Skip to main content
Log in

Characteristics and mechanisms of the annual asymmetry of thermospheric mass density

Science China Earth Sciences Aims and scope Submit manuscript

Cite this article

Abstract

In this paper, globally-averaged, thermospheric total mass density, derived from the orbits of ∼5000 objects at 250, 400, and 550 km that were tracked from 1967 to 2006, has been used to quantitatively study the annual asymmetry of thermospheric mass density and its mechanism(s). The results show that thermospheric mass density had a significant annual asymmetry, which changed from year to year. The annual asymmetry at the three altitudes varied synchronously and its absolute value increased with altitudes. The results suggest that there is an annual asymmetry in solar EUV radiation that is caused by the difference in the Sun-Earth distance between the two solstices and the random variation of solar activity within a year. This change in radiation results in an annual change in the thermospheric temperature and thus the scale height of the neutral gas, and is the main cause of the annual asymmetry of thermospheric mass density. The annual asymmetry of mass density increases with altitude because of the accumulating effect of the changes in neutral temperature and scale height in the vertical direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Azpilicueta F, Brunini C. 2011. A new concept regarding the cause of ionosphere semiannual and annual anomalies. J Geophys Res, 116: A01307, doi: 10.1029/2010JA015977

    Google Scholar 

  • Chaman-Lal. 2000. Sun-Earth geometry, geomagnetic activity, and planetary F2 layer ion density, Part I: Signatures of magnetic reconnection. J Atmos Sol Terr Phys, 62: 3–16

    Article  Google Scholar 

  • Dickinson R E, Ridley E C, Roble R G. 1981. A three-dimensional general circulation model of the thermosphere. J Geophys Res, 86: 1499–1512

    Article  Google Scholar 

  • Emmert J T. 2009. A long-trm data set of globally averaged thermospheric total mass density. J Geophys Res, 114: A06315, doi: 10.1029/2009JA014102

    Google Scholar 

  • Emmert J T, Picone J M. 2010. Climatilogy of globally averaged thermospheric mass density. J Geophys Res, 115: A09326, doi: 10.1029/2010JA015298

    Google Scholar 

  • Emmert J T, Picone J M, Meier R R. 2008. Thermospheric global average mass density trends, 1967–2007, derived from orbits of 5000 near-Earth objects. Geophys Res Lett, 35: L05101, doi: 10.1029/2007GL032809

    Google Scholar 

  • Forbes J M, Palo S E, Zhang X. 2000. Variability of the ionosphere. J Atmos Terr Phys, 62: 685–693

    Article  Google Scholar 

  • Fuller-Rowell T J, Rees D, Quegan S, et al. 1996. A coupled thermosphere-ionosphere model (CTIM). In: Schunk R W, ed. STEP Handbook of ionospheric Models. Utah: Utah University. 217–238

    Google Scholar 

  • Guo J, Wan W, Forbes J M, et al. 2007. Effects of solar variability on thermosphere density from CHAMP accelerometer data. J Geophys Res, 112: A10308, doi: 10.1029/2007JA012409

    Article  Google Scholar 

  • Guo J, Wan W, Forbes J M, et al. 2008. Interannual and latitudinal variability of the thermosphere density annual harmonics. J Geophys Res, 113: A08301, doi: 10.1029/2008JA013056

    Google Scholar 

  • Hedin A E, Reber C A, Newton G P, et al. 1977a. A global thermospheric model based on mass spectrometer and incoherent scatter data, MSIS 1, N2 density and temperature. J Geophys Res, 82: 2139–2147

    Article  Google Scholar 

  • Hedin A E, Reber C A, Newton G P, et al. 1977b. A global thermospheric model based on mass spectrometer and incoherent scatter data, MSIS 2, composition. J Geophys Res, 82: 2148–2156

    Article  Google Scholar 

  • Hedin A E. 1983. A revised thermospheric model based on mass spectrometer and incoherent scatter data: MSIS-83. J Geophys Res, 88: 10170–10188

    Article  Google Scholar 

  • Hedin A E. 1987. MSIS-86 thermosphere model. J Geophys Res, 92: 4649–4662

    Article  Google Scholar 

  • Hedin A E. 1991. Extension of the MSIS thermosphere model into the middle and lower atmosphere. J Geophys Res, 96: 1159–1172

    Article  Google Scholar 

  • Jacchia L G. 1965. Static diffusion models of the upper atmosphere with empirical temperature profiles. Smithson Contrib Astrophys, 8: 215–257

    Google Scholar 

  • Jacchia L G. 1971. Semiannual variation in the heteorosphere: A reappraisal. J Geophys Res, 76: 4602–4607

    Article  Google Scholar 

  • Knipp D J, Tobiska W K, Emery B A. 2004. Direct and indirect thermospheric heating sources for solar cycles 21–23. Sol Phys, 224: 495–505, doi: 10.1007/s11207-005-6393-4

    Article  Google Scholar 

  • Lei J, Dou X, Burns A, et al. 2013. Annual asymmetry in thermospheric density: Observations and simulations. J Geophys Res Space Physics, 118: 2503–2510, doi: 10.1002/jgra.50253

    Article  Google Scholar 

  • Liu L, Zhao B, Wan W, et al. 2007. Yearly variations of global plasma densities in the topside ionosphere at middle and low latitudes. J Geophys Res, 112: A07303, doi: 10.1029/2007JA012283

    Google Scholar 

  • Ma R, Xu J, Wang W, et al. 2012. The effect of ∼27 day solar rotation on ionospheric F2 region peak densities (NmF2). J Geophys Res, 117: A03303, doi: 10.1029/2011 JA017190

    Google Scholar 

  • Mendillo M, Hoang C L, Pi X, et al. 2005. The global ionospheric asymmetry in total electron content. J Atmos Sol Terr Phys, 67: 1377–1387

    Article  Google Scholar 

  • Millward G H, Moffett R J, Quegan S, et al. 1996. A coupled thermosphere-ionosphere-plasmasphere model (CTIP). In: Schunk R W, ed. STEP Handbook of ionospheric Models. Utah: Utah University. 239–280

    Google Scholar 

  • Paetzold H K, Zschörner H. 1961. An annual and a semiannual variation of the upper air density. Pure Appl Geophys, 48: 85–92

    Article  Google Scholar 

  • Picone J M, Hedin A E, Drob D P, et al. 2002. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J Geophys Res, 107: 1468, doi: 10.1029/2002JA009430

    Article  Google Scholar 

  • Qian L, Solomon S C, Kane T J. 2009. Seasonal variation of thermospheric density and composition. J Geophys Res, 114: A01312, doi: 10.1029/2008JA013643

    Google Scholar 

  • Richards P G, Fennelly J A, Torr D G. 1994. EUVAC: A solar EUV flux model for aeronomic calculations. J Geophys Res, 99: 8981–8992, doi: 10.1029/94JA00518

    Article  Google Scholar 

  • Richmond A D, Ridley E C, Roble R G. 1992. A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys Res Lett, 19: 601–604

    Article  Google Scholar 

  • Rishbeth H, Müller-Wodarg I C F. 2006. Why is there more ionosphere in January than in July? The annual asymmetry in the F2-layer. Ann Goophys, 24: 3293–3311

    Article  Google Scholar 

  • Schreiner W S, Rocken C, Sokolovskiy S, et al. 2007. Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT-3 mission. Geophys Res Lett, 34: L04808, doi: 10.1029/2006GL027557

    Google Scholar 

  • Su Y Z, Bailey G J, Oyama K I. 1998. Annual and seasonal variations in the low-latitude topside ionosphere. Ann Geophys, 16: 974–985

    Article  Google Scholar 

  • Sutton E K, Forbes J M, Nerem R S. 2005. Global thermospheric neutral density and wind response to the severe 2003 geomagnetic storms from CHAMP accelerometer data. J Geophys Res, 110: A09S40, doi: 10.1029/2004JA010P985

    Google Scholar 

  • Titheridge J E, Buonsanto M J. 1983. Annual variations in the electron content and height of the F layer in the northern and southern hemispheres, related to neutral composition. J Atmos Sol Terr Phys, 45: 683–696

    Article  Google Scholar 

  • Yonezawa T, Arima Y. 1959. On the seasonal and non-seasonal annual variations and the semi-annual variation in the noon and midnight electron densities of the F2 layer in middle latitudes. J Radio Res Labs, 6: 293–309

    Google Scholar 

  • Yonezawa T. 1971. The solar-activity and latitudinal characteristics of the seasonal, non-seasonal and semi-annual variations in the peak electron densities of the F2-layer at noon and midnight in middle and low latitudes. J Atmos Sol Terr Phys, 33: 887–907

    Google Scholar 

  • Zeng Z, Burns A, Wang W, et al. 2008. Ionospheric annual asymmetry observed by the COSMIC radio occultation measurements and simulated by the TIECGM. J Geophys Res, 113: A07305, doi: 10.1029/2007JA012897

    Google Scholar 

  • Zou L, Rishbeth H, Müller-Wodarg I C F, et al. 2000. Annual and semiannual variations in the ionospheric F2-layer: I. Modelling. Ann Geophys, 18: 927–944

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiYao Xu.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, R., Xu, J., Wang, W. et al. Characteristics and mechanisms of the annual asymmetry of thermospheric mass density. Sci. China Earth Sci. 58, 540–550 (2015). https://doi.org/10.1007/s11430-014-5020-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-014-5020-3

Keywords

Navigation