin, 23: 1861–1875

    Google Scholar 

  • Wu C L, Wooden J L, Robinson P T, et al. 2009. Geochemistry and zircon SHRIMP U-Pb dating of granitoids from the west segment of the North Qaidam. Sci China Ser D-Earth Sci, 52: 1771–1790

    Google Scholar 

  • Wu C L, Wooden J L, Yang J S, et al. 2006. Granitic magmatism in the North Qaidam Early Paleozoic ultrahigh-pressure metamorphic belt, northwest China. Int Geol Rev, 48: 223–240

    Google Scholar 

  • Xia Q X, Zheng Y F, Zhou L G. 2008. Dehydration and melting during continental collision: Constraints from element and isotope geochemistry of low-T/UHP granitic gneiss in the Dabie orogen. Chem Geol, 247: 36–65

    Google Scholar 

  • Xiao W J, Windley B F, Huang B C, et al. 2009. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: Implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. Int J Earth Sci, 98: 1189–1217

    Google Scholar 

  • Xu H, Ma C, Ye K. 2007. Early cretaceous granitoids and their implications for the collapse of the Dabie orogen, eastern China: SHRIMP zircon U-Pb dating and geochemistry. Chem Geol, 240: 238–259

    Google Scholar 

  • Xu S T, Okay A I, Ji S Y, et al. 1992. Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting. Science, 256: 80–82

    Google Scholar 

  • Yang J, Godard G, Kienast J R, et al. 1993. Ultrahigh-pressure (60 kbar) magnesite-bearing garnet peridotites from northeastern Jiangsu, China. J Geol: 541–554

    Google Scholar 

  • Yang Q L, Zhao Z F, Zheng Y F. 2012b. Slab-mantle interaction in continental subduction channel: Geochemical evidence from Mesozoic gabbroic intrusives in southeastern North China. Lithos, 155: 442–460

    Google Scholar 

  • Yang Q L, Zhao Z F, Zheng, Y F. 2012a. Modification of subcontinental lithospheric mantle above continental subduction zone: Constraints from geochemistry of Mesozoic gabbroic rocks in southeastern North China. Lithos, 146–147: 164–182

    Google Scholar 

  • Ye K, Cong B, Ye D. 2000. The possible subduction of continental material to depths greater than 200 km. Nature, 407: 734–736

    Google Scholar 

  • Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Rev Earth Planet Scis, 28: 211–280

    Google Scholar 

  • Yin A. 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Sci Rev, 76: 1–131

    Google Scholar 

  • Yu S Y, Zhang J X, Real P G D. 2012. Geochemistry and zircon U/Pb ages of adakitic rocks from the Dulan area of the North Qaidam UHP terrane, north Tibet: Constraints on the timing and nature of regional tectonothermal events. Gondwana Res, 21: 167–179

    Google Scholar 

  • Zeng L, Gao L E, Xie K, et al. 2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes: Melting thickened lower continental crust. Earth Planet Sci Lett, 303: 251–266

    Google Scholar 

  • Zhang G B, Niu Y L, Song S G, et al. 2015. Trace element behavior and P-T-t evolution during partial melting of exhumed eclogite in the North Qaidam UHPM belt (NW China): Implications for adakite genesis. Lithos, doi: http://dx.doi.org/10.1016/j.lithos.2014.12.009

    Google Scholar 

  • Zhang G B, Zhang L F, Christy A G, et al. 2014. Differential exhumation and cooling history of North Qaidam UHP metamorphic rocks, NW China: Constraints from zircon and rutile thermometry and U-Pb geochronology. Lithos, 205: 15–27

    Google Scholar 

  • Zhang J X, Yang J S, Mattinson C G, et al. 2005. Two contrasting eclogite cooling histories, North Qaidam HP/UHP terrane, western China: Petrological and isotopic constraints. Lithos, 84: 51–76

    Google Scholar 

  • Zhang J, Zhao Z F, Zheng Y F et al. 2012. Zircon Hf-O isotope and whole-rock geochemical constraints on origin of postcollisional mafic to felsic dykes in the Sulu orogen. Lithos, 136–139: 225–245

    Google Scholar 

  • Zhang J, Zhao Z F, Zheng Y F, et al. 2010. Postcollisional magmatism: Geochemical constraints on the petrogenesis of Mesozoic granitoids in the Sulu orogen, China. Lithos, 119: 512–536

    Google Scholar 

  • Zhang Z M, Dong X, Xiang H, et al. 2014a. Reworking of the Gangdese magmatic arc, southeastern Tibet: Post-collisional metamorphism and anatexis. J Metamorp Geol, 33: 1–21

    Google Scholar 

  • Zhang Z M, Xiang H, Dong X, et al. 2014b. Long-lived high-temperature granulite-facies metamorphism in the Eastern Himalayan orogen, south Tibet. Lithos, 212–215: 1–15

    Google Scholar 

  • Zhao Z D, Mo X X, Dilek Y, et al. 2009. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: Petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos, 113: 190–212

    Google Scholar 

  • Zhao Z F, Dai L Q, Zheng Y F. 2013. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction. Scientific Reports. 3

    Google Scholar 

  • Zhao Z F, Zheng Y F, Wei C S, et al. 2004. Zircon isotope evidence for recycling of subducted continental crust in post-collisional granitoids from the Dabie terrane in China. Geophy Res Lett, 31: L22602

    Google Scholar 

  • Zhao Z F, Zheng Y F, Wei C S, et al. 2005. Zircon U-Pb age, element and C-O isotope geochemistry of post-collisional mafic-ultramafic rocks from the Dabie orogen in east-central China. Lithos, 83: 1–28

    Google Scholar 

  • Zhao Z F, Zheng Y F, Wei C S, et al. 2007. Post-collisional granitoids from the Dabie orogen in China: Zircon U-Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos, 93: 248–272

    Google Scholar 

  • Zhao Z F, Zheng Y F, Wei C S, et al. 2011. Origin of postcollisional magmatic rocks in the Dabie orogen: Implications for crust-mantle interaction and crustal architecture. Lithos, 126: 99–11

    Google Scholar 

  • Zhao Z F, Zheng Y F, Zhang J, et al. 2012. Syn-exhumation magmatism during continental collision: Evidence from alkaline intrusives of Triassic age in the Sulu orogen. Chem Geol, 328: 70–88

    Google Scholar 

  • Zhao Z F, Zheng Y F. 2009. Remelting of subducted continental lithosphere: Petrogenesis of Mesozoic magmatic rcoks in the Dabie-Sulu orogenic belt. Sci China Ser D-Earth Sci, 52: 1295–1318

    Google Scholar 

  • Zheng Y F, Chen R X, Zhao Z F. 2009. Chemical geodynamics of continental subduction-zone metamorphism: Insights from studies of the Chinese Continental Scientific Drilling (CCSD) core samples. Tectonophysics, 475: 327–358

    Google Scholar 

  • Zheng Y F, Xia Q X, Chen R X, et al. 2011. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth Sci Rev, 107: 342–374

    Google Scholar 

  • Zheng Y F, Zhao Z F, Chen Y X. 2013. Continental subduction channel processes: Plate interface interaction during continental collision. Chin Sci Bull, 58: 4371–4377

    Google Scholar 

  • Zheng Y F. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chem Geol, 328: 5–48

    Google Scholar 

  • Zhu Y, Ogasawara Y. 2002. Phlogopite and coesite exsolution from super-silicic clinopyroxene. Int Geolog Rev, 44: 831–836

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShuGuang Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, S., Wang, M., Wang, C. et al. Magmatism during continental collision, subduction, exhumation and mountain collapse in collisional orogenic belts and continental net growth: A perspective. Sci. China Earth Sci. 58, 1284–1304 (2015). https://doi.org/10.1007/s11430-015-5102-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-5102-x

Keywords

Navigation