Skip to main content
Log in

Shock-produced akimotoite in the Suizhou L6 chondrite

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Shock-produced akimotoite was identified in the Suizhou chondritic meteorite, which occurs in two kinds of occurrence. The first is the irregular layers of akimotoite up to 4 μm in thickness occurring in fractures and cracks of low-Ca pyroxene enclosed in the shock veins. The second is the zonal polycrystalline aggregates of akimotoite in shocked pyroxene grains close to the shock vein, where akimotoite occurs in a zonal area in between pyroxene and MgSiO3-glass as irregular small clumps up to 5 μm in size. This investigation suggests a solid-state transformation mechanism of pyroxene to akimotoite, and that akimotoite should have nucleated and grew in the area with abundant defects caused by shock deformation because the defect significantly enhances the solid-state reactivity and the kinetics of nucleation of high-pressure phase. The spatial relationship among the composed grains of pyroxene, akimotoite and MgSiO3-glass (possibly vitrified perovskite) demonstrates a temperature gradient from the vein wall to the unmelted chondritic meteorite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agee C B, Li J, Shannon M C, et al. 1995. Pressure-temperature phase diagram for Allende meteorite. J Geophys Res, 100: 17725–17740

    Article  Google Scholar 

  • Chen M, Sharp T G, El Goresy A, et al. 1996. The majorite-pyrope+magnesiowustite assemblage: Constrains on the history of shock veins in chondrites. Science, 271: 1570–1573

    Article  Google Scholar 

  • Chen M, Shu J F, Xie X D, et al. 2003a. Natural CaTi2O4-structured FeCr2O4 polymorph in the Suizhou meteorite and its significance in mantle mineralogy. Geochim Cosmochim Acta, 67: 3937–3942

    Article  Google Scholar 

  • Chen M, Shu J F, Mao H K, et al. 2003b. Natural occurrence and synthesis of two new postspinel polymorphs of chromite. Proc Nat Acad Sci USA, 100: 14651–14654

    Article  Google Scholar 

  • Chen M, Xie X D, El Goresy A. 2004. A shock-produced (Mg, Fe) SiO3 glass in the Suizhou meteorite. Meteorol Planet Sci, 39: 1797–1808

    Article  Google Scholar 

  • Chen M, Li H, El Goresy A, et al. 2006. Fracture-related intracrystalline transformation of olivine to ringwoodite in the shocked Sixiangkou meteorite. Meteorit Planet Sci, 41: 731–737

    Article  Google Scholar 

  • Chen M, Chen J, Xie X et al. 2007. A microstructural investigation of natural lamellar ringwoodite in olivine of the shocked Sixiangkou chondrite. Earth Planet Sci Lett, 264: 277–283

    Article  Google Scholar 

  • Chen M, Shu J F, Mao H K. 2008. Xieite, a new mineral of high-pressure FeCr2O4 polymorph. Chin Sci Bull, 53: 3341–3345

    Article  Google Scholar 

  • Durben D J, Wolf G, 1992. High-temperature behavior of metastable MgSiO3 perovskite: A Raman spectroscopic study. Am Mineral, 77: 890–893

    Google Scholar 

  • Ferroir T, Beck P, Van de Moortèle B, et al. 2008. Akimotoite in the Tenham meteorite: Crystal chemistry and high-pressure transformation mechanisms. Earth Planet Sci Lett, 275: 26–31

    Article  Google Scholar 

  • Gasparik P. 1993. The role of volatiles in the transition zone. J Geophys Res, 98: 4287–4299

    Article  Google Scholar 

  • Hogrefe A, Rubie D C, Sharp T G, et al. 1994. Metastability of enstatite in deep subducting lithosphere. Nature, 372: 351–353

    Article  Google Scholar 

  • Liu L G. 1976. The high-pressure phases of MgSiO3. Earth Planet Sci Lett, 31: 200–208

    Article  Google Scholar 

  • McMillan P. 1984a. Structure studies of silicate glasses and melts-Applications and limitations of Raman spectroscopy. Am Mineral, 69: 622–644

    Google Scholar 

  • McMillan P. 1984b. A Raman spectroscopic study of glasses in the system CaO-MgO-SiO2. Am Mineral, 69: 649–659

    Google Scholar 

  • Nagy Sz, Bérczi Sz, Józsa S, et al. 2010. Olivine and pyroxene high- pressure polymorphs in melt veins of the strongly shocked NWA 5011 meteorite sample. In: 41st Lunar Planetary Science Conference, Houston, No.1228

    Google Scholar 

  • Ohtani E, Kimura Y, Kimura M, et al. 2004. Formation of high-pressure minerals in shocked L6 chondrite Yamato 791384: Constraints on shock conditions and parent body size. Earth Planet Sci Lett, 227: 505–515

    Article  Google Scholar 

  • Presnell D C. 1995. Phase diagrams of earth-forming minerals. In: Ahrens T J, ed. Mineral Physics and Crystallography: A Handbook of Physical Constants. Amer Geophys Union. 248–268

    Chapter  Google Scholar 

  • Thadhani N N. 1994. Shock induced and shock-assisted solid-state chemical reactions in powder mixtures. J Appl Phys, 76: 2129–2138

    Article  Google Scholar 

  • Tomioka N, Fujino K. 1997. Natural (Mg, Fe) SiO3-ilmenite and — perovskite in the Tenham meteorite. Science, 277: 1084–1086

    Article  Google Scholar 

  • Tomioka N, Fujino K. 1999. Akimotoite, (Mg, Fe) SiO3, a new silicate mineral of the ilmenite group in the Tenham chondrite. Am Mineral, 84: 267–271

    Google Scholar 

  • Sharp T G, Lingemann C M, Dupas C, et al. 1997. Natural occurrence of MgSiO3-ilmenite and evidence for MgSiO3-perovskite in a shocked L chondrite. Science, 277: 352–255

    Article  Google Scholar 

  • Stöffler D, Keil K, Scott E R D. 1991. Shock metamorphism of ordinary chondrites. Geochim Cosmochim Acta, 55: 3845–3867

    Article  Google Scholar 

  • Xie X D, Chen M, Wang D Q. 2001. Shock-related mineralogical features and P-T history of the Suizhou L6 chondrite. Eur J Mineral, 13: 1177–1190

    Article  Google Scholar 

  • Xie X D, Minitti M E, Chen M, et al. 2003. Tuite, γ-Ca3(PO4)2, a new phosphate mineral from the Suizhou L6 chondrite. Eur J Mineral, 15: 1001–1005

    Article  Google Scholar 

  • Xie X D, Chen M, Wang D Q. 2005. Two types of silicate melts in naturally shocked meteorites. In: Papers and abstracts of the 5th Annual Meeting of IPACES, Guangzhou. 12–14

    Google Scholar 

  • Xie X D, Sun Z Y, Chen M. 2011. The distinct morphological and petrological features of shock melt veins in the Suizhou L6 chondrite. Meteorit Planet Sci, 46: 459–469

    Article  Google Scholar 

  • Xie Z D, Sharp T G. 2004. High-pressure phases in shock-induced melt veins of the Umbarger L6 chondrite: Constraints of pressure. Meteor Planet Sci, 39: 2043–2054

    Article  Google Scholar 

  • Zhang A C. 2006. Pyroxene polymorphs in melt veins of the heavily shocked Sixiangkou L6 chondrite. Eur J Mineral, 18: 719–726

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XianDe Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Xie, X. Shock-produced akimotoite in the Suizhou L6 chondrite. Sci. China Earth Sci. 58, 876–880 (2015). https://doi.org/10.1007/s11430-014-5039-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-014-5039-5

Keywords

Navigation