Skip to main content
Log in

Observation of atmospheric methane in the Arctic Ocean up to 87° north

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Although the Arctic methane reservoir is large, the emission of methane from the Arctic Ocean into the atmosphere remains poorly constrained. Continuous ship-borne measurements of atmospheric methane near the surface ocean were carried out during two cruises to investigate methane emission from the Arctic Ocean up to the latitude of 87ºN. Three-day air mass back trajectories along the cruise tracks indicated that the surface Arctic Ocean could be a potentially important source of methane to the atmosphere. Rapid bursts in methane concentration occurred mainly along the ocean frontal area, suggesting that frontal upwelling in the upper layer of the Arctic Ocean might contribute to methane emissions into the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Damm E, Helmke E, Thoms S, Schauer U, Nöthig E, Bakker K, Kiene R P. 2010. Methane production in aerobic oligotrophic surface water in the central Arctic Ocean. Biogeosciences, 7: 1099–1108

    Article  Google Scholar 

  • Damm E, Thoms S, Kattner G, Beszczynska-Möller A, Nöthig E M, Stimac I. 2011. Coexisting methane and oxygen excesses in nitrate-limited polar water (Fram Strait) during ongoing sea ice melting. Biogeosciences Discuss, 8: 5179–5195

    Article  Google Scholar 

  • Dlugokencky E J, Nisbet E G, Fisher R, Lowry D. 2011. Global atmospheric methane: Budget, changes and dangers. Philos Trans R Soc A-Math Phys Eng Sci, 369: 2058–2072

    Article  Google Scholar 

  • Draxler R R, Stunder B, Rolph G, Taylor A. 1999. HYSPLIT4 user’s guide. NOAA Tech. Memo. ERL ARL-230, NOAA Air Resources Laboratory, Silver Spring, MD

    Google Scholar 

  • Draxler R R, Hess G D. 1998. An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition. Aus Meteor Mag, 47: 295–308

    Google Scholar 

  • Fisher R E, Sriskantharajah S, Lowry D, Lanoisellé M, Fowler C M R, James R H, Hermansen O, Lund Myhre C, Stohl A, Greinert J, Nisbet-Jones P B R, Mienert J, Nisbet E G. 2011. Arctic methane sources: Isotopic evidence for atmospheric inputs. Geophys Res Lett, 38: L21803

    Article  Google Scholar 

  • Gautier D L, Bird K J, Charpentier R R, Grantz A, Houseknecht D W, Klett T R, Moore T E, Pitman J K, Schenk C J, Schuenemeyer J H, Sorensen K, Tennyson M E, Valin Z C, Wandrey C J. 2009. Assessment of undiscovered oil and gas in the Arctic. Science, 324: 1175–1179

    Article  Google Scholar 

  • Isaksen I S A, Gauss M, Myhre G, Walter Anthony K M, Ruppel C. 2011. Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions. Glob Biogeochem Cycles, 25: GB2002

    Article  Google Scholar 

  • Kitidis V, Upstill-Goddard R C, Anderson L G. 2010. Methane and nitrous oxide in surface water along the North-West Passage, Arctic Ocean. Mar Chem, 121: 80–86

    Article  Google Scholar 

  • Kort E A, Wofsy S C, Daube B C, Diao M, Elkins J W, Gao R S, Hintsa E J, Hurst D F, Jimenez R, Moore F L, Spackman J R, Zondlo M A. 2012. Atmospheric observations of Arctic Ocean methane emissions up to 82° north. Nat Geosci, 5: 318–321

    Article  Google Scholar 

  • Lü X, Qiao F, Xia C, Zhu J, Yuan Y. 2006. Upwelling off Yangtze River estuary in summer. J Geophys Res, 111: C11S08

    Google Scholar 

  • Mastepanov M, Sigsgaard C, Dlugokencky E J, Houweling S, Ström L, Tamstorf M P, Christensen T R. 2008. Large tundra methane burst during onset of freezing. Nature, 456: 628–630

    Article  Google Scholar 

  • Morimoto S, Aoki S, Nakazawa T, Yamanouchi T. 2006. Temporal variations of the carbon isotopic ratio of atmospheric methane observed at Ny Ålesund, Svalbard from 1996 to 2004. Geophys Res Lett, 33: L01807

    Article  Google Scholar 

  • Nisbet E G, Chappellaz J. 2009. Shifting gear, quickly. Science, 324: 477–478

    Article  Google Scholar 

  • O’Connor F M, Boucher O, Gedney N, Jones C D, Folberth G A, Coppell R, Friedlingstein P, Collins W J, Chappellaz J, Ridley J, Johnson C E. 2010. Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: A review. Rev Geophys, 48: RG4005

    Google Scholar 

  • Pabi S, van Dijken G L, Arrigo K R. 2008. Primary production in the Arctic Ocean, 1998–2006. J Geophys Res, 113: C08005

    Article  Google Scholar 

  • Shakhova N, Semiletov I. 2007. Methane release and coastal environment in the East Siberian Arctic shelf. J Mar Syst, 66: 227–243

    Article  Google Scholar 

  • Shakhova N. 2005. The distribution of methane on the Siberian Arctic shelves: Implications for the marine methane cycle. Geophys Res Lett, 32: L09601

    Article  Google Scholar 

  • Shakhova N, Semiletov I, Leifer I, Salyuk A, Rekant P, Kosmach D. 2010a. Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf. J Geophys Res, 115: C08007

    Article  Google Scholar 

  • Shakhova N, Semiletov I, Salyuk A, Yusupov V, Kosmach D, Gustafsson O. 2010b. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science, 327: 1246–1250

    Article  Google Scholar 

  • Shakhova N, Semiletov I, Sergienko V, Lobkovsky L, Yusupov V, Salyuk A, Salomatin A, Chernykh D, Kosmach D, Panteleev G, Nicolsky D, Samarkin V, Joye S, Charkin A, Dudarev O, Meluzov A, Gustafsson O. 2015. The East Siberian Arctic Shelf: Towards further assessment of permafrost-related methane fluxes and role of sea ice. Philos Trans R Soc A-Math Phys Eng Sci, 373: 20140451

    Article  Google Scholar 

  • IPCC. 2007. Climate change 2007. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M, Miller H L, eds. The physical science basis: Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. 235–337

  • Walter K M, Zimov S A, Chanton J P, Verbyla D, Chapin F S. 2006. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature, 443: 71–75

    Article  Google Scholar 

  • Whiteman G, Hope C, Wadhams P. 2013. Climate science: Vast costs of Arctic change. Nature, 499: 401–403

    Article  Google Scholar 

Download references

Acknowledgments

We thank Liu Yanguang, Ge Renfeng and Lin Lina for their help in data acquisition. This work was supported by the Project of Comprehensive Evaluation of Polar Areas on Global and Regional Climate Changes (Grant No. CHINARE2012-04-04), the National Natural Science Foundation of China (Grant No. 41206027), the National Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers (Grant No. U14064) and the Polar Strategic Research Foundation of China (Grant No. 20120103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FangLi Qiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Qiao, F. & Song, Z. Observation of atmospheric methane in the Arctic Ocean up to 87° north. Sci. China Earth Sci. 60, 173–179 (2017). https://doi.org/10.1007/s11430-015-0241-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-0241-3

Keywords

Navigation