Skip to main content

Advertisement

Log in

Developing plate tectonics theory from oceanic subduction zones to collisional orogens

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Crustal subduction and continental collision is the core of plate tectonics theory. Understanding the formation and evolution of continental collision orogens is a key to develop the theory of plate tectonics. Different types of subduction zones have been categorized based on the nature of subducted crust. Two types of collisional orogens, i.e. arc-continent and continent-continent collisional orogens, have been recognized based on the nature of collisional blocks and the composition of derivative rocks. Arc-continent collisional orogens contain both ancient and juvenile crustal rocks, and reworking of those rocks at the post-collisional stage generates magmatic rocks with different geochemical compositions. If an orogen is built by collision between two relatively old continental blocks, post-collisional magmatic rocks are only derived from reworking of the old crustal rocks. Collisional orogens undergo reactivation and reworking at action of lithosphere extension, with inheritance not only in the tectonic regime but also in the geochemical compositions of reworked products (i.e., magmatic rocks). In order to unravel basic principles for the evolution of continental tectonics at the post-collisional stages, it is necessary to investigate the reworking of orogenic belts in the post-collisional regime, to recognize physicochemical differences in deep continental collision zones, and to understand petrogenetic links between the nature of subducted crust and post-collisional magmatic rocks. Afterwards we are in a position to build the systematics of continental tectonics and thus to develop the plate tectonics theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allegre C. 1988. The Behavior of the Earth: Continental and Seafloor Mobility. Cambridge, Massschusetts and London: Harvard University Press. 272

    Google Scholar 

  • Anderson D. 2007. New Theory of the Earth. 2nd ed. Cambridge, New York: Cambridge University Press. 384

    Google Scholar 

  • Barbarin B. 1998. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46: 605–626

    Google Scholar 

  • Beaumont C, Ellis S, Pfiffner A. 1999. Dynamics of sediment subduction-accretion at convergent margins: Short-term modes, long-term deformation, and tectonic implications. J Geophys Res, B104: 17573–17601

    Google Scholar 

  • Beaumont C, Jamieson R A, Butler J P, Warren C J. 2009. Crustal structure: A key constraint on the mechanism of ultra-high-pressure rock exhumation. Earth Planet Sci Lett, 287: 116–129

    Google Scholar 

  • Brenan J M, Shaw H F, Phinney D L, Ryerson F J. 1994. Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th: Implications for high field strength elements depletions in island-arc basalts. Earth Planet Sci Lett, 128: 327–339

    Google Scholar 

  • Brown D, Spadea P. 1999. Processes of forearc and accretionary complex formation during arc-continental collision in the southern Ural Mountains. Geology, 27: 649–652

    Google Scholar 

  • Brown D, Ryan P D, Afonso J C, Boutelier D, Burg J P, Byrne T, Calvert A, Cook F, DeBari S, Dewey J F, Gerya T V, Harris R, Herrington R, Konstantinovskaya E, Reston T, Zagorevski A. 2011. Arc-continent collision: The making of an orogen. In: Brown D, Ryan P D, eds, Arc-Continent Collision. Berlin Heidelberg: Springer-Verlag. 477–493

    Google Scholar 

  • Burchfiel B C. 1980. Plate tectonics and the continents: a review. In: Burchfiel B C, Oliver J E, Silver L T, eds, Continental Tectonics. Washington D C: National Academies Press. 15–25

    Google Scholar 

  • Cawood P A, Kroner A, Collins W J, Kusky T M, Mooney W D, Windley B F. 2009. Accretionary orogens through Earth history. Geol Soc Spec Publ, 318: 1–36

    Google Scholar 

  • Chauvel C, Hofmann A W, Vidal P. 1992. HIMU-EM: The French Polynesian connection. Earth Planet Sci Lett, 110: 99–119

    Google Scholar 

  • Chen J F, Xie Z, Li H M, Zhang X D, Zhou T X, Park Y S, Ahn K S, Chen D G, Zhang X. 2003. U-Pb zircon ages for a collision-related K-rich complex at Shidao in the Sulu ultrahigh pressure terrane, China. Geochem J, 37: 35–46

    Google Scholar 

  • Chen L, Zhao Z-F, Zheng Y-F. 2014. Origin of andesitic rocks: geochemical constraints from Mesozoic volcanics in the Luzong basin, South China. Lithos, 190: 220–239

    Google Scholar 

  • Chopin C. 1984. Coesite and pure pyrope in high-grade blueschists of the western Alps: A first record and some consequence. Contrib Mineral Petrol, 86: 107–118

    Google Scholar 

  • Chopin C. 2003. Ultrahigh-pressure metamorphism; tracing continental crust into the mantle. Earth Planet Sci Lett, 212: 1–14

    Google Scholar 

  • Chung S-L, Chu M F, Zhang Y Q, Xie Y W, Lo C H, Lee T Y, Lan C Y, Li X H, Zhang Q, Wang Y Z. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth Sci Rev, 68: 173–196

    Google Scholar 

  • Clemens J D, Wall V J. 1988. Controls on the mineralogy of S-type volcanic and plutonic rocks. Lithos, 21: 53–66

    Google Scholar 

  • Cloos M. 1983. Comparative study of melange matrix and metashales from the Franciscan subduction complex with the basal Great Valley sequence, California. J Geol, 91: 291–306

    Google Scholar 

  • Cloos M. 1984. Flow melanges and the structural evolution of accretionary wedges. In: Melanges-Their Nature, Origin and Significance. Spec Paper Geol Soc Amer, 198: 71–79

    Google Scholar 

  • Cloos M, Shreve R L. 1988a. Subduction-channel model of prism accretion, mélange formation, sediment subduction, and subduction erosion at convergent plate margins, 1, Background and description. Pure Appl Geophys, 128: 456–500

    Google Scholar 

  • Cloos M, Shreve R L. 1988b. Subduction-channel model of prism accretion, mélange formation, sediment subduction, and subduction erosion at convergent plate margins, 2, Implications and discussion. Pure Appl Geophys, 128: 501–505

    Google Scholar 

  • Collins W J, Richards S W. 2008. Geodynamic significance of S-type granites in circum-Pacific orogens. Geology, 36: 559–562

    Google Scholar 

  • Condie K C. 2007. Accretionary orogens in space and time. Geol Soc Am Memoirs, 200: 145–158

    Google Scholar 

  • Dahlen F A. 1990. Critical taper model of fold-and-thrust belts and accretionary wedges. Annu Rev Earth Planet Sci, 18: 55–99

    Google Scholar 

  • Dai L-Q, Zhao Z-F, Zheng Y-F, Li Q, Yang Y, Dai M. 2011. Zircon Hf-O isotope evidence for crust-mantle interaction during continental deep subduction. Earth Planet Sci Lett, 308: 224–244

    Google Scholar 

  • Dai L-Q, Zhao Z-F, Zheng Y-F, Zhang J. 2012. The nature of orogenic lithospheric mantle: Geochemical constraints from postcollisional mafic-ultramafic rocks in the Dabie orogen. Chem Geol, 334: 99–121

    Google Scholar 

  • Dai L-Q, Zhao Z-F, Zheng Y-F. 2014. Geochemical insights into the role of metasomatic hornblendite in generating alkali basalts. Geochem Geophys Geosyst, 15: 3762–3779

    Google Scholar 

  • Dai L-Q, Zhao Z-F, Zheng Y-F. 2015. Tectonic development from oceanic subduction to continental collision: Geochemical evidence from postcollisional mafic rocks in the Hong’an-Dabie orogens. Gondwana Res, 27: 1236–1254

    Google Scholar 

  • Dasgupta R, Jackson M G, Lee C-T A. 2010. Major element chemistry of ocean island basalts—Conditions of mantle melting and heterogeneity of mantle source. Earth Planet Sci Lett, 289: 377–392

    Google Scholar 

  • Davis D, Suppe J, Dahlen F A. 1983. Mechanics of fold and thrust belts and accretionary wedges. J Geophys Res, B88: 1153–1172

    Google Scholar 

  • Dewey J F, Bird J M. 1970. Mountain belts and the global tectonics. J Geophys Res, B75: 2625–2647

    Google Scholar 

  • Dietz R S. 1961. Continent and ocean basin evolution by spreading of the sea floor. Nature, 190: 854–857

    Google Scholar 

  • Eiler J M, Schiano P, Valley J W, Kita N T, Stolper E M. 2007. Oxygen-isotope and trace element constraints on the origins of silica-rich melts in the subarc mantle. Geochem Geophys Geosyst, 8: Q09012

    Google Scholar 

  • Elsasser W M. 1971. Sea-floor spreading as thermal convection. J Geophys Res, 76: 1101–1112

    Google Scholar 

  • Elliott T, Plank T, Zindler A, White W, Bourdon B. 1997. Element transport from slab to volcanic front at the Mariana arc. J Geophys Res, B102: 14991–15019

    Google Scholar 

  • Elliott T. 2003. Tracers of the slab. In: Inside the Subduction Factory, ed. Eiler J. American Geophysical Union Geophysical Monograph, 138: 23–45

    Google Scholar 

  • Enkin R J, Courtillot V, Leloup Ph, Yang Z Y, Xing L, Zhang J, Zhuang Z. 1992. The paleomagnetic record of Uppermost Permian, Lower Triassic rocks from the South China Block. Geophys Res Lett, 19: 2147–2150

    Google Scholar 

  • Ernst W G. 2005. Alpine and Pacific styles of Phanerozoic mountain building: subduction-zone petrogenesis of continental crust. Terra Nova, 17: 165–188

    Google Scholar 

  • Ernst W G, Tsujimori T, Zhang R Y, Liou J G. 2007. Permo-Triassic collision, subduction-zone metamorphism, and tectonic exhumation along the East Asian continental margin. Annu Rev Earth Planet Sci, 35: 73–110

    Google Scholar 

  • Foley S F, Tiepolo M, Vannucci R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417: 837–840

    Google Scholar 

  • Forsyth D, Uyeda S. 1975. On the relative importance of the driving forces of plate motion. Geophys J Int, 43: 163–200

    Google Scholar 

  • Frisch W, Meschede M, Blakey R. 2011. Plate Tectonics: Continental Drift and Mountain Building. Berlin Heidelberg: Springer. 212

    Google Scholar 

  • Gao T S, Chen J F, Xie Z, Yan J, Qian H. 2004. Geochemistry of Triassic igneous complex at Shidao in the Sulu UHP metamorphic belt (in Chinese with English abstract). Acta Petrol Sin, 20: 1025–1038

    Google Scholar 

  • Gao P, Zhao Z-F, Zheng Y-F. 2014. Petrogenesis of Triassic granites from the Nanling Range in South China: Implications for geochemical diversity in granites. Lithos, 210–211: 40–56

    Google Scholar 

  • Gerya T V, Stöckhert B, Perchuk A L. 2002. Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics, 21: 1056, doi: 10.1029/2002TC001406

    Google Scholar 

  • Gilder S A, Leloup P H, Courtillot V, Chen Y, Col R, Zhao X X, Xiao W J, Halim N, Cogne J-P, Zhu R X. 1999. Tectonic evolution of the Tancheng-Lujiang (Tan-Lu) fault via Middle Triassic to Early Cenozoic paleomagnetic data. J Geophys Res, B104: 15365–15390

    Google Scholar 

  • Green T H. 1981. Experimental evidence for the role of accessory phases in magma genesis. J Volcanol Geotherm Res, 10: 405–422

    Google Scholar 

  • Guillot S, Mahéo G, de Sigoyer J, Hattori K H, Pêcher A. 2008. Tethyan and Indian subduction viewed from the Himalayan high-to ultrahigh-pressure metamorphic rocks. Tectonophysics, 451: 225–241

    Google Scholar 

  • Guillot S, Hattori K, Agard P, Schwartz S, Vidal O. 2009. Exhumation processes in oceanic and continental subduction contexts: A review. In: Lallemand S, Funiciello F, eds. Subduction Zone Geodynamics. Berlin Heidelberg: Springer-Verlag. 175–205

    Google Scholar 

  • Guo J H, Chen F K, Zhang X M, Siebel W, Zhai M G. 2005. Evolution of syn- to post-collisional magmatism from north Sulu UHP belt, eastern China: Zircon U-Pb geochronology (in Chinese with English abstract). Acta Petrol Sin, 21: 1281–1301

    Google Scholar 

  • Hacker B R, Andersen T B, Johnston S, Kylander-Clark A R C, Peterman E M, Walsh E O, Young D. 2010. High-temperature deformation during continental-margin subduction and exhumation: The ultrahigh-pressure Western Gneiss Region of Norway. Tectonophysics, 480: 149–171

    Google Scholar 

  • Hart S R. 1988. Heterogeneous mantle domains: Signatures, genesis, and mixing chronologies. Earth Planet Sci Lett, 90: 273–296

    Google Scholar 

  • Hess H H. 1962. History of ocean basins. In: Engele A E J, James H L, Leonard B F, eds. Petrologic Studies-Volume in Honor of A. F. Buddington. Boulder: Geological Society of America. 599–620

    Google Scholar 

  • Hofmann A W, White W M. 1982. Mantle plumes from ancient oceanic crust. Earth Planet Sci Lett, 57: 421–436

    Google Scholar 

  • Hofmann A. 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett, 90: 297–314

    Google Scholar 

  • Hofmann A W. 1997. Mantle geochemistry: The message from oceanic volcanism. Nature, 385: 219–229

    Google Scholar 

  • Holdsworth R E, Hand L M, Miller J A, Buick I S. 2001. Continental reactivation and reworking: An introduction. Geol Soc Spec Publ, 184: 1–12

    Google Scholar 

  • Howell D G. 1989. Tectonics of Suspect Terranes: Mountain Building and Continental Growth. London: Chapman & Hall. 231

  • Jackson M G, Hart S R, Koppers A A P, Staudigel H, Konter J, Blusztajn J, Kurz M, Russell J A. 2007. The return of subducted continental crust in Samoan lavas. Nature, 448: 684–687

    Google Scholar 

  • Jackson M G, Dasgupta R. 2008. Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts. Earth Planet Sci Lett, 276: 175–186

    Google Scholar 

  • Jagoutz O, Müntener O, Schmidt M W, Burg J P. 2011. The respective roles of flux- and decompression melting and their relevant liquid lines of descent for continental crust formation: Evidence from the Kohistan arc. Earth Planet Sci Lett, 303: 25–36

    Google Scholar 

  • Jahn B-M, Wu F-Y, Chen B. 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Trans Roy Soc Edinburgh-Earth Sci, 91: 181–193

    Google Scholar 

  • Ji W Q, Wu F Y, Chung S L, Liu C Z. 2009. Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet. Sci China Ser D-Earth Sci, 52: 1240–1261

    Google Scholar 

  • Karig D E, Sharman G F. 1975. Subduction and accretion in trenchs. Geol Soc Am Bull, 86: 377–389

    Google Scholar 

  • Kearey P, Klepeis K A, Vine F J. 2009. Globle Tectonics. Chiechester: Wiley-Blackwell. 482

    Google Scholar 

  • Kylander-Clark A R C, Hacker B R, Johnson C M, Beard B L, Mahlen N J. 2009. Slow subduction and rapid exhumation of a thick ultrahigh-pressure terrane. Tectonics, 28: TC002251

    Google Scholar 

  • Lardeaux J M, Ledru P, Daniel I, Duchene S. 2001. The Variscan French Massif Central-A new addition to the ultrahigh pressure metamorphic ‘club’: Exhumation processes and geodynamic consequences. Tectonophysics, 332: 143–167

    Google Scholar 

  • Law R D, Butler R W H, Holdsworth R E, Krabbendam M, Strachan R A. 2010. Continental tectonics and mountain building. The Legacy of Peach and Horne: An introduction. Geol Soc Spec Publ, 335: 1–6

    Google Scholar 

  • Leggett J K, McKerrow W S, Eales M H. 1979. The Southern Uplands of Scotland: A Lower Paleozoic accretionary prism. J Geol Soc London, 136: 755–770

    Google Scholar 

  • Le Pichon X. 1968. Sea-floor spreading and continental drift. J Geophys Res, B73: 3661–3697

    Google Scholar 

  • Li Z H, Gerya T V. 2009. Polyphase formation and exhumation of high- to ultrahigh pressure rocks in continental subduction zone: Numerical modeling and application to the Sulu ultrahigh-pressure terrane in eastern China. J Geophys Res, 114: B09406

    Google Scholar 

  • Lin J L, Fuller M. 1990. Paleomagnetism, North China and South China collision, and the Tan-Lu fault. Philos Trans Roy Soc London, A331: 589–598

    Google Scholar 

  • Liou J G, Ernst W G, Song S G, Jahn B M. 2009a. Tectonics and HP-UHP metamorphism of northern Tibet-Preface. J Asian Earth Sci, 35: 191–198

    Google Scholar 

  • Liou J G, Ernst W G, Zhang R Y, Tsujimori T, Jahn J G. 2009b. Ultrahigh-pressure minerals and metamorphic terranes-The view from China. J Asian Earth Sci, 35: 199–231

    Google Scholar 

  • Liu F L, Liou J G. 2011. Zircon as the best mineral for P-T-time history of UHP metamorphism: A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks. J Asian Earth Sci, 40: 1–39

    Google Scholar 

  • Maruyama S, Liou J G, Terabayashi M. 1996. Blueschists and eclogites of the world and their exhumation. Intern Geol Rev, 38: 485–594

    Google Scholar 

  • McKenzie D P, Parker R L. 1967. The North Pacific, an example of tectonics on a sphere. Nature, 216: 1276–1280

    Google Scholar 

  • McKenzie D. 1989. Some remarks on the movement of small melt fractions in the mantle. Earth Planet Sci Lett, 95: 53–72

    Google Scholar 

  • McKerrow W S, Leggett J K, Eales M H. 1977. Imbricate thrust model of the Southern Uplands of Scotland. Nature, 267: 237–239

    Google Scholar 

  • Mo X X, Niu Y L, Dong G C, Zhao Z D, Hou Z Q, Zhou S, Ke S. 2008. Contribution of syncollisional felsicmagmatismto continental crust growth: A case study of the Paleocene Linzizong Volcanic Succession in southern Tibet. Chem Geol, 250: 49–67

    Google Scholar 

  • Morgan W J. 1968. Rises, trenches, great faults and crustal blocks. J Geophys Res, B73: 1959–1982

    Google Scholar 

  • Nicholls I A, Harris K L. 1980. Experimental rare earth element partitioning coefficients for garnet, clinopyroxene and amphibole coexisting with andesitic and basaltic liquids. Geochim Cosmochim Acta, 44: 287–308

    Google Scholar 

  • Oreskes N, ed. 2003. Plate Tectonics: An Insider’s History of the Modern Theory of the Earth. Boulder: Westview Press. 424

    Google Scholar 

  • Peacock S M, Wang K. 1999. Seismic consequences of warm versus cool subduction metamorphism: Examples from southwest and northeast Japan. Science, 286: 937–939

    Google Scholar 

  • Plank T, Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol, 145: 325–394

    Google Scholar 

  • Plank T. 2014. The Chemical composition of subducting sediments. Treatise Geochem, 4: 607–629

    Google Scholar 

  • Platt J P. 1986. Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks. Geol Soc Am Bull, 97: 1037–1053

    Google Scholar 

  • Rubatto D, Hermann J. 2003. Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): Implications for Zr and Hf budget in subduction zones. Geochim Cosmochim Acta, 67: 2173–2187

    Google Scholar 

  • Rubatto D, Hermann J. 2007. Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chem Geol 241, 62–87

    Google Scholar 

  • Rudnick R L, Barth M G, Horn I, McDonough W F. 2000. Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle. Science, 287: 278–281

    Google Scholar 

  • Rudnick R L, Gao S. 2003. Composition of the continental crust. Treatise Geochem, 3: 1–64

    Google Scholar 

  • Runcorn S K. 1962. Towards a theory of continental drift. Nature, 193: 313–314

    Google Scholar 

  • Ryan P D, Mac Niocaill C. 1999. Continental tectonics: An introduction. Geol Soc Spec Publ, 164: 1–5

    Google Scholar 

  • Ryerson F J, Watson E B. 1987. Rutile saturation in magmas: Implications for Ti-Nb-Ta depletion in island-arc basalts. Earth Planet Sci Lett, 86: 225–239

    Google Scholar 

  • Schiano P, Clocchiatti R, Shimizu N, Maury R C, Jochum K P, Hofmann A W. 1995. Hydrous, silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas. Nature, 377: 595–600

    Google Scholar 

  • Schmidt M W, Dardon A, Chazot G, Vannucci R. 2004. The dependence of Nb and Ta rutile-melt partitioning on melt composition and Nb/Ta fractionation during subduction processes. Earth Planet Sci Lett, 226: 415–432

    Google Scholar 

  • Sengor A M C, Okurogullari A H. 1991. The role of accretionary wedges in the growth of continents: Asiatic examples from Argand to plate tectonics. Ecl Geol Helv, 84: 535–597

    Google Scholar 

  • Sengor A M C, Natal’n B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature, 364: 299–304

    Google Scholar 

  • Shreve R L, Cloos M. 1986. Dynamics of sediment subduction, mélange formation, and prism accretion. J Geophys Res, B91: 10229–10245

    Google Scholar 

  • Sisson T W, Bacon R. 1992. Garnet/high-silica rhyolite trace element partition coefficients measured by ion microprobe. Geochim Cosmochim Acta, 56: 2133–2136

    Google Scholar 

  • Smith D C. 1984. Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature, 310: 641–644

    Google Scholar 

  • Song S G, Niu Y L, Su L, Xia X H. 2013. Tectonics of the North Qilian orogen, NW China. Gondwana Res, 23: 1378–1401

    Google Scholar 

  • Song S G, Niu Y L, Su L, Zhang C, Zhang L F. 2014. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: The example of the North Qaidam UHPM belt, NW China. Earth Sci Rev, 129: 59–84

    Google Scholar 

  • Spandler C, Pirard C. 2013. Element recycling from subducting slabs to arc crust: A review. Lithos, 170–171: 208–223

    Google Scholar 

  • Stern R J. 2002. Subduction zones. Rev Geophys, 40: 1012, doi: 10.1029/2001RG000108

    Google Scholar 

  • Stern R J. 2010. The anatomy and ontogeny of modern intra-oceanic arc systems. Geol Soc Spec Publ, 338: 7–34

    Google Scholar 

  • Stracke A. 2012. Earth’s heterogeneous mantle: A product of convection-driven interaction between crust and mantle. Chem Geol, 330–331: 274–299

    Google Scholar 

  • Syracuse E M, van Keken P E, Abers G A. 2010. The global range of subduction zone thermal models. Phys Earth Planet Inter, 183: 73–90

    Google Scholar 

  • Taylor S R, McLennan S M. 1995. The geochemical evolution of the continental crust. Rev Geophys, 33: 241–165

    Google Scholar 

  • Tomecek S. 2009. Plate Tectonics. New York: Chelsea House Publishing. 101

    Google Scholar 

  • Turner S, Caulfield J, Turner M, van Keken P, Maury R, Sandiford M, Prouteau G. 2011. Recent contribution of sediments and fluids to the mantle’s volatile budget. Nature Geosci, 5: 50–54

    Google Scholar 

  • Uyeda S. 1982. Subduction zones: An introduction to comparative subductology. Tectonophysics, 81: 133–159

    Google Scholar 

  • Uyeda S. 1983. Comparative subductology. Episodes, 5: 19–24

    Google Scholar 

  • van Keken P E, Hacker B R, Syracuse E M, et al. 2011. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J Geophys Res, 116: B01401

    Google Scholar 

  • van Westrenen W, Blundy J, Wood B. 1999. Crystal-chemical controls on trace element partitioning between garnet and anhydrous silicate melt. Am Mineral, 84: 838–847

    Google Scholar 

  • Vine F J, Matthews D H. 1963. Magnetic anomalies over ocean ridges. Nature, 199: 947–949

    Google Scholar 

  • von Huene R, Scholl D W. 1991. Observation at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev Geophys, 29: 279–316

    Google Scholar 

  • von Huene R, Scholl D W. 1993. The return of sialic material to the mantle indicated by terrigeneous material subducted at convergent margins. Tecronophysics, 219: 163–175

    Google Scholar 

  • Wallis S, Tsuboi M, Suzuki K, Fanning M, Jiang L L, Tanaka T. 2005. Role of partial melting in the evolution of the Sulu (eastern China) ultrahigh-pressure terrane. Geology, 33: 129–132

    Google Scholar 

  • Wang Y, Zhao Z-F, Zheng Y-F, Zhang J-J. 2011. Geochemical constraints on the nature of mantle source for Cenozoic continental basalts in east-central China. Lithos, 125: 940–955

    Google Scholar 

  • Wang Y-J, Fan W-M, Zhang G-W, Zhang Y-H. 2013. Phanerozoic tectonics of the South China Block: Key observations and controversies. Gondwana Res, 23: 1273–1305

    Google Scholar 

  • Wang H, Wu Y-B, Gao S, Zheng J-P, Liu Q, Liu X-C, Qin Z-W, Yang S-H, Gong H-J. 2014. Deep subduction of continental crust in accretionary orogen: Evidence from U-Pb dating on diamond-bearing zircons from the Qinling orogen, central China. Lithos, 190–191: 420–429

    Google Scholar 

  • Wegener A L. 1912. Die Entstehung der Kontinente. Geol Rundsch, 3: 276–292

    Google Scholar 

  • Wei C S, Zheng Y-F, Zhao Z-F, Valley J W. 2002. Oxygen and neodymium isotope evidence for recycling of juvenile crust in northeast China. Geology, 30: 375–378

    Google Scholar 

  • Whitehouse M J, Platt J P. 2003. Dating high-grade metamorphism: constraints from rare-earth elements in zircon and garnet. Contrib Mineral Petrol, 145: 61–74

    Google Scholar 

  • Wilson J T. 1965. A new class of faults and their bearing on continental drift. Nature, 207: 343–347

    Google Scholar 

  • Wu R-X, Zheng Y-F, Wu Y-B, Zhao Z-F, Zhang S-B, Liu X, Wu F-Y. 2006. Reworking of juvenile crust: Element and isotope evidence from Neoproterozoic granodiorite in South China. Precambrian Res, 146: 179–212

    Google Scholar 

  • Wu Y-B, Zheng Y-F. 2013. Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong’an-Dabie-Sulu orogenic belt in central China. Gondwana Res, 23: 1402–1428

    Google Scholar 

  • Wyllie P J. 1984. Constraints imposed by experimental petrology on possible and impossible magma sources and products. Philos Trans Roy Soc, A310: 439–456

    Google Scholar 

  • Xiao W J, Han C M, Yuan C, Sun M, Zhao G C, Shan Y H. 2010. Transitions among Mariana-, Japan-, Cordillera- and Alaska-type arc systems and their final juxtapositions leading to accretionary and collisional orogenesis. Geol Soc Spec Publ, 338: 35–53

    Google Scholar 

  • Xiao W J, Windley B F, Allen M B, Han C M. 2013. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Res, 23: 1316–1341

    Google Scholar 

  • Xiong X L, Keppler H, Audetat A, Ni H W, Sun W D, Li Y. 2011. Partitioning of Nb and Ta between rutile and felsic melt and the fractionation of Nb/Ta during partial melting of hydrous metabasalt. Geochim Cosmochim Acta, 75: 1673–1692

    Google Scholar 

  • Xu Z, Zhao Z-F, Zheng Y-F. 2012a. Slab-mantle interaction for thinning of cratonic lithospheric mantle in North China: Geochemical evidence from Cenozoic continental basalts in central Shandong. Lithos, 146–147: 202–217

    Google Scholar 

  • Xu Y G, Zhang H H, Qiu, H N, Ge W C, Wu F Y. 2012b. Oceanic crust components in continental basalts from Shuangliao, Northeast China: Derived from the mantle transition zone? Chem Geol, 328: 168–184

    Google Scholar 

  • Xu Z, Zheng Y-F, He H-Y, Zhao Z-F. 2014a. Phenocryst He-Ar isotopic and whole-rock geochemical constraints on the origin of crustal components in the mantle source of Cenozoic continental basalt in eastern China. J Volcanol Geotherm Res, 272: 99–110

    Google Scholar 

  • Xu Z, Zheng Y-F, Zhao Z-F, Gong B. 2014b. The hydrous properties of subcontinental lithospheric mantle: Constraints from water content and hydrogen isotope composition of phenocrysts from Cenozoic continental basalt in North China. Geochim Cosmochim Acta, 143: 285–302

    Google Scholar 

  • Yakubchuk A. 2004. Architecture and mineral deposit settings of the Altaid orogenic collage: A revised model. J Asian Earth Sci, 23: 761–779

    Google Scholar 

  • Yang J-H, Chung S-L, Wilde S A, Wu F Y, Chu M F, Lo C-H, Fan H R. 2005. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: Geochronological, geochemical and Nd-Sr isotopic evidence. Chem Geol, 214: 99–125

    Google Scholar 

  • Yang J H, Wu F Y. 2009. Triassic magmatism and its relation to decratonization in the eastern North China Craton. Sci China Ser D-Earth Sci, 52: 1319–1330

    Google Scholar 

  • Yang Q-L, Zhao Z-F, Zheng Y-F. 2012a. Modification of subcontinental lithospheric mantle above continental subduction zone: Constraints from geochemistry of Mesozoic gabbroic rocks in southeastern North China. Lithos, 146–147: 164–182

    Google Scholar 

  • Yang Q-L, Zhao Z-F, Zheng Y-F. 2012b. Slab-mantle interaction in continental subduction channel: Geochemical evidence from Mesozoic gabbroic intrusives in southeastern North China. Lithos, 155: 442–440

    Google Scholar 

  • Yin A, Nie S. 1993. An indenta tion model for the north and south China collision and the development of the Tanlu and Honam fault systems eastern Asia. Tectonics, 12: 801–813

    Google Scholar 

  • Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci, 28: 211–280

    Google Scholar 

  • Zhang S-B, Zheng Y-F, Zhao Z-F, Wu Y-B, Yuan H, Wu F-Y. 2008. Neoproterozoic anatexis of Archean lithosphere: Geochemical evidence from felsic to mafic intrusions at Xiaofeng in the Yangtze Gorge, South China. Precambr Res, 163: 210–238

    Google Scholar 

  • Zhang J-J, Zheng Y-F, Zhao Z-F. 2009. Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China. Lithos, 110: 305–326

    Google Scholar 

  • Zhang J, Zhao Z-F, Zheng Y-F, Dai M. 2010. Postcollisional magmatism: Geochemical constraints on the petrogenesis of Mesozoic granitoids in the Sulu orogen, China. Lithos, 119: 512–536

    Google Scholar 

  • Zhang J, Zhao Z-F, Zheng Y-F, Liu X M, Xie L W. 2012. Zircon Hf-O isotope and whole-rock geochemical constraints on origin of postcollisional mafic to felsic dykes in the Sulu orogen. Lithos, 136–139: 225–245

    Google Scholar 

  • Zhang S-B, Zheng Y-F. 2013. Formation and evolution of Precambrian continental lithosphere in South China. Gondwana Res, 23: 1241–1260

    Google Scholar 

  • Zhao X X, Coe R S. 1987. Paleomagnetic constraints on the collision and rotation of north and south China. Nature, 327: 141–144

    Google Scholar 

  • Zhao X X, Coe R S, Gilder S A, Frost G M. 1996. Palaeomagnetic constraints on the palaeogeography of China: Implications for Gondwanaland. Australian J Earth Sci, 43: 643–672

    Google Scholar 

  • Zhao Z-F, Zheng Y-F, Wei C S, Wu Y-B. 2007. Post-collisional granitoids from the Dabie orogen in China: Zircon U-Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos, 93: 248–272

    Google Scholar 

  • Zhao Z F., Zheng Y F. 2009. Remelting of subducted continental lithosphere: Petrogenesis of Mesozoic magmatic rocks in the Dabie-Sulu orogenic belt. Sci China Ser D-Earth Sci, 52: 1295–1318

    Google Scholar 

  • Zhao Z-F, Zheng Y-F, Wei C S, Wu F-Y. 2011. Origin of postcollisional magmatic rocks in the Dabie orogen: Implications for crust-mantle interaction and crustal architecture. Lithos, 126: 99–114

    Google Scholar 

  • Zhao Z-F, Zheng Y-F, Zhang J, Dai L Q, Liu X M. 2012. Syn-exhumation magmatism during continental collision: Evidence from alkaline intrusives of Triassic age in the Sulu orogen. Chem Geol, 328: 70–88

    Google Scholar 

  • Zhao Z-F, Dai L-Q, Zheng Y-F. 2013. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction. Scientific Reports, 3: 3413, doi: 10.1038/srep03413

    Google Scholar 

  • Zhao Z-F, Gao P, Zheng Y-F. 2015. The source of Mesozoic granitoids in South China: Integrated geochemical constraints from the Taoshan batholith in the Nanling Range. Chem Geol, 395: 11–26

    Google Scholar 

  • Zheng Y-F, Wu Y-B, Chen F K, Gong B, Li L, Zhao Z-F. 2004. Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic. Geochim Cosmochim Acta, 68: 4145–4165

    Google Scholar 

  • Zheng Y-F, Zhou J-B, Wu Y-B, Xie Z. 2005. Low-grade metamorphic rocks in the Dabie-Sulu orogenic belt: A passive-margin accretionary wedge deformed during continent subduction. Intern Geol Rev, 47: 851–871

    Google Scholar 

  • Zheng Y-F, Zhang S-B, Zhao Z-F, Wu Y-B, Li X-H, Li Z-X, Wu F-Y. 2007. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: Implications for growth and reworking of continental crust. Lithos, 96: 127–150

    Google Scholar 

  • Zheng Y-F, Wu R-X, Wu Y-B, Zhang S-B, Yuan H L, Wu F-Y. 2008. Rift melting of juvenile arc-derived crust: Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China. Precambrian Res, 163: 351–383

    Google Scholar 

  • Zheng Y F, Ye K, Zhang L F. 2009a. Developing the plate tectonics from oceanic subduction to continental collision. Chin Sci Bull, 54: 3347–3353

    Google Scholar 

  • Zheng Y-F, Chen R-X, Zhao Z-F. 2009b. Chemical geodynamics of continental subduction-zone metamorphism: Insights from studies of the Chinese Continental Scientific Drilling (CCSD) core samples. Tectonophysics, 475: 327–358

    Google Scholar 

  • Zheng Y-F, Xia Q-X, Chen R-X, Gao X-Y. 2011. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth Sci Rev, 107: 342–374

    Google Scholar 

  • Zheng Y-F. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chem Geol, 328: 5–48

    Google Scholar 

  • Zheng Y-F, Xiao W-J, Zhao G C. 2013a. Introduction to tectonics of China. Gondwana Res, 23: 1189–1206

    Google Scholar 

  • Zheng Y F, Zhao Z F, Chen Y X. 2013b. Continental subduction channel processes: Plate interface interaction during continental collision. Chin Sci Bull, 58: 4371–4377

    Google Scholar 

  • Zheng Y-F, Hermann J. 2014. Geochemistry of continental subduction-zone fluids. Earth Planets Space, 66: 93, doi: 10.1186/1880-5981-66-93.

    Google Scholar 

  • Zhou J-B, Zheng Y-F, Li L, Xie Z. 2001. Accretionary wedge of the subduction of the Yangtze Plate (in Chinese with English abstract). Acta Geol Sin, 75: 338–352

    Google Scholar 

  • Zhou X M, Sun T, Shen W Z, Shu L S, Niu Y L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29: 26–33

    Google Scholar 

  • Zhou L-G, Xia Q-X, Chen R-X, Zheng Y-F. 2015. Tectonic evolution from oceanic subduction to continental collision during the closure of Paleotethys: Geochronological and geochemical constraints from metamorphic rocks in the Hong’an orogen. Gondwana Res, http: //dx.doi.org/10.1016/j.gr.2014.03.009

    Google Scholar 

  • Zhu D-C, Zhao Z-D, Niu Y L, Dilek Y, Hou Z-Q, Mo X X. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res, 23: 1429–1454

    Google Scholar 

  • Zindler A, Hart S R. 1986. Chemical geodynamics. Ann Rev Earth Planet Sci, 14: 493–571

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongFei Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Chen, Y., Dai, L. et al. Developing plate tectonics theory from oceanic subduction zones to collisional orogens. Sci. China Earth Sci. 58, 1045–1069 (2015). https://doi.org/10.1007/s11430-015-5097-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-5097-3

Keywords

Navigation